organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-[(2,4-Di­chloro­phen­yl)imino­meth­yl]-2-hydr­­oxy-5-methyl­benzaldehyde

aDepartment of Physics, Faculty of Arts and Science, Ondokuz Mayıs University, TR-55139 Kurupelit-Samsun, Turkey, and bDepartment of Chemistry, Faculty of Arts and Science, Ondokuz Mayıs University, 55139 Samsun, Turkey
*Correspondence e-mail: ikilic@omu.edu.tr

(Received 14 May 2009; accepted 14 May 2009; online 20 May 2009)

The title compound, C15H11Cl2NO2, is a Schiff base which adopts the phenol–imine tautomeric form in the solid state, being stabilized by a strong intra­molecular O—H⋯N hydrogen bond. The mol­ecule is almost planar (r.m.s. deviation for all non-H atoms = 0.049 Å), displaying a dihedral angle of 3.1 (3)° between the planes of the two aromatic rings.

Related literature

For Schiff bases as substrates in the preparation of number of biologically active compounds, see: Siddiqui et al. (2006[Siddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, G. W. (2006). Molecules, 11, 206-211.]). For photochromism and thermochromism in these compounds, see: Hadjoudis et al. (1987[Hadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345-1360.]); Xu et al. (1994[Xu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169-1171.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). For related structures, see: Gül et al. (2007[Gül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.]) Koşar et al. (2005[Koşar, B., Albayrak, Ç., Odabaşoğlu, M. & Buüyükgüngör, O. (2005). Acta Cryst. E61, o2106-o2108.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11Cl2NO2

  • Mr = 308.15

  • Monoclinic, P 21 /c

  • a = 19.424 (2) Å

  • b = 4.6113 (3) Å

  • c = 15.4245 (14) Å

  • β = 103.946 (8)°

  • V = 1340.9 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 296 K

  • 0.80 × 0.31 × 0.02 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: integration (X-RED; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.817, Tmax = 0.982

  • 5912 measured reflections

  • 2613 independent reflections

  • 1228 reflections with I > 2σ(I)

  • Rint = 0.099

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.138

  • S = 0.91

  • 2613 reflections

  • 183 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N1 0.82 1.85 2.577 (4) 147

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In this paper, a new Schiff base, (I), C15H11Cl2O2N is prepared and its crystal structure is reported.

Schiff bases are synthesized from an aromatic amine and a carbonyl compound by a nucleophilic addition reaction. They are used as substrates in the preparation of number of biologically active compounds (Siddiqui et al., 2006). Photochromism and thermochromism are also characteristics of these materials and arise via H-atom transfer from the hydroxy O atom to the N atom (Hadjoudis et al., 1987; Xu et al., 1994). These are two types of intra molecular hydrogen bonds in Schiff bases, in keto-amine (N—H···O) and phenol-imine (N···H—O) tautomeric forms. Our X-ray investigation shows that the title compound, (I), exists in the phenol-imine form.

An ORTEP view of the molecule of (I) is shown in Fig. 1. There is a strong O···N type intramolecular hydrogen bond and this intramolecular hydrogen bond (O1—H1···N1) can be described as an S(6) motif (Bernstein et al., 1995). The C1—O1 [1.354 (6) Å] and C7=N1 [1.272 (6) Å] bond lengths verify the enol-imine form of (I), and these distances are agree with the corresponding distances in (E)-2-[4-(Dimethylamino)phenyliminomethyl]-6-methylphenol [1.350 (3) and 1.280 (2) Å; Gül et al., 2007)] and in (E)-4-Methoxy-2- [(4-nitrophenyl)iminomethyl]phenol [1.351 (2) and 1.277 (2) Å; Koşar et al., 2005]. The molecule is almost planar and the dihedral angle between the rings formed by atoms C1—C6 and C8—C13 is 3.12(0.28)°.

Related literature top

For Schiff bases as substrates in the preparation of number of biologically active compounds, see: Siddiqui et al. (2006). For photochromism and thermochromism in these compounds, see: Hadjoudis et al. (1987); Xu et al. (1994). For hydrogen-bond motifs, see: Bernstein et al. (1995). For related structures, see: Gül et al. (2007) Koşar et al. (2005).

For related literature, see: .

Experimental top

The compound 3-[(2,4-Dichlorophenyl)imino]methyl-2-hydroxy-5- methylbenzaldehyde was prepared by reflux a mixture of a solution containing 2-Hydroxy-5-methyl-1,3-benzenedicarboxaldehyde (0.05 g 0.3 mmol) in 20 ml e thanol and a solution containing 2,4-Dichloroaniline(0.049 g 0.3 mmol) in 20 ml e thanol. The reaction mixture was stirred for 1 hunder reflux. The crystals of 3-[(2,4-Dichlorophenyl)imino]methyl-2-hydroxy-5- methylbenzaldehyde suitable for X-ray analysis were obtained from ethylalcohol by slow evaporation (yield % 79; m.p.483–485 K).

Refinement top

All H atoms bound to carbon were refined using a riding model with C—H= 0.93Å and 0.96 Å Uiso(H) = 1.2Ueq(Caromatic) and C—H= 0.96Å Uiso(H) = 1.5Ueq(Cmethyl). The H atom of hydroxyl O atom was refined with O—H= 0.82Å Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Dashed lines indicate intramolecular hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of compound (I). Dashed lines indicate intramolecular hydrogen bond.
[Figure 3] Fig. 3. Synthetic scheme for C15H11Cl2O2N.
3-[(2,4-Dichlorophenyl)iminomethyl]-2-hydroxy-5-methylbenzaldehyde top
Crystal data top
C15H11Cl2NO2F(000) = 632
Mr = 308.15Dx = 1.526 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6202 reflections
a = 19.424 (2) Åθ = 1.9–29.5°
b = 4.6113 (3) ŵ = 0.48 mm1
c = 15.4245 (14) ÅT = 296 K
β = 103.946 (8)°Plate, red
V = 1340.9 (2) Å30.80 × 0.31 × 0.02 mm
Z = 4
Data collection top
Stoe IPDS II
diffractometer
2613 independent reflections
Radiation source: fine-focus sealed tube1228 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.099
Detector resolution: 6.67 pixels mm-1θmax = 26.0°, θmin = 2.2°
rotation method scansh = 2322
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
k = 55
Tmin = 0.817, Tmax = 0.982l = 1818
5912 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.138H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0441P)2]
where P = (Fo2 + 2Fc2)/3
2613 reflections(Δ/σ)max < 0.001
183 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.27 e Å3
Crystal data top
C15H11Cl2NO2V = 1340.9 (2) Å3
Mr = 308.15Z = 4
Monoclinic, P21/cMo Kα radiation
a = 19.424 (2) ŵ = 0.48 mm1
b = 4.6113 (3) ÅT = 296 K
c = 15.4245 (14) Å0.80 × 0.31 × 0.02 mm
β = 103.946 (8)°
Data collection top
Stoe IPDS II
diffractometer
2613 independent reflections
Absorption correction: integration
(X-RED; Stoe & Cie, 2002)
1228 reflections with I > 2σ(I)
Tmin = 0.817, Tmax = 0.982Rint = 0.099
5912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.138H-atom parameters constrained
S = 0.91Δρmax = 0.28 e Å3
2613 reflectionsΔρmin = 0.27 e Å3
183 parameters
Special details top

Experimental. 120 frames, detector distance = 100 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1925 (3)0.2637 (10)0.3175 (3)0.0447 (12)
C20.1516 (3)0.0564 (11)0.2629 (3)0.0489 (12)
C30.0969 (3)0.0806 (10)0.2900 (3)0.0495 (13)
H30.07020.21920.25280.059*
C40.0806 (2)0.0190 (10)0.3702 (3)0.0467 (12)
C50.1227 (2)0.1889 (10)0.4239 (3)0.0472 (12)
H50.11340.23210.47890.057*
C60.1770 (2)0.3330 (9)0.3998 (3)0.0410 (11)
C70.2183 (3)0.5467 (10)0.4580 (3)0.0463 (12)
H70.20620.59310.51100.056*
C80.3140 (2)0.8812 (9)0.4948 (3)0.0435 (11)
C90.3702 (3)1.0022 (10)0.4659 (3)0.0493 (13)
C100.4154 (3)1.2028 (10)0.5178 (3)0.0538 (14)
H100.45311.28070.49800.065*
C110.4039 (3)1.2842 (10)0.5983 (3)0.0496 (13)
C120.3487 (3)1.1723 (10)0.6292 (3)0.0508 (13)
H120.34191.22970.68430.061*
C130.3035 (3)0.9738 (10)0.5774 (3)0.0500 (13)
H130.26560.90030.59760.060*
C140.0213 (3)0.1709 (12)0.3997 (3)0.0618 (15)
H14A0.01880.04340.39180.093*
H14B0.03700.22330.46150.093*
H14C0.00790.34260.36440.093*
C150.1671 (3)0.0215 (13)0.1781 (3)0.0676 (16)
H150.20550.07120.16380.081*
Cl10.38664 (8)0.8931 (3)0.36584 (9)0.0671 (5)
Cl20.46096 (7)1.5343 (3)0.66358 (9)0.0634 (5)
N10.2710 (2)0.6740 (8)0.4391 (2)0.0464 (10)
O10.24635 (18)0.3927 (7)0.2904 (2)0.0581 (10)
H10.26600.51010.32820.087*
O20.1350 (2)0.1956 (9)0.1242 (2)0.0785 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.046 (3)0.044 (3)0.045 (3)0.000 (2)0.012 (2)0.003 (2)
C20.051 (3)0.056 (3)0.039 (2)0.002 (3)0.010 (2)0.004 (2)
C30.055 (3)0.050 (3)0.041 (3)0.002 (2)0.006 (2)0.005 (2)
C40.043 (3)0.047 (3)0.048 (3)0.003 (2)0.009 (2)0.000 (2)
C50.050 (3)0.049 (3)0.042 (2)0.005 (2)0.010 (2)0.001 (2)
C60.047 (3)0.037 (3)0.037 (2)0.001 (2)0.006 (2)0.003 (2)
C70.055 (3)0.044 (3)0.041 (2)0.005 (3)0.015 (2)0.004 (2)
C80.045 (3)0.037 (3)0.046 (3)0.001 (2)0.005 (2)0.002 (2)
C90.057 (3)0.041 (3)0.046 (3)0.005 (3)0.004 (2)0.000 (2)
C100.052 (3)0.045 (3)0.061 (3)0.005 (2)0.008 (3)0.000 (2)
C110.052 (3)0.043 (3)0.049 (3)0.003 (2)0.002 (2)0.001 (2)
C120.058 (3)0.052 (3)0.045 (3)0.005 (3)0.017 (2)0.001 (2)
C130.053 (3)0.055 (3)0.044 (3)0.006 (3)0.017 (2)0.003 (2)
C140.063 (3)0.062 (4)0.062 (3)0.003 (3)0.018 (3)0.007 (3)
C150.063 (3)0.089 (4)0.054 (3)0.012 (3)0.021 (3)0.018 (3)
Cl10.0730 (9)0.0789 (10)0.0548 (7)0.0040 (8)0.0263 (7)0.0082 (7)
Cl20.0617 (8)0.0510 (8)0.0691 (8)0.0052 (7)0.0007 (7)0.0080 (7)
N10.053 (2)0.046 (2)0.039 (2)0.003 (2)0.0093 (19)0.0035 (18)
O10.061 (2)0.063 (2)0.0516 (19)0.0117 (18)0.0160 (17)0.0102 (17)
O20.086 (3)0.101 (3)0.052 (2)0.028 (2)0.023 (2)0.026 (2)
Geometric parameters (Å, º) top
C1—O11.354 (6)C8—N11.416 (5)
C1—C21.390 (6)C9—C101.390 (6)
C1—C61.411 (7)C9—Cl11.725 (5)
C2—C31.384 (7)C10—C111.366 (7)
C2—C151.457 (7)C10—H100.9300
C3—C41.378 (7)C11—C121.374 (7)
C3—H30.9300C11—Cl21.742 (5)
C4—C51.395 (6)C12—C131.382 (6)
C4—C141.510 (7)C12—H120.9300
C5—C61.371 (6)C13—H130.9300
C5—H50.9300C14—H14A0.9600
C6—C71.440 (6)C14—H14B0.9600
C7—N11.272 (6)C14—H14C0.9600
C7—H70.9300C15—O21.215 (5)
C8—C91.391 (7)C15—H150.9300
C8—C131.404 (7)O1—H10.8200
O1—C1—C2119.2 (4)C10—C9—Cl1118.8 (4)
O1—C1—C6121.8 (4)C8—C9—Cl1119.9 (4)
C2—C1—C6119.1 (5)C11—C10—C9119.2 (5)
C3—C2—C1120.0 (4)C11—C10—H10120.4
C3—C2—C15120.0 (4)C9—C10—H10120.4
C1—C2—C15120.0 (5)C10—C11—C12121.6 (5)
C4—C3—C2122.4 (4)C10—C11—Cl2119.1 (4)
C4—C3—H3118.8C12—C11—Cl2119.3 (4)
C2—C3—H3118.8C11—C12—C13119.3 (5)
C3—C4—C5116.5 (5)C11—C12—H12120.4
C3—C4—C14122.1 (4)C13—C12—H12120.4
C5—C4—C14121.4 (5)C12—C13—C8120.9 (5)
C6—C5—C4123.4 (5)C12—C13—H13119.5
C6—C5—H5118.3C8—C13—H13119.5
C4—C5—H5118.3C4—C14—H14A109.5
C5—C6—C1118.6 (4)C4—C14—H14B109.5
C5—C6—C7120.8 (4)H14A—C14—H14B109.5
C1—C6—C7120.5 (5)C4—C14—H14C109.5
N1—C7—C6122.1 (5)H14A—C14—H14C109.5
N1—C7—H7118.9H14B—C14—H14C109.5
C6—C7—H7118.9O2—C15—C2126.4 (5)
C9—C8—C13117.8 (4)O2—C15—H15116.8
C9—C8—N1118.0 (4)C2—C15—H15116.8
C13—C8—N1124.2 (5)C7—N1—C8124.2 (4)
C10—C9—C8121.2 (5)C1—O1—H1109.5
O1—C1—C2—C3179.1 (4)C13—C8—C9—C101.5 (7)
C6—C1—C2—C30.6 (7)N1—C8—C9—C10178.8 (4)
O1—C1—C2—C150.5 (7)C13—C8—C9—Cl1179.0 (3)
C6—C1—C2—C15179.2 (4)N1—C8—C9—Cl11.3 (6)
C1—C2—C3—C40.2 (7)C8—C9—C10—C110.7 (7)
C15—C2—C3—C4178.9 (4)Cl1—C9—C10—C11178.2 (4)
C2—C3—C4—C50.5 (7)C9—C10—C11—C120.0 (7)
C2—C3—C4—C14179.5 (4)C9—C10—C11—Cl2179.7 (3)
C3—C4—C5—C61.2 (7)C10—C11—C12—C130.3 (7)
C14—C4—C5—C6179.8 (4)Cl2—C11—C12—C13180.0 (4)
C4—C5—C6—C11.5 (7)C11—C12—C13—C81.2 (7)
C4—C5—C6—C7179.7 (4)C9—C8—C13—C121.8 (7)
O1—C1—C6—C5178.5 (4)N1—C8—C13—C12178.5 (4)
C2—C1—C6—C51.2 (6)C3—C2—C15—O22.4 (9)
O1—C1—C6—C70.3 (7)C1—C2—C15—O2179.0 (5)
C2—C1—C6—C7180.0 (4)C6—C7—N1—C8178.7 (4)
C5—C6—C7—N1176.8 (4)C9—C8—N1—C7179.7 (4)
C1—C6—C7—N12.0 (7)C13—C8—N1—C70.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.852.577 (4)147

Experimental details

Crystal data
Chemical formulaC15H11Cl2NO2
Mr308.15
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)19.424 (2), 4.6113 (3), 15.4245 (14)
β (°) 103.946 (8)
V3)1340.9 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.80 × 0.31 × 0.02
Data collection
DiffractometerStoe IPDS II
diffractometer
Absorption correctionIntegration
(X-RED; Stoe & Cie, 2002)
Tmin, Tmax0.817, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
5912, 2613, 1228
Rint0.099
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.138, 0.91
No. of reflections2613
No. of parameters183
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.8512.577 (4)147
 

Acknowledgements

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS II diffractometer (purchased under grant No. F279 of the University Research Fund).

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGül, Z. S., Erşahin, F., Ağar, E. & Işık, Ş. (2007). Acta Cryst. E63, o2902.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationHadjoudis, E., Vitterakis, M., Moustakali, I. & Mavridis, I. (1987). Tetrahedron, 43, 1345–1360.  CrossRef CAS Web of Science Google Scholar
First citationKoşar, B., Albayrak, Ç., Odabaşoğlu, M. & Buüyükgüngör, O. (2005). Acta Cryst. E61, o2106–o2108.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddiqui, H. L., Iqbal, A., Ahmad, S. & Weaver, G. W. (2006). Molecules, 11, 206–211.  Web of Science CrossRef PubMed CAS Google Scholar
First citationStoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationXu, X.-X., You, X.-Z., Sun, Z.-F., Wang, X. & Liu, H.-X. (1994). Acta Cryst. C50, 1169–1171.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds