organic compounds
2-Aminobenzothiazolium 2,4-dicarboxybenzoate monohydrate
aCollege of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn
Cocrystallization of 2-aminobenzothiazole with benzene-1,2,4-tricarboxylic acid in a mixed solvent affords the title ternary cocrystal, C7H7N2S+·C9H5O6−·H2O, in which one of the carboxyl groups of the benzenetricarboxylic acid is deprotonated and the heterocyclic N atom of the 2-aminobenzothiazole is protonated. In the crystal, intermolecular N—H⋯O and O—H⋯O hydrogen-bonding interactions stabilize the packing.
Related literature
For the properties of benzothiazole and its derivative and their uses in crystal engineering, see: Batista et al. (2007); Leng et al. (2001); Chen et al. (2008); Kovalska et al. (2006); Marconato et al. (1998). For 2-aminobenzothiazole (Abt) metal complexes, see: Batı et al. (2005); Sieroń & Bukowska-Strzyzewska (1999); Usman et al. (2003). For Abt-based cocrystals, see: Lynch et al. (1998, 1999).
Experimental
Crystal data
|
Data collection: APEX2 (Bruker, 2003); cell SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S160053680901890X/bt2963sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S160053680901890X/bt2963Isup2.hkl
2–Aminobenzothiazole (0.1 mmol, 15.0 mg) and 1, 2, 4–benzenetricarboxylic acid (0.1 mmol, 21.0 mg) were mixed in a CH3OH/H2O solution (v: v = 1:1, 10 ml) and stirred constantly for about 30 min. The resulting mixture was filtered. Colorless block crystals suitable for X–ray diffraction were collected by slow evaporation of the filtrate within one week. Yield: 56%. Anal. Calcd for C16H14N2O7S: C, 50.79; H, 3.73; N, 7.40%. Found: C, 50.66; H, 3.52; N, 7.28%.
H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C – H = 0.93, O – H = 0.85, and N – H = 0.86 Å and Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(O).
Data collection: APEX2 (Bruker, 2003); cell
SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids. | |
Fig. 2. A perspective view of the one-dimensional hydrogen–bonded ribbon of (I). Hydrogen bonds are indicated by dashed lines. | |
Fig. 3. The separate two-dimensional supramolecular sheet of (I). |
C7H7N2S+·C9H5O6−·H2O | Dx = 1.551 Mg m−3 |
Mr = 378.35 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pna21 | Cell parameters from 4384 reflections |
a = 6.8510 (4) Å | θ = 3.1–27.9° |
b = 24.3789 (15) Å | µ = 0.25 mm−1 |
c = 9.7043 (6) Å | T = 296 K |
V = 1620.81 (17) Å3 | Block, colourless |
Z = 4 | 0.20 × 0.18 × 0.17 mm |
F(000) = 784 |
Bruker APEXII CCD area-detector diffractometer | 2632 independent reflections |
Radiation source: fine-focus sealed tube | 2446 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.023 |
ϕ and ω scans | θmax = 25.0°, θmin = 1.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −7→8 |
Tmin = 0.953, Tmax = 0.960 | k = −29→19 |
7728 measured reflections | l = −11→8 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.070 | w = 1/[σ2(Fo2) + (0.0386P)2 + 0.1846P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
2632 reflections | Δρmax = 0.15 e Å−3 |
237 parameters | Δρmin = −0.18 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1116 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.10 (8) |
C7H7N2S+·C9H5O6−·H2O | V = 1620.81 (17) Å3 |
Mr = 378.35 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 6.8510 (4) Å | µ = 0.25 mm−1 |
b = 24.3789 (15) Å | T = 296 K |
c = 9.7043 (6) Å | 0.20 × 0.18 × 0.17 mm |
Bruker APEXII CCD area-detector diffractometer | 2632 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2446 reflections with I > 2σ(I) |
Tmin = 0.953, Tmax = 0.960 | Rint = 0.023 |
7728 measured reflections |
R[F2 > 2σ(F2)] = 0.030 | H-atom parameters constrained |
wR(F2) = 0.070 | Δρmax = 0.15 e Å−3 |
S = 1.04 | Δρmin = −0.18 e Å−3 |
2632 reflections | Absolute structure: Flack (1983), 1116 Friedel pairs |
237 parameters | Absolute structure parameter: 0.10 (8) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.41587 (9) | 0.29601 (2) | 0.74515 (7) | 0.04137 (16) | |
O1 | 0.6936 (2) | 0.09280 (7) | 1.31365 (15) | 0.0397 (4) | |
O2 | 0.3712 (2) | 0.10037 (7) | 1.34480 (16) | 0.0415 (4) | |
O3 | 0.5680 (3) | 0.20862 (7) | 1.2595 (2) | 0.0566 (5) | |
O4 | 0.4844 (3) | 0.25690 (7) | 1.07597 (17) | 0.0464 (4) | |
H4 | 0.5055 | 0.2826 | 1.1284 | 0.070* | |
O5 | 0.3884 (3) | 0.17106 (7) | 0.63412 (16) | 0.0484 (5) | |
O6 | 0.3848 (3) | 0.08050 (6) | 0.61157 (14) | 0.0382 (4) | |
H6 | 0.3681 | 0.0882 | 0.5302 | 0.057* | |
N1 | 0.3226 (3) | 0.35998 (8) | 0.54800 (19) | 0.0397 (5) | |
H1 | 0.2880 | 0.3717 | 0.4681 | 0.048* | |
N2 | 0.3039 (3) | 0.26695 (9) | 0.4919 (2) | 0.0515 (6) | |
H2A | 0.2647 | 0.2740 | 0.4096 | 0.062* | |
H2B | 0.3190 | 0.2335 | 0.5180 | 0.062* | |
C1 | 0.3639 (3) | 0.39498 (10) | 0.6569 (3) | 0.0369 (5) | |
C2 | 0.4157 (3) | 0.36673 (10) | 0.7762 (3) | 0.0376 (6) | |
C3 | 0.4535 (4) | 0.39391 (12) | 0.8975 (3) | 0.0497 (7) | |
H3 | 0.4875 | 0.3751 | 0.9773 | 0.060* | |
C4 | 0.4387 (4) | 0.45033 (13) | 0.8957 (4) | 0.0601 (8) | |
H4A | 0.4624 | 0.4699 | 0.9763 | 0.072* | |
C5 | 0.3892 (4) | 0.47875 (11) | 0.7767 (4) | 0.0625 (9) | |
H5 | 0.3814 | 0.5168 | 0.7790 | 0.075* | |
C6 | 0.3515 (4) | 0.45135 (10) | 0.6548 (3) | 0.0508 (7) | |
H6A | 0.3191 | 0.4702 | 0.5747 | 0.061* | |
C7 | 0.3406 (3) | 0.30693 (10) | 0.5769 (2) | 0.0393 (6) | |
C8 | 0.4935 (3) | 0.10831 (9) | 1.1180 (2) | 0.0288 (5) | |
C9 | 0.4830 (3) | 0.16013 (9) | 1.0568 (2) | 0.0287 (5) | |
C10 | 0.4490 (3) | 0.16392 (9) | 0.9160 (2) | 0.0303 (5) | |
H10 | 0.4394 | 0.1983 | 0.8753 | 0.036* | |
C11 | 0.4293 (3) | 0.11747 (10) | 0.8351 (2) | 0.0281 (5) | |
C12 | 0.4424 (3) | 0.06607 (10) | 0.8962 (2) | 0.0308 (5) | |
H12 | 0.4298 | 0.0345 | 0.8431 | 0.037* | |
C13 | 0.4741 (3) | 0.06218 (9) | 1.0367 (2) | 0.0325 (5) | |
H13 | 0.4826 | 0.0277 | 1.0773 | 0.039* | |
C14 | 0.5236 (3) | 0.10060 (9) | 1.2723 (2) | 0.0307 (5) | |
C15 | 0.5155 (3) | 0.21044 (9) | 1.1409 (2) | 0.0324 (5) | |
C16 | 0.3977 (3) | 0.12557 (10) | 0.6837 (2) | 0.0314 (5) | |
O7 | 0.0300 (2) | 0.15288 (7) | 0.2293 (2) | 0.0530 (5) | |
H7A | −0.0728 | 0.1356 | 0.2522 | 0.080* | |
H7B | 0.1377 | 0.1409 | 0.2607 | 0.080* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0528 (3) | 0.0398 (3) | 0.0315 (3) | 0.0040 (3) | −0.0078 (3) | 0.0088 (3) |
O1 | 0.0446 (9) | 0.0454 (10) | 0.0289 (9) | 0.0028 (8) | −0.0099 (7) | −0.0020 (7) |
O2 | 0.0454 (9) | 0.0585 (11) | 0.0205 (7) | −0.0054 (8) | 0.0019 (7) | 0.0018 (7) |
O3 | 0.0987 (14) | 0.0412 (9) | 0.0299 (11) | −0.0003 (10) | −0.0185 (11) | −0.0048 (9) |
O4 | 0.0738 (12) | 0.0311 (9) | 0.0343 (9) | 0.0022 (9) | −0.0091 (9) | −0.0041 (8) |
O5 | 0.0828 (14) | 0.0361 (10) | 0.0264 (9) | 0.0095 (9) | −0.0025 (9) | 0.0046 (8) |
O6 | 0.0583 (10) | 0.0387 (10) | 0.0177 (8) | −0.0019 (8) | −0.0019 (7) | −0.0019 (7) |
N1 | 0.0446 (12) | 0.0445 (12) | 0.0300 (11) | 0.0067 (9) | −0.0005 (9) | 0.0139 (9) |
N2 | 0.0771 (16) | 0.0469 (13) | 0.0305 (11) | 0.0143 (11) | −0.0101 (11) | 0.0037 (10) |
C1 | 0.0276 (12) | 0.0414 (13) | 0.0415 (14) | −0.0011 (11) | 0.0045 (10) | 0.0082 (11) |
C2 | 0.0299 (11) | 0.0423 (13) | 0.0406 (16) | −0.0003 (10) | −0.0001 (9) | 0.0062 (11) |
C3 | 0.0397 (14) | 0.0623 (18) | 0.0470 (16) | −0.0023 (12) | −0.0069 (12) | −0.0050 (14) |
C4 | 0.0449 (16) | 0.0600 (19) | 0.075 (2) | −0.0081 (14) | −0.0057 (14) | −0.0189 (17) |
C5 | 0.0496 (15) | 0.0393 (14) | 0.099 (3) | −0.0044 (13) | 0.0061 (16) | −0.0028 (17) |
C6 | 0.0430 (15) | 0.0393 (14) | 0.0701 (19) | −0.0007 (12) | 0.0043 (13) | 0.0131 (14) |
C7 | 0.0399 (13) | 0.0484 (14) | 0.0295 (13) | 0.0094 (11) | 0.0009 (10) | 0.0085 (11) |
C8 | 0.0320 (12) | 0.0339 (12) | 0.0204 (11) | −0.0010 (9) | −0.0001 (9) | −0.0003 (9) |
C9 | 0.0322 (11) | 0.0314 (12) | 0.0225 (10) | 0.0011 (9) | −0.0002 (9) | 0.0000 (9) |
C10 | 0.0361 (12) | 0.0298 (12) | 0.0249 (11) | 0.0009 (9) | 0.0010 (9) | 0.0029 (9) |
C11 | 0.0305 (11) | 0.0348 (14) | 0.0191 (10) | −0.0002 (9) | 0.0009 (8) | −0.0004 (9) |
C12 | 0.0351 (12) | 0.0324 (12) | 0.0248 (11) | −0.0016 (9) | −0.0019 (9) | −0.0033 (9) |
C13 | 0.0403 (12) | 0.0296 (12) | 0.0278 (12) | −0.0013 (10) | −0.0011 (10) | 0.0050 (9) |
C14 | 0.0431 (13) | 0.0283 (11) | 0.0207 (12) | −0.0029 (9) | −0.0024 (10) | −0.0006 (9) |
C15 | 0.0383 (13) | 0.0329 (12) | 0.0261 (12) | 0.0022 (9) | 0.0007 (10) | −0.0019 (9) |
C16 | 0.0319 (13) | 0.0364 (13) | 0.0259 (12) | 0.0012 (10) | 0.0006 (9) | −0.0007 (10) |
O7 | 0.0487 (10) | 0.0494 (10) | 0.0609 (13) | 0.0003 (8) | 0.0007 (10) | 0.0200 (10) |
S1—C7 | 1.733 (2) | C3—H3 | 0.9300 |
S1—C2 | 1.750 (2) | C4—C5 | 1.389 (5) |
O1—C14 | 1.246 (3) | C4—H4A | 0.9300 |
O2—C14 | 1.259 (3) | C5—C6 | 1.382 (4) |
O3—C15 | 1.207 (3) | C5—H5 | 0.9300 |
O4—C15 | 1.313 (3) | C6—H6A | 0.9300 |
O4—H4 | 0.8200 | C8—C13 | 1.380 (3) |
O5—C16 | 1.211 (3) | C8—C9 | 1.398 (3) |
O6—C16 | 1.306 (3) | C8—C14 | 1.523 (3) |
O6—H6 | 0.8200 | C9—C10 | 1.389 (3) |
N1—C7 | 1.329 (3) | C9—C15 | 1.490 (3) |
N1—C1 | 1.388 (3) | C10—C11 | 1.385 (3) |
N1—H1 | 0.8600 | C10—H10 | 0.9300 |
N2—C7 | 1.301 (3) | C11—C12 | 1.389 (3) |
N2—H2A | 0.8600 | C11—C16 | 1.498 (3) |
N2—H2B | 0.8600 | C12—C13 | 1.384 (3) |
C1—C6 | 1.377 (3) | C12—H12 | 0.9300 |
C1—C2 | 1.393 (3) | C13—H13 | 0.9300 |
C2—C3 | 1.376 (4) | O7—H7A | 0.8502 |
C3—C4 | 1.379 (4) | O7—H7B | 0.8498 |
C7—S1—C2 | 90.61 (12) | N1—C7—S1 | 112.06 (18) |
C15—O4—H4 | 109.5 | C13—C8—C9 | 119.23 (19) |
C16—O6—H6 | 109.5 | C13—C8—C14 | 118.3 (2) |
C7—N1—C1 | 114.8 (2) | C9—C8—C14 | 122.44 (19) |
C7—N1—H1 | 122.6 | C10—C9—C8 | 119.1 (2) |
C1—N1—H1 | 122.6 | C10—C9—C15 | 120.6 (2) |
C7—N2—H2A | 120.0 | C8—C9—C15 | 120.23 (19) |
C7—N2—H2B | 120.0 | C11—C10—C9 | 121.3 (2) |
H2A—N2—H2B | 120.0 | C11—C10—H10 | 119.3 |
C6—C1—N1 | 126.2 (2) | C9—C10—H10 | 119.3 |
C6—C1—C2 | 121.4 (2) | C10—C11—C12 | 119.3 (2) |
N1—C1—C2 | 112.4 (2) | C10—C11—C16 | 117.6 (2) |
C3—C2—C1 | 121.4 (2) | C12—C11—C16 | 123.2 (2) |
C3—C2—S1 | 128.4 (2) | C13—C12—C11 | 119.5 (2) |
C1—C2—S1 | 110.14 (19) | C13—C12—H12 | 120.2 |
C2—C3—C4 | 117.1 (3) | C11—C12—H12 | 120.2 |
C2—C3—H3 | 121.5 | C8—C13—C12 | 121.5 (2) |
C4—C3—H3 | 121.5 | C8—C13—H13 | 119.3 |
C3—C4—C5 | 121.7 (3) | C12—C13—H13 | 119.3 |
C3—C4—H4A | 119.1 | O1—C14—O2 | 126.5 (2) |
C5—C4—H4A | 119.1 | O1—C14—C8 | 117.49 (18) |
C6—C5—C4 | 121.1 (3) | O2—C14—C8 | 115.9 (2) |
C6—C5—H5 | 119.5 | O3—C15—O4 | 122.5 (2) |
C4—C5—H5 | 119.5 | O3—C15—C9 | 122.5 (2) |
C1—C6—C5 | 117.3 (3) | O4—C15—C9 | 115.03 (19) |
C1—C6—H6A | 121.4 | O5—C16—O6 | 123.6 (2) |
C5—C6—H6A | 121.4 | O5—C16—C11 | 121.2 (2) |
N2—C7—N1 | 125.3 (2) | O6—C16—C11 | 115.1 (2) |
N2—C7—S1 | 122.65 (19) | H7A—O7—H7B | 117.1 |
C7—N1—C1—C6 | −178.2 (2) | C14—C8—C9—C15 | 4.4 (3) |
C7—N1—C1—C2 | −0.3 (3) | C8—C9—C10—C11 | −1.3 (3) |
C6—C1—C2—C3 | 1.1 (4) | C15—C9—C10—C11 | 176.37 (19) |
N1—C1—C2—C3 | −177.0 (2) | C9—C10—C11—C12 | 0.5 (3) |
C6—C1—C2—S1 | 179.4 (2) | C9—C10—C11—C16 | −178.6 (2) |
N1—C1—C2—S1 | 1.4 (2) | C10—C11—C12—C13 | 0.2 (3) |
C7—S1—C2—C3 | 176.6 (2) | C16—C11—C12—C13 | 179.2 (2) |
C7—S1—C2—C1 | −1.59 (18) | C9—C8—C13—C12 | −0.7 (3) |
C1—C2—C3—C4 | −0.3 (4) | C14—C8—C13—C12 | 178.6 (2) |
S1—C2—C3—C4 | −178.29 (19) | C11—C12—C13—C8 | −0.1 (3) |
C2—C3—C4—C5 | −0.4 (4) | C13—C8—C14—O1 | 84.9 (3) |
C3—C4—C5—C6 | 0.4 (4) | C9—C8—C14—O1 | −95.7 (3) |
N1—C1—C6—C5 | 176.7 (2) | C13—C8—C14—O2 | −92.1 (2) |
C2—C1—C6—C5 | −1.1 (4) | C9—C8—C14—O2 | 87.3 (3) |
C4—C5—C6—C1 | 0.4 (4) | C10—C9—C15—O3 | −171.0 (2) |
C1—N1—C7—N2 | 178.0 (2) | C8—C9—C15—O3 | 6.6 (3) |
C1—N1—C7—S1 | −1.0 (3) | C10—C9—C15—O4 | 8.4 (3) |
C2—S1—C7—N2 | −177.5 (2) | C8—C9—C15—O4 | −173.95 (19) |
C2—S1—C7—N1 | 1.47 (18) | C10—C11—C16—O5 | −0.5 (3) |
C13—C8—C9—C10 | 1.4 (3) | C12—C11—C16—O5 | −179.5 (2) |
C14—C8—C9—C10 | −178.0 (2) | C10—C11—C16—O6 | 178.40 (19) |
C13—C8—C9—C15 | −176.3 (2) | C12—C11—C16—O6 | −0.6 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O7i | 0.82 | 1.86 | 2.674 (2) | 171 |
O6—H6···O2ii | 0.82 | 1.82 | 2.635 (2) | 171 |
N1—H1···O1iii | 0.86 | 1.85 | 2.698 (2) | 170 |
N2—H2A···O3iii | 0.86 | 2.03 | 2.838 (3) | 156 |
N2—H2B···O5 | 0.86 | 1.95 | 2.776 (3) | 160 |
O7—H7A···O1iv | 0.85 | 2.00 | 2.851 (2) | 177 |
O7—H7B···O2ii | 0.85 | 2.05 | 2.891 (2) | 170 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1; (ii) x, y, z−1; (iii) x−1/2, −y+1/2, z−1; (iv) x−1, y, z−1. |
Experimental details
Crystal data | |
Chemical formula | C7H7N2S+·C9H5O6−·H2O |
Mr | 378.35 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 296 |
a, b, c (Å) | 6.8510 (4), 24.3789 (15), 9.7043 (6) |
V (Å3) | 1620.81 (17) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.25 |
Crystal size (mm) | 0.20 × 0.18 × 0.17 |
Data collection | |
Diffractometer | Bruker APEXII CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.953, 0.960 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 7728, 2632, 2446 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.030, 0.070, 1.04 |
No. of reflections | 2632 |
No. of parameters | 237 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.15, −0.18 |
Absolute structure | Flack (1983), 1116 Friedel pairs |
Absolute structure parameter | 0.10 (8) |
Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).
D—H···A | D—H | H···A | D···A | D—H···A |
O4—H4···O7i | 0.82 | 1.86 | 2.674 (2) | 171.4 |
O6—H6···O2ii | 0.82 | 1.82 | 2.635 (2) | 170.5 |
N1—H1···O1iii | 0.86 | 1.85 | 2.698 (2) | 169.7 |
N2—H2A···O3iii | 0.86 | 2.03 | 2.838 (3) | 156.3 |
N2—H2B···O5 | 0.86 | 1.95 | 2.776 (3) | 159.8 |
O7—H7A···O1iv | 0.85 | 2.00 | 2.851 (2) | 176.9 |
O7—H7B···O2ii | 0.85 | 2.05 | 2.891 (2) | 170.4 |
Symmetry codes: (i) x+1/2, −y+1/2, z+1; (ii) x, y, z−1; (iii) x−1/2, −y+1/2, z−1; (iv) x−1, y, z−1. |
Acknowledgements
The authors gratefully acknowledge financial support from the Tianjin Education Committee (2006ZD07).
References
Batı, H., Saraçoĝlu, H., Çalıs˛kan, N. & Soylu, S. (2005). Acta Cryst. C61, 342–343. Google Scholar
Batista, R. M. F., Costa, S. P. G., Malheiro, E. L., Belsley, M. & Raposo, M. M. M. (2007). Tetrahedron, 63, 4258–4265. Web of Science CrossRef CAS Google Scholar
Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Google Scholar
Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. Google Scholar
Chen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 61, 1951–1962. Web of Science CSD CrossRef CAS Google Scholar
Flack, H. D. (1983). Acta Cryst. A39, 876–881. CrossRef CAS Web of Science IUCr Journals Google Scholar
Kovalska, V. B., Volkova, K. D., Losytskyy, M. Y., Tolmachev, O. I., Balanda, A. O. & Yarmoluk, S. M. (2006). Spectrochim. Acta Part A, 65, 271–277. CrossRef Google Scholar
Leng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253–9259. Web of Science CrossRef CAS Google Scholar
Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695–703. CAS Google Scholar
Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587–592. Web of Science CSD CrossRef CAS Google Scholar
Marconato, J. C., Bulhoes, L. O. & Temperini, M. L. (1998). Electrochim. Acta, 43, 771–780. Web of Science CrossRef CAS Google Scholar
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Sieroń, L. & Bukowska-Strżyzewska, M. (1999). Acta Cryst. C55, 167–169. Web of Science CSD CrossRef IUCr Journals Google Scholar
Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43. Web of Science CSD CrossRef IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Benzothiazole and its derivatives are extensively used in the field of crystal engineering owing to their beautiful structure and potential applications as electroluminescent devices (Batista et al., 2007; Leng et al., 2001, Chen et al., 2008), fluorescent probes for DNA (Kovalska et al., 2006), and corrosion inhibitors (Marconato et al., 1998).
As one of the typical benzothiazole derivatives, 2-aminobenzothiazole (Abt) has been becoming a promising candidate for both the metal complexes and organic cocrystals, because they have rigid heterocyclic backbone and functional amino group. Consequently, various Abt–based metal complexes with diverse coligands have been considerably investigated (Batı et al., 2005; Sieroń et al., 1999; Usman et al., 2003). In contrast, the Abt-based cocrystals are limited documented (Lynch et al., 1998; Lynch et al., 1999). Thus, as a continuation of acid–base crystalline adducts, in the present paper, we choose Abt and aromatic 1, 2, 4-benzenetricarboxylic acid (H3btc) as building blocks to cocrystallize. As a result, an intermolecular proton–transfer adduct, (I), was obtained, which exhibits a two–dimensional hydrogen–bonded network.
As shown in Fig. 1, the asymmetric unit of (I) comprises one HAbt cation, a monodeprontonated H2btc anion and one water molecule. The exocyclic amino group of HAbt is roughly coplanar with the benzothiazole ring. In contrast, the deprotonated carboxy group of H2btc makes dihedral angle of 86.103 (1)°, and the other carboxylic groups form dihedral angles of 8.231 (1) and 1.962 (2)° with the benzene ring of H2btc, respectively. The benzothiazole and the benzene rings of H2btc exhibits a dihedral angle of 7.083 (2)°. In the asymmetric unit, an intermolecular N2–H2B ···O5 hydrogen–bonding interaction (Table 1) was observed to stabilize the adduct.
Two H2btc anions from the adjacent units are held together by intermolecular O6–H6···O2 interactions (Table 1) to form an infinite one–dimensional ribbon along the crystallographic c–axis (Fig. 2), in which lattice water molecules was entrapped by O4–H4···O7 hydrogen–bonding interaction between the carboxylic group of H2btc and water molecule..
Furthermore, the neighboring 1–D ribbons are head–to–tail connected together by four fold O4–H4···O7, N1–H1···O1, N2–H2A···O3, O7–H7A···O1 and O7–H7B···O2 hydrogen-bonding to form a separate two-dimensional supramolecular sheet without any weak π···πinteractions between neighboring sheets (Fig. 3). Thus, it can be concluded that the extensive hydrogen–bonding interactions play essentially roles for the extension of (I).