organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Chloro-N-(2,5-di­chloro­phen­yl)acetamide

aDepartment of Chemistry, Mangalore University, Mangalagangotri 574 199, Mangalore, India, bInstitute of Materials Science, Darmstadt University of Technology, Petersenstrasse 23, D-64287 Darmstadt, Germany, and cFaculty of Integrated Arts and Sciences, Tokushima University, Minamijosanjima-cho, Tokushima 770-8502, Japan
*Correspondence e-mail: gowdabt@yahoo.com

(Received 15 May 2009; accepted 25 May 2009; online 29 May 2009)

The conformation of the N—H bond in the structure of the title compound, C8H6Cl3NO, is anti to the C=O bond. The N—H H atom shows close intra­molecular N—H⋯Cl hydrogen bonds with both the ring Cl atom in the ortho position and the side-chain Cl atom. The mol­ecules crystallize in planes parallel to (221).

Related literature

For the preparation, see: Shilpa & Gowda (2007[Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84-90.]); Pies et al. (1971[Pies, W., Rager, H. & Weiss, A. (1971). Org. Magn. Reson. 3, 147-176.]). For our work on the effect of ring and side-chain substitutions on the solid-state geometries of aromatic amides, see: Gowda Foro & Fuess (2008[Gowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o419.]); Gowda, Kožíšek et al. (2008[Gowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.]); Gowda et al. (2009[Gowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949.]).

[Scheme 1]

Experimental

Crystal data
  • C8H6Cl3NO

  • Mr = 238.49

  • Triclinic, [P \overline 1]

  • a = 7.492 (2) Å

  • b = 8.496 (2) Å

  • c = 8.988 (2) Å

  • α = 69.68 (2)°

  • β = 67.54 (2)°

  • γ = 66.67 (2)°

  • V = 472.4 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.92 mm−1

  • T = 299 K

  • 0.38 × 0.28 × 0.22 mm

Data collection
  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]) Tmin = 0.720, Tmax = 0.823

  • 2735 measured reflections

  • 1914 independent reflections

  • 1359 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.098

  • S = 1.02

  • 1914 reflections

  • 122 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯Cl3 0.82 (3) 2.43 (3) 2.922 (2) 120 (2)
N1—H1N⋯Cl1 0.82 (3) 2.45 (3) 2.933 (2) 119 (2)

Data collection: CrysAlis CCD (Oxford Diffraction, 2004[Oxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2007[Oxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As part of a study of the effect of ring and side chain substitutions on the solid state geometries of aromatic amides (Gowda Foro & Fuess, 2008; Gowda, Kožíšek et al., 2008; Gowda et al., 2009), in the present work, the structure of 2-chloro-N-(2,5-dichlorophenyl)acetamide (25DCPCA)(I) has been determined. The conformation of the N—H bond in the structure (Fig. 1) is syn to the ortho-chloro and anti to the meta-chloro substituents in the aromatic ring, in contrast to the syn conformation observed with respect to both the 2-chloro and 3-chloro groups in 2-chloro-N-(2,3-dichlorophenyl)acetamide (Gowda, Kožíšek et al., 2008). Furthermore, the conformation of the C=O bond is anti to both the N—H bond and side chain Cl atom, compared to the anti conformation of the C=O bond with respect to the N–H bond and syn with respect to the side chain Cl atom, observed in 2-chloro-N-(2,3-dichlorophenyl)-acetamide (Gowda Foro & Fuess, 2008). But the conformations of the N–H bond and the side chain C–H bonds are anti to each other, while those of the ring C–Cl and the side chain C–Cl bonds are syn to each other. Further, the N—H H-atom shows simultaneous intramolecular hydrogen bonding with both the ring and side chain Cl atoms. The crystal packing is shown in Fig.2 (Table 1).

Related literature top

For the preparation, see: Shilpa & Gowda (2007); Pies et al. (1971). For our work on the effect of ring and side-chain substitutions on the solid-state geometries of aromatic amides, see: Gowda Foro & Fuess (2008); Gowda, Kožíšek et al. (2008); Gowda et al. (2009).

Experimental top

The title compound was prepared according to the literature method (Shilpa & Gowda, 2007). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared, NMR and NQR spectra (Shilpa & Gowda, 2007; Pies et al., 1971). Single crystals of the title compound used for X-ray diffraction studies were grown by a slow evaporation of its ethanolic solution at room temperature.

Refinement top

The N-bound H atom was located in difference map and its positional parameters were refined freely. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93–0.97 Å]. All H atoms were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, showing the atom labelling scheme. The displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Crystal packing of the title compound with hydrogen bonding shown as dashed lines.
2-Chloro-N-(2,5-dichlorophenyl)acetamide top
Crystal data top
C8H6Cl3NOZ = 2
Mr = 238.49F(000) = 240
Triclinic, P1Dx = 1.677 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.492 (2) ÅCell parameters from 698 reflections
b = 8.496 (2) Åθ = 3.2–27.9°
c = 8.988 (2) ŵ = 0.92 mm1
α = 69.68 (2)°T = 299 K
β = 67.54 (2)°Prism, colourless
γ = 66.67 (2)°0.38 × 0.28 × 0.22 mm
V = 472.4 (2) Å3
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1914 independent reflections
Radiation source: fine-focus sealed tube1359 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Rotation method data acquisition using ω and ϕ scansθmax = 26.4°, θmin = 3.2°
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
h = 89
Tmin = 0.720, Tmax = 0.823k = 109
2735 measured reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0433P)2 + 0.1195P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
1914 reflectionsΔρmax = 0.28 e Å3
122 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.043 (4)
Crystal data top
C8H6Cl3NOγ = 66.67 (2)°
Mr = 238.49V = 472.4 (2) Å3
Triclinic, P1Z = 2
a = 7.492 (2) ÅMo Kα radiation
b = 8.496 (2) ŵ = 0.92 mm1
c = 8.988 (2) ÅT = 299 K
α = 69.68 (2)°0.38 × 0.28 × 0.22 mm
β = 67.54 (2)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
1914 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
1359 reflections with I > 2σ(I)
Tmin = 0.720, Tmax = 0.823Rint = 0.018
2735 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.098H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.28 e Å3
1914 reflectionsΔρmin = 0.31 e Å3
122 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl11.03470 (12)0.29507 (9)0.22746 (8)0.0527 (2)
Cl20.72031 (12)0.28513 (10)0.52153 (8)0.0594 (3)
Cl30.68240 (12)0.81217 (11)0.40685 (9)0.0608 (3)
O10.4705 (3)0.7757 (2)0.0703 (2)0.0531 (6)
N10.7131 (3)0.5825 (3)0.0831 (3)0.0375 (5)
H1N0.772 (4)0.572 (3)0.178 (3)0.045*
C10.7880 (4)0.4371 (3)0.0367 (3)0.0322 (6)
C20.9420 (4)0.2924 (3)0.0178 (3)0.0335 (6)
C31.0238 (4)0.1464 (3)0.0928 (3)0.0389 (6)
H31.12610.05060.05480.047*
C40.9541 (4)0.1425 (3)0.2590 (3)0.0395 (6)
H41.00760.04430.33430.047*
C50.8036 (4)0.2866 (3)0.3124 (3)0.0376 (6)
C60.7181 (4)0.4339 (3)0.2045 (3)0.0370 (6)
H60.61580.52900.24360.044*
C70.5703 (4)0.7374 (3)0.0617 (3)0.0343 (6)
C80.5319 (4)0.8743 (3)0.2174 (3)0.0436 (7)
H8A0.55400.98000.21900.052*
H8B0.39050.90420.21090.052*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0643 (5)0.0476 (4)0.0356 (4)0.0068 (4)0.0059 (3)0.0184 (3)
Cl20.0708 (5)0.0553 (5)0.0319 (4)0.0043 (4)0.0182 (3)0.0098 (3)
Cl30.0635 (5)0.0648 (5)0.0333 (4)0.0041 (4)0.0140 (3)0.0049 (3)
O10.0577 (13)0.0443 (11)0.0350 (10)0.0045 (10)0.0100 (10)0.0104 (9)
N10.0410 (13)0.0352 (12)0.0268 (11)0.0026 (10)0.0082 (10)0.0081 (9)
C10.0309 (13)0.0310 (13)0.0336 (13)0.0067 (11)0.0102 (10)0.0079 (10)
C20.0337 (13)0.0358 (14)0.0321 (13)0.0114 (11)0.0053 (11)0.0126 (11)
C30.0341 (14)0.0336 (14)0.0468 (16)0.0013 (11)0.0138 (12)0.0146 (12)
C40.0402 (15)0.0333 (14)0.0431 (15)0.0042 (12)0.0196 (12)0.0060 (11)
C50.0394 (15)0.0384 (14)0.0327 (13)0.0063 (12)0.0129 (11)0.0090 (11)
C60.0356 (14)0.0358 (14)0.0338 (13)0.0018 (11)0.0105 (11)0.0111 (11)
C70.0334 (14)0.0313 (13)0.0352 (14)0.0073 (11)0.0095 (11)0.0077 (11)
C80.0405 (15)0.0421 (15)0.0369 (15)0.0039 (13)0.0109 (12)0.0062 (12)
Geometric parameters (Å, º) top
Cl1—C21.737 (2)C3—C41.374 (4)
Cl2—C51.737 (3)C3—H30.9300
Cl3—C81.771 (3)C4—C51.379 (4)
O1—C71.212 (3)C4—H40.9300
N1—C71.348 (3)C5—C61.383 (3)
N1—C11.410 (3)C6—H60.9300
N1—H1N0.82 (3)C7—C81.518 (3)
C1—C61.389 (3)C8—H8A0.9700
C1—C21.395 (3)C8—H8B0.9700
C2—C31.382 (3)
C7—N1—C1128.8 (2)C4—C5—C6122.2 (2)
C7—N1—H1N117.0 (19)C4—C5—Cl2119.14 (19)
C1—N1—H1N114.0 (19)C6—C5—Cl2118.7 (2)
C6—C1—C2119.1 (2)C5—C6—C1118.8 (2)
C6—C1—N1122.9 (2)C5—C6—H6120.6
C2—C1—N1117.9 (2)C1—C6—H6120.6
C3—C2—C1120.9 (2)O1—C7—N1125.7 (2)
C3—C2—Cl1119.2 (2)O1—C7—C8117.8 (2)
C1—C2—Cl1119.91 (19)N1—C7—C8116.5 (2)
C4—C3—C2120.1 (2)C7—C8—Cl3115.98 (18)
C4—C3—H3120.0C7—C8—H8A108.3
C2—C3—H3120.0Cl3—C8—H8A108.3
C3—C4—C5119.0 (2)C7—C8—H8B108.3
C3—C4—H4120.5Cl3—C8—H8B108.3
C5—C4—H4120.5H8A—C8—H8B107.4
C7—N1—C1—C60.5 (4)C3—C4—C5—Cl2178.1 (2)
C7—N1—C1—C2178.1 (3)C4—C5—C6—C10.7 (4)
C6—C1—C2—C30.6 (4)Cl2—C5—C6—C1178.5 (2)
N1—C1—C2—C3179.3 (2)C2—C1—C6—C50.1 (4)
C6—C1—C2—Cl1178.90 (19)N1—C1—C6—C5178.7 (2)
N1—C1—C2—Cl10.2 (3)C1—N1—C7—O14.4 (5)
C1—C2—C3—C40.2 (4)C1—N1—C7—C8175.9 (2)
Cl1—C2—C3—C4179.3 (2)O1—C7—C8—Cl3179.7 (2)
C2—C3—C4—C50.6 (4)N1—C7—C8—Cl30.5 (3)
C3—C4—C5—C61.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl30.82 (3)2.43 (3)2.922 (2)120 (2)
N1—H1N···Cl10.82 (3)2.45 (3)2.933 (2)119 (2)

Experimental details

Crystal data
Chemical formulaC8H6Cl3NO
Mr238.49
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)7.492 (2), 8.496 (2), 8.988 (2)
α, β, γ (°)69.68 (2), 67.54 (2), 66.67 (2)
V3)472.4 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.92
Crystal size (mm)0.38 × 0.28 × 0.22
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire CCD detector
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2007)
Tmin, Tmax0.720, 0.823
No. of measured, independent and
observed [I > 2σ(I)] reflections
2735, 1914, 1359
Rint0.018
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.098, 1.02
No. of reflections1914
No. of parameters122
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.31

Computer programs: CrysAlis CCD (Oxford Diffraction, 2004), CrysAlis RED (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···Cl30.82 (3)2.43 (3)2.922 (2)120 (2)
N1—H1N···Cl10.82 (3)2.45 (3)2.933 (2)119 (2)
 

Acknowledgements

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany for an extension of his research fellowship.

References

First citationGowda, B. T., Foro, S. & Fuess, H. (2008). Acta Cryst. E64, o419.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Foro, S., Terao, H. & Fuess, H. (2009). Acta Cryst. E65, o949.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationGowda, B. T., Kožíšek, J., Tokarčík, M. & Fuess, H. (2008). Acta Cryst. E64, o987.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationOxford Diffraction (2004). CrysAlis CCD. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationOxford Diffraction (2007). CrysAlis RED. Oxford Diffraction Ltd, Köln, Germany.  Google Scholar
First citationPies, W., Rager, H. & Weiss, A. (1971). Org. Magn. Reson. 3, 147–176.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds