organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(2S)-Methyl 2-(4-chloro­benzene­sulfon­amido)-4-(methyl­sulfan­yl)butanoate

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, and bInstitut for Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
*Correspondence e-mail: shameed@qau.edu.pk

(Received 14 May 2009; accepted 14 May 2009; online 20 May 2009)

The enanti­omerically pure title compound, C12H16ClNO4S2, contains a pyramidal N atom with an S—N bond length of 1.6306 (15) Å. Mol­ecules are linked to form chains parallel to the a axis by classical N—H⋯O hydrogen bonding involving a sulfonyl O atom, supported by three weak C—H⋯X inter­actions. (X = S, O).

Related literature

For the applications of esters in industry and as inter­mediates in the synthesis of heterocycles, see: Akhtar et al. (2007[Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316-322.], 2008[Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135-149.]); Kashif et al. (2008[Kashif, M. K., Ahmad, I. & Hameed, S. (2008). ARKIVOC, xvi, 311-317.]); Serwar et al. (2009[Serwar, M., Akhtar, T., Hameed, S. & Khan, K. M. (2009). ARKIVOC, vii, 210-221.]); Syed et al. (2009[Syed, T., Hameed, S., Jones, P. G. & Schmidt-Meier, A. (2009). Acta Cryst. E65, o1300.]).

[Scheme 1]

Experimental

Crystal data
  • C12H16ClNO4S2

  • Mr = 337.83

  • Orthorhombic, P 21 21 21

  • a = 5.1814 (3) Å

  • b = 12.6089 (8) Å

  • c = 23.2137 (13) Å

  • V = 1516.59 (16) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 4.92 mm−1

  • T = 100 K

  • 0.20 × 0.12 × 0.06 mm

Data collection
  • Oxford Diffraction Xcalibur Nova A diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England. ]) Tmin = 0.548, Tmax = 1.000 (expected range = 0.408–0.744)

  • 14469 measured reflections

  • 3093 independent reflections

  • 3027 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.062

  • S = 1.04

  • 3093 reflections

  • 187 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.35 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1250 Friedel pairs

  • Flack parameter: 0.005 (12)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N—H01⋯O3i 0.81 (3) 2.30 (3) 3.1048 (18) 169 (3)
C2—H2⋯O1ii 1.00 2.66 3.637 (2) 166
C12—H12⋯O1ii 0.95 2.37 3.315 (2) 173
C3—H3B⋯O3iii 0.99 2.66 3.635 (2) 170
C5—H5B⋯S1iv 0.98 2.97 3.892 (2) 157
C5—H5C⋯S1i 0.98 2.88 3.665 (2) 138
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z; (iii) [-x+2, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iv) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z].

Data collection: CrysAlis Pro (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England. ]); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP (Siemens, 1994[Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Esters have attracted widespread attention due to their applications in industry and as intermediates in the synthesis of heterocycles (Syed et al., 2009; Akhtar et al., 2008, 2007; Serwar et al., 2009). several types of pharmacological activities have also been associated with sulfonamides (Akhtar et al., 2008, Kashif et al., 2008). The title compound (I), a methionine derivative, was synthesized in our laboratory as an intermediate for onward conversion to 1,3,4-oxadiazole derivatives, and here we report its structure.

Molecular dimensions of (I) may be considered normal. The nitrogen atom displays a pyramidal geometry (Syed et al., 2009), lying 0.27 (1) Å out of the plane of its substituents. The molecule adopts the general shape of a thick disc (as is reflected in the short a axis length), with the ester group folded under the aromatic ring (C1···C11 3.374 (2) Å, C11—S2···C2—C1 - 19.3 (1)°). The molecules are connected in chains parallel to the a axis by the classical hydrogen bond N—H01···O3 (H···O 2.30 (3) Å), supported by the "weak" hydrogen bonds H2···O1, H12···O1 (a bifurcated system) and H5C···S1 (H···X 2.66, 2.37, 2.88 Å respectively). Symmetry operators for all these H bonds involve a axis translation.

Related literature top

For the applications of esters in industry and as intermediates in the synthesis of heterocycles, see: Akhtar et al. (2007); Akhtar et al. (2008); Kashif et al. (2008); Serwar et al. (2009); Syed et al. (2009).

Experimental top

The title compound was synthesized by the reaction of methionine (0.02 mol) and 4-chlorobenzenesulfonyl chloride according to a reported procedure (Syed et al., 2009). Recrystallization of the product from acetone/water afforded crystals suitable for X-ray analysis.

Refinement top

The NH hydrogen was refined freely. Methyl H atoms were located in difference syntheses, idealized to C—H 0.98 Å and H—C—H 109.5°, and refined as rigid groups allowed to rotate but not tip. Other H atoms were placed in calculated positions and refined using a riding model with C—H 0.95 Å for aromatic H and 1.00 Å for methine CH. Hydrogen U values were fixed at 1.5 × U(eq) of the parent atom for methyl H and 1.2 × U(eq) of the parent atom for other H. The compound is enantiomerically pure and its absolute configuration (S at C2) was confirmed by the Flack (1983) parameter. Data are 99.6% complete to 2θ 145°.

Computing details top

Data collection: CrysAlis PRO (Oxford Diffraction, 2008); cell refinement: CrysAlis PRO (Oxford Diffraction, 2008); data reduction: CrysAlis PRO (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecule of the title compound. Ellipsoids correspond to 50% probability levels.
[Figure 2] Fig. 2. Packing diagram of the title compound, showing classical hydrogen bonds (thick dashed lines) and "weak" hydrogen bonds (thin dashed lines). H atoms not involved in these H bonds have been omitted. The interactions H2···O1 are omitted for clarity.
(2S)-Methyl 2-(4-chlorobenzenesulfonamido)-4-(methylsulfanyl)butanoate top
Crystal data top
C12H16ClNO4S2Dx = 1.480 Mg m3
Mr = 337.83Melting point = 331–333 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54184 Å
a = 5.1814 (3) ÅCell parameters from 10903 reflections
b = 12.6089 (8) Åθ = 3.5–75.6°
c = 23.2137 (13) ŵ = 4.92 mm1
V = 1516.59 (16) Å3T = 100 K
Z = 4Tablet, colourless
F(000) = 7040.20 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
3093 independent reflections
Radiation source: Nova (Cu) X-ray Source3027 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.3543 pixels mm-1θmax = 75.7°, θmin = 3.8°
ω scansh = 65
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
k = 1515
Tmin = 0.548, Tmax = 1.000l = 2927
14469 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062 w = 1/[σ2(Fo2) + (0.0339P)2 + 0.6444P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3093 reflectionsΔρmax = 0.20 e Å3
187 parametersΔρmin = 0.35 e Å3
0 restraintsAbsolute structure: Flack (1983), 1250 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.005 (12)
Crystal data top
C12H16ClNO4S2V = 1516.59 (16) Å3
Mr = 337.83Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 5.1814 (3) ŵ = 4.92 mm1
b = 12.6089 (8) ÅT = 100 K
c = 23.2137 (13) Å0.20 × 0.12 × 0.06 mm
Data collection top
Oxford Diffraction Xcalibur Nova A
diffractometer
3093 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
3027 reflections with I > 2σ(I)
Tmin = 0.548, Tmax = 1.000Rint = 0.033
14469 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.062Δρmax = 0.20 e Å3
S = 1.04Δρmin = 0.35 e Å3
3093 reflectionsAbsolute structure: Flack (1983), 1250 Friedel pairs
187 parametersAbsolute structure parameter: 0.005 (12)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.6060 (3)0.70856 (13)0.30125 (7)0.0157 (3)
C20.7658 (3)0.64578 (13)0.25767 (7)0.0149 (3)
H20.95290.65270.26760.018*
C30.7198 (3)0.69178 (13)0.19720 (7)0.0157 (3)
H3A0.53990.67700.18530.019*
H3B0.74270.76970.19840.019*
C40.9040 (3)0.64498 (13)0.15292 (7)0.0175 (3)
H4A0.87240.56770.15010.021*
H4B1.08340.65520.16650.021*
C50.5616 (4)0.65296 (18)0.06022 (8)0.0279 (4)
H5A0.55650.57610.06620.042*
H5B0.53340.66870.01940.042*
H5C0.42610.68680.08330.042*
C60.5679 (4)0.87023 (14)0.34955 (8)0.0267 (4)
H6A0.39490.87910.33320.040*
H6B0.65290.93950.35220.040*
H6C0.55410.83900.38810.040*
C110.7949 (3)0.48637 (13)0.37042 (7)0.0166 (3)
C120.9359 (3)0.56678 (13)0.39648 (7)0.0194 (3)
H121.08010.59720.37740.023*
C130.8635 (4)0.60215 (14)0.45083 (8)0.0230 (3)
H130.95760.65700.46940.028*
C140.6511 (4)0.55597 (14)0.47751 (7)0.0225 (3)
C150.5128 (4)0.47418 (15)0.45226 (8)0.0224 (4)
H150.37160.44250.47190.027*
C160.5837 (3)0.43950 (13)0.39798 (7)0.0192 (3)
H160.48980.38430.37960.023*
O10.4034 (3)0.67950 (10)0.32058 (5)0.0225 (3)
O20.7177 (2)0.80112 (10)0.31298 (5)0.0202 (3)
O31.1274 (2)0.47165 (9)0.28709 (5)0.0187 (2)
O40.7538 (2)0.34783 (10)0.28792 (5)0.0199 (3)
S10.87182 (9)0.70331 (3)0.081959 (17)0.02100 (10)
S20.86006 (8)0.45109 (3)0.298219 (16)0.01470 (9)
Cl0.55423 (10)0.60320 (4)0.54465 (2)0.03195 (12)
N0.6935 (3)0.53293 (11)0.25852 (6)0.0151 (3)
H010.540 (6)0.521 (2)0.2616 (12)0.041 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0189 (8)0.0141 (7)0.0140 (7)0.0002 (7)0.0010 (7)0.0023 (6)
C20.0149 (7)0.0120 (7)0.0176 (8)0.0009 (6)0.0006 (6)0.0011 (6)
C30.0160 (7)0.0143 (7)0.0168 (8)0.0003 (6)0.0005 (6)0.0005 (6)
C40.0157 (8)0.0201 (8)0.0168 (7)0.0025 (6)0.0004 (6)0.0016 (6)
C50.0225 (9)0.0396 (10)0.0216 (9)0.0020 (8)0.0013 (7)0.0023 (8)
C60.0365 (11)0.0214 (8)0.0223 (8)0.0063 (8)0.0019 (8)0.0074 (7)
C110.0165 (8)0.0140 (7)0.0192 (8)0.0022 (6)0.0011 (6)0.0035 (6)
C120.0187 (8)0.0184 (8)0.0212 (8)0.0017 (6)0.0012 (6)0.0032 (6)
C130.0266 (9)0.0195 (8)0.0228 (8)0.0008 (8)0.0022 (8)0.0008 (7)
C140.0259 (9)0.0222 (8)0.0194 (8)0.0043 (8)0.0005 (7)0.0026 (6)
C150.0211 (8)0.0249 (8)0.0211 (8)0.0006 (7)0.0031 (7)0.0068 (7)
C160.0189 (8)0.0168 (8)0.0219 (8)0.0030 (7)0.0019 (7)0.0025 (6)
O10.0205 (7)0.0197 (6)0.0272 (6)0.0006 (5)0.0076 (5)0.0008 (5)
O20.0254 (6)0.0149 (6)0.0204 (6)0.0018 (5)0.0014 (5)0.0049 (5)
O30.0154 (5)0.0161 (5)0.0246 (6)0.0007 (5)0.0006 (5)0.0021 (4)
O40.0214 (6)0.0126 (6)0.0256 (6)0.0028 (5)0.0000 (5)0.0004 (5)
S10.01868 (19)0.0276 (2)0.01674 (19)0.00114 (18)0.00273 (16)0.00482 (15)
S20.01470 (18)0.01144 (17)0.01797 (18)0.00017 (15)0.00043 (15)0.00026 (13)
Cl0.0416 (3)0.0336 (2)0.0206 (2)0.0050 (2)0.00561 (18)0.00285 (18)
N0.0140 (6)0.0128 (6)0.0186 (7)0.0027 (5)0.0002 (5)0.0000 (5)
Geometric parameters (Å, º) top
C1—O11.199 (2)O4—S21.4337 (13)
C1—O21.331 (2)S2—N1.6306 (15)
C1—C21.528 (2)C2—H21.0000
C2—N1.472 (2)C3—H3A0.9900
C2—C31.538 (2)C3—H3B0.9900
C3—C41.522 (2)C4—H4A0.9900
C4—S11.8117 (17)C4—H4B0.9900
C5—S11.800 (2)C5—H5A0.9800
C6—O21.443 (2)C5—H5B0.9800
C11—C121.388 (2)C5—H5C0.9800
C11—C161.398 (2)C6—H6A0.9800
C11—S21.7667 (18)C6—H6B0.9800
C12—C131.390 (2)C6—H6C0.9800
C13—C141.391 (3)C12—H120.9500
C14—C151.386 (3)C13—H130.9500
C14—Cl1.7422 (18)C15—H150.9500
C15—C161.384 (2)C16—H160.9500
O3—S21.4327 (13)N—H010.81 (3)
O1—C1—O2124.89 (16)C2—C3—H3A109.2
O1—C1—C2124.31 (15)C4—C3—H3B109.2
O2—C1—C2110.75 (14)C2—C3—H3B109.2
N—C2—C1110.74 (13)H3A—C3—H3B107.9
N—C2—C3109.73 (13)C3—C4—H4A108.9
C1—C2—C3108.97 (13)S1—C4—H4A108.9
C4—C3—C2111.92 (14)C3—C4—H4B108.9
C3—C4—S1113.52 (11)S1—C4—H4B108.9
C12—C11—C16121.41 (16)H4A—C4—H4B107.7
C12—C11—S2119.77 (13)S1—C5—H5A109.5
C16—C11—S2118.50 (13)S1—C5—H5B109.5
C11—C12—C13119.20 (17)H5A—C5—H5B109.5
C12—C13—C14118.92 (17)S1—C5—H5C109.5
C15—C14—C13122.17 (17)H5A—C5—H5C109.5
C15—C14—Cl118.93 (14)H5B—C5—H5C109.5
C13—C14—Cl118.90 (14)O2—C6—H6A109.5
C16—C15—C14118.88 (17)O2—C6—H6B109.5
C15—C16—C11119.40 (16)H6A—C6—H6B109.5
C1—O2—C6114.59 (14)O2—C6—H6C109.5
C5—S1—C4101.18 (9)H6A—C6—H6C109.5
O3—S2—O4120.36 (7)H6B—C6—H6C109.5
O3—S2—N107.18 (7)C11—C12—H12120.4
O4—S2—N106.09 (7)C13—C12—H12120.4
O3—S2—C11108.08 (8)C12—C13—H13120.5
O4—S2—C11108.27 (8)C14—C13—H13120.5
N—S2—C11106.00 (7)C16—C15—H15120.6
C2—N—S2118.99 (11)C14—C15—H15120.6
N—C2—H2109.1C15—C16—H16120.3
C1—C2—H2109.1C11—C16—H16120.3
C3—C2—H2109.1C2—N—H01115.6 (19)
C4—C3—H3A109.2S2—N—H01110.5 (19)
O1—C1—C2—N20.6 (2)S2—C11—C16—C15173.17 (13)
O2—C1—C2—N161.73 (13)O1—C1—O2—C63.3 (2)
O1—C1—C2—C3100.19 (18)C2—C1—O2—C6174.33 (14)
O2—C1—C2—C377.48 (16)C3—C4—S1—C569.77 (14)
N—C2—C3—C467.63 (17)C12—C11—S2—O329.75 (15)
C1—C2—C3—C4170.97 (14)C16—C11—S2—O3156.70 (13)
C2—C3—C4—S1176.06 (11)C12—C11—S2—O4161.63 (13)
C16—C11—C12—C130.7 (3)C16—C11—S2—O424.82 (15)
S2—C11—C12—C13172.62 (13)C12—C11—S2—N84.90 (15)
C11—C12—C13—C140.1 (3)C16—C11—S2—N88.66 (14)
C12—C13—C14—C151.5 (3)C1—C2—N—S294.83 (15)
C12—C13—C14—Cl177.99 (13)C3—C2—N—S2144.83 (12)
C13—C14—C15—C162.0 (3)O3—S2—N—C247.30 (14)
Cl—C14—C15—C16177.52 (14)O4—S2—N—C2177.08 (12)
C14—C15—C16—C111.1 (3)C11—S2—N—C267.96 (14)
C12—C11—C16—C150.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H01···O3i0.81 (3)2.30 (3)3.1048 (18)169 (3)
C2—H2···O1ii1.002.663.637 (2)166
C12—H12···O1ii0.952.373.315 (2)173
C3—H3B···O3iii0.992.663.635 (2)170
C5—H5B···S1iv0.982.973.892 (2)157
C5—H5C···S1i0.982.883.665 (2)138
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z.

Experimental details

Crystal data
Chemical formulaC12H16ClNO4S2
Mr337.83
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.1814 (3), 12.6089 (8), 23.2137 (13)
V3)1516.59 (16)
Z4
Radiation typeCu Kα
µ (mm1)4.92
Crystal size (mm)0.20 × 0.12 × 0.06
Data collection
DiffractometerOxford Diffraction Xcalibur Nova A
diffractometer
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2008)
Tmin, Tmax0.548, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
14469, 3093, 3027
Rint0.033
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.062, 1.04
No. of reflections3093
No. of parameters187
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.20, 0.35
Absolute structureFlack (1983), 1250 Friedel pairs
Absolute structure parameter0.005 (12)

Computer programs: CrysAlis PRO (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Siemens, 1994).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N—H01···O3i0.81 (3)2.30 (3)3.1048 (18)169 (3)
C2—H2···O1ii1.002.663.637 (2)165.5
C12—H12···O1ii0.952.373.315 (2)172.9
C3—H3B···O3iii0.992.663.635 (2)170.3
C5—H5B···S1iv0.982.973.892 (2)156.6
C5—H5C···S1i0.982.883.665 (2)137.8
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z; (iii) x+2, y+1/2, z+1/2; (iv) x1/2, y+3/2, z.
 

Acknowledgements

The authors are grateful to the Higher Education Commission of Pakistan for financial support through project No. 20-674/R&D/06/1764 under the National Research Program for Universities.

References

First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322.  Web of Science CrossRef CAS Google Scholar
First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008). Acta Pharm. 58, 135–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKashif, M. K., Ahmad, I. & Hameed, S. (2008). ARKIVOC, xvi, 311–317.  CrossRef Google Scholar
First citationOxford Diffraction (2008). CrysAlis Pro. Oxford Diffraction Ltd, Abingdon, England.  Google Scholar
First citationSerwar, M., Akhtar, T., Hameed, S. & Khan, K. M. (2009). ARKIVOC, vii, 210–221.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSyed, T., Hameed, S., Jones, P. G. & Schmidt-Meier, A. (2009). Acta Cryst. E65, o1300.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds