organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­benzo­thia­zolium 2,4-di­carb­oxy­benzoate monohydrate

aCollege of Chemistry and Life Science, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, Tianjin Normal University, Tianjin 300387, People's Republic of China
*Correspondence e-mail: xiaojun_zhao15@yahoo.com.cn

(Received 15 May 2009; accepted 19 May 2009; online 23 May 2009)

Cocrystallization of 2-amino­benzothia­zole with benzene-1,2,4-tricarboxylic acid in a mixed solvent affords the title ternary cocrystal, C7H7N2S+·C9H5O6·H2O, in which one of the carboxyl groups of the benzene­tricarboxylic acid is deproton­ated and the heterocyclic N atom of the 2-amino­benzothia­zole is protonated. In the crystal, inter­molecular N—H⋯O and O—H⋯O hydrogen-bonding inter­actions stabilize the packing.

Related literature

For the properties of benzothia­zole and its derivative and their uses in crystal engineering, see: Batista et al. (2007[Batista, R. M. F., Costa, S. P. G., Malheiro, E. L., Belsley, M. & Raposo, M. M. M. (2007). Tetrahedron, 63, 4258-4265.]); Leng et al. (2001[Leng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253-9259.]); Chen et al. (2008[Chen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 61, 1951-1962.]); Kovalska et al. (2006[Kovalska, V. B., Volkova, K. D., Losytskyy, M. Y., Tolmachev, O. I., Balanda, A. O. & Yarmoluk, S. M. (2006). Spectrochim. Acta Part A, 65, 271-277.]); Marconato et al. (1998[Marconato, J. C., Bulhoes, L. O. & Temperini, M. L. (1998). Electrochim. Acta, 43, 771-780.]). For 2-amino­benzothia­zole (Abt) metal complexes, see: Batı et al. (2005[Batı, H., Saraçoĝlu, H., Çalıs˛kan, N. & Soylu, S. (2005). Acta Cryst. C61, 342-343.]); Sieroń & Bukowska-Strzyzewska (1999[Sieroń, L. & Bukowska-Strżyzewska, M. (1999). Acta Cryst. C55, 167-169.]); Usman et al. (2003[Usman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41-m43.]). For Abt-based cocrystals, see: Lynch et al. (1998[Lynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587-592.], 1999[Lynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695-703.]).

[Scheme 1]

Experimental

Crystal data
  • C7H7N2S+·C9H5O6·H2O

  • Mr = 378.35

  • Orthorhombic, P n a 21

  • a = 6.8510 (4) Å

  • b = 24.3789 (15) Å

  • c = 9.7043 (6) Å

  • V = 1620.81 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.17 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.953, Tmax = 0.960

  • 7728 measured reflections

  • 2632 independent reflections

  • 2446 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.030

  • wR(F2) = 0.070

  • S = 1.04

  • 2632 reflections

  • 237 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1116 Friedel pairs

  • Flack parameter: 0.10 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O7i 0.82 1.86 2.674 (2) 171
O6—H6⋯O2ii 0.82 1.82 2.635 (2) 171
N1—H1⋯O1iii 0.86 1.85 2.698 (2) 170
N2—H2A⋯O3iii 0.86 2.03 2.838 (3) 156
N2—H2B⋯O5 0.86 1.95 2.776 (3) 160
O7—H7A⋯O1iv 0.85 2.00 2.851 (2) 177
O7—H7B⋯O2ii 0.85 2.05 2.891 (2) 170
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+1]; (ii) x, y, z-1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-1]; (iv) x-1, y, z-1.

Data collection: APEX2 (Bruker, 2003[Bruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and DIAMOND (Brandenburg & Berndt, 1999[Brandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Benzothiazole and its derivatives are extensively used in the field of crystal engineering owing to their beautiful structure and potential applications as electroluminescent devices (Batista et al., 2007; Leng et al., 2001, Chen et al., 2008), fluorescent probes for DNA (Kovalska et al., 2006), and corrosion inhibitors (Marconato et al., 1998).

As one of the typical benzothiazole derivatives, 2-aminobenzothiazole (Abt) has been becoming a promising candidate for both the metal complexes and organic cocrystals, because they have rigid heterocyclic backbone and functional amino group. Consequently, various Abt–based metal complexes with diverse coligands have been considerably investigated (Batı et al., 2005; Sieroń et al., 1999; Usman et al., 2003). In contrast, the Abt-based cocrystals are limited documented (Lynch et al., 1998; Lynch et al., 1999). Thus, as a continuation of acid–base crystalline adducts, in the present paper, we choose Abt and aromatic 1, 2, 4-benzenetricarboxylic acid (H3btc) as building blocks to cocrystallize. As a result, an intermolecular proton–transfer adduct, (I), was obtained, which exhibits a two–dimensional hydrogen–bonded network.

As shown in Fig. 1, the asymmetric unit of (I) comprises one HAbt cation, a monodeprontonated H2btc anion and one water molecule. The exocyclic amino group of HAbt is roughly coplanar with the benzothiazole ring. In contrast, the deprotonated carboxy group of H2btc makes dihedral angle of 86.103 (1)°, and the other carboxylic groups form dihedral angles of 8.231 (1) and 1.962 (2)° with the benzene ring of H2btc, respectively. The benzothiazole and the benzene rings of H2btc exhibits a dihedral angle of 7.083 (2)°. In the asymmetric unit, an intermolecular N2–H2B ···O5 hydrogen–bonding interaction (Table 1) was observed to stabilize the adduct.

Two H2btc anions from the adjacent units are held together by intermolecular O6–H6···O2 interactions (Table 1) to form an infinite one–dimensional ribbon along the crystallographic c–axis (Fig. 2), in which lattice water molecules was entrapped by O4–H4···O7 hydrogen–bonding interaction between the carboxylic group of H2btc and water molecule..

Furthermore, the neighboring 1–D ribbons are head–to–tail connected together by four fold O4–H4···O7, N1–H1···O1, N2–H2A···O3, O7–H7A···O1 and O7–H7B···O2 hydrogen-bonding to form a separate two-dimensional supramolecular sheet without any weak π···πinteractions between neighboring sheets (Fig. 3). Thus, it can be concluded that the extensive hydrogen–bonding interactions play essentially roles for the extension of (I).

Related literature top

For the properties of benzothiazole and its derivative and their uses in crystal engineering, see: Batista et al. (2007); Leng et al. (2001); Chen et al. (2008); Kovalska et al. (2006); Marconato et al. (1998). For 2-aminobenzothiazole (Abt) metal complexes, see: Batı et al. (2005); Sieroń et al. (1999); Usman et al. (2003). For Abt-based cocrystals, see: Lynch et al. (1998, 1999).

Experimental top

2–Aminobenzothiazole (0.1 mmol, 15.0 mg) and 1, 2, 4–benzenetricarboxylic acid (0.1 mmol, 21.0 mg) were mixed in a CH3OH/H2O solution (v: v = 1:1, 10 ml) and stirred constantly for about 30 min. The resulting mixture was filtered. Colorless block crystals suitable for X–ray diffraction were collected by slow evaporation of the filtrate within one week. Yield: 56%. Anal. Calcd for C16H14N2O7S: C, 50.79; H, 3.73; N, 7.40%. Found: C, 50.66; H, 3.52; N, 7.28%.

Refinement top

H atoms were located in difference maps, but were subsequently placed in calculated positions and treated as riding, with C – H = 0.93, O – H = 0.85, and N – H = 0.86 Å and Uiso(H) = 1.2 Ueq(C,N) or 1.5 Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2003); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), drawn with 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. A perspective view of the one-dimensional hydrogen–bonded ribbon of (I). Hydrogen bonds are indicated by dashed lines.
[Figure 3] Fig. 3. The separate two-dimensional supramolecular sheet of (I).
2-Aminobenzothiazolium 2,4-dicarboxybenzoate monohydrate top
Crystal data top
C7H7N2S+·C9H5O6·H2ODx = 1.551 Mg m3
Mr = 378.35Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 4384 reflections
a = 6.8510 (4) Åθ = 3.1–27.9°
b = 24.3789 (15) ŵ = 0.25 mm1
c = 9.7043 (6) ÅT = 296 K
V = 1620.81 (17) Å3Block, colourless
Z = 40.20 × 0.18 × 0.17 mm
F(000) = 784
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2632 independent reflections
Radiation source: fine-focus sealed tube2446 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 78
Tmin = 0.953, Tmax = 0.960k = 2919
7728 measured reflectionsl = 118
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.1846P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2632 reflectionsΔρmax = 0.15 e Å3
237 parametersΔρmin = 0.18 e Å3
1 restraintAbsolute structure: Flack (1983), 1116 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.10 (8)
Crystal data top
C7H7N2S+·C9H5O6·H2OV = 1620.81 (17) Å3
Mr = 378.35Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 6.8510 (4) ŵ = 0.25 mm1
b = 24.3789 (15) ÅT = 296 K
c = 9.7043 (6) Å0.20 × 0.18 × 0.17 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2632 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2446 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.960Rint = 0.023
7728 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.070Δρmax = 0.15 e Å3
S = 1.04Δρmin = 0.18 e Å3
2632 reflectionsAbsolute structure: Flack (1983), 1116 Friedel pairs
237 parametersAbsolute structure parameter: 0.10 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.41587 (9)0.29601 (2)0.74515 (7)0.04137 (16)
O10.6936 (2)0.09280 (7)1.31365 (15)0.0397 (4)
O20.3712 (2)0.10037 (7)1.34480 (16)0.0415 (4)
O30.5680 (3)0.20862 (7)1.2595 (2)0.0566 (5)
O40.4844 (3)0.25690 (7)1.07597 (17)0.0464 (4)
H40.50550.28261.12840.070*
O50.3884 (3)0.17106 (7)0.63412 (16)0.0484 (5)
O60.3848 (3)0.08050 (6)0.61157 (14)0.0382 (4)
H60.36810.08820.53020.057*
N10.3226 (3)0.35998 (8)0.54800 (19)0.0397 (5)
H10.28800.37170.46810.048*
N20.3039 (3)0.26695 (9)0.4919 (2)0.0515 (6)
H2A0.26470.27400.40960.062*
H2B0.31900.23350.51800.062*
C10.3639 (3)0.39498 (10)0.6569 (3)0.0369 (5)
C20.4157 (3)0.36673 (10)0.7762 (3)0.0376 (6)
C30.4535 (4)0.39391 (12)0.8975 (3)0.0497 (7)
H30.48750.37510.97730.060*
C40.4387 (4)0.45033 (13)0.8957 (4)0.0601 (8)
H4A0.46240.46990.97630.072*
C50.3892 (4)0.47875 (11)0.7767 (4)0.0625 (9)
H50.38140.51680.77900.075*
C60.3515 (4)0.45135 (10)0.6548 (3)0.0508 (7)
H6A0.31910.47020.57470.061*
C70.3406 (3)0.30693 (10)0.5769 (2)0.0393 (6)
C80.4935 (3)0.10831 (9)1.1180 (2)0.0288 (5)
C90.4830 (3)0.16013 (9)1.0568 (2)0.0287 (5)
C100.4490 (3)0.16392 (9)0.9160 (2)0.0303 (5)
H100.43940.19830.87530.036*
C110.4293 (3)0.11747 (10)0.8351 (2)0.0281 (5)
C120.4424 (3)0.06607 (10)0.8962 (2)0.0308 (5)
H120.42980.03450.84310.037*
C130.4741 (3)0.06218 (9)1.0367 (2)0.0325 (5)
H130.48260.02771.07730.039*
C140.5236 (3)0.10060 (9)1.2723 (2)0.0307 (5)
C150.5155 (3)0.21044 (9)1.1409 (2)0.0324 (5)
C160.3977 (3)0.12557 (10)0.6837 (2)0.0314 (5)
O70.0300 (2)0.15288 (7)0.2293 (2)0.0530 (5)
H7A0.07280.13560.25220.080*
H7B0.13770.14090.26070.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0528 (3)0.0398 (3)0.0315 (3)0.0040 (3)0.0078 (3)0.0088 (3)
O10.0446 (9)0.0454 (10)0.0289 (9)0.0028 (8)0.0099 (7)0.0020 (7)
O20.0454 (9)0.0585 (11)0.0205 (7)0.0054 (8)0.0019 (7)0.0018 (7)
O30.0987 (14)0.0412 (9)0.0299 (11)0.0003 (10)0.0185 (11)0.0048 (9)
O40.0738 (12)0.0311 (9)0.0343 (9)0.0022 (9)0.0091 (9)0.0041 (8)
O50.0828 (14)0.0361 (10)0.0264 (9)0.0095 (9)0.0025 (9)0.0046 (8)
O60.0583 (10)0.0387 (10)0.0177 (8)0.0019 (8)0.0019 (7)0.0019 (7)
N10.0446 (12)0.0445 (12)0.0300 (11)0.0067 (9)0.0005 (9)0.0139 (9)
N20.0771 (16)0.0469 (13)0.0305 (11)0.0143 (11)0.0101 (11)0.0037 (10)
C10.0276 (12)0.0414 (13)0.0415 (14)0.0011 (11)0.0045 (10)0.0082 (11)
C20.0299 (11)0.0423 (13)0.0406 (16)0.0003 (10)0.0001 (9)0.0062 (11)
C30.0397 (14)0.0623 (18)0.0470 (16)0.0023 (12)0.0069 (12)0.0050 (14)
C40.0449 (16)0.0600 (19)0.075 (2)0.0081 (14)0.0057 (14)0.0189 (17)
C50.0496 (15)0.0393 (14)0.099 (3)0.0044 (13)0.0061 (16)0.0028 (17)
C60.0430 (15)0.0393 (14)0.0701 (19)0.0007 (12)0.0043 (13)0.0131 (14)
C70.0399 (13)0.0484 (14)0.0295 (13)0.0094 (11)0.0009 (10)0.0085 (11)
C80.0320 (12)0.0339 (12)0.0204 (11)0.0010 (9)0.0001 (9)0.0003 (9)
C90.0322 (11)0.0314 (12)0.0225 (10)0.0011 (9)0.0002 (9)0.0000 (9)
C100.0361 (12)0.0298 (12)0.0249 (11)0.0009 (9)0.0010 (9)0.0029 (9)
C110.0305 (11)0.0348 (14)0.0191 (10)0.0002 (9)0.0009 (8)0.0004 (9)
C120.0351 (12)0.0324 (12)0.0248 (11)0.0016 (9)0.0019 (9)0.0033 (9)
C130.0403 (12)0.0296 (12)0.0278 (12)0.0013 (10)0.0011 (10)0.0050 (9)
C140.0431 (13)0.0283 (11)0.0207 (12)0.0029 (9)0.0024 (10)0.0006 (9)
C150.0383 (13)0.0329 (12)0.0261 (12)0.0022 (9)0.0007 (10)0.0019 (9)
C160.0319 (13)0.0364 (13)0.0259 (12)0.0012 (10)0.0006 (9)0.0007 (10)
O70.0487 (10)0.0494 (10)0.0609 (13)0.0003 (8)0.0007 (10)0.0200 (10)
Geometric parameters (Å, º) top
S1—C71.733 (2)C3—H30.9300
S1—C21.750 (2)C4—C51.389 (5)
O1—C141.246 (3)C4—H4A0.9300
O2—C141.259 (3)C5—C61.382 (4)
O3—C151.207 (3)C5—H50.9300
O4—C151.313 (3)C6—H6A0.9300
O4—H40.8200C8—C131.380 (3)
O5—C161.211 (3)C8—C91.398 (3)
O6—C161.306 (3)C8—C141.523 (3)
O6—H60.8200C9—C101.389 (3)
N1—C71.329 (3)C9—C151.490 (3)
N1—C11.388 (3)C10—C111.385 (3)
N1—H10.8600C10—H100.9300
N2—C71.301 (3)C11—C121.389 (3)
N2—H2A0.8600C11—C161.498 (3)
N2—H2B0.8600C12—C131.384 (3)
C1—C61.377 (3)C12—H120.9300
C1—C21.393 (3)C13—H130.9300
C2—C31.376 (4)O7—H7A0.8502
C3—C41.379 (4)O7—H7B0.8498
C7—S1—C290.61 (12)N1—C7—S1112.06 (18)
C15—O4—H4109.5C13—C8—C9119.23 (19)
C16—O6—H6109.5C13—C8—C14118.3 (2)
C7—N1—C1114.8 (2)C9—C8—C14122.44 (19)
C7—N1—H1122.6C10—C9—C8119.1 (2)
C1—N1—H1122.6C10—C9—C15120.6 (2)
C7—N2—H2A120.0C8—C9—C15120.23 (19)
C7—N2—H2B120.0C11—C10—C9121.3 (2)
H2A—N2—H2B120.0C11—C10—H10119.3
C6—C1—N1126.2 (2)C9—C10—H10119.3
C6—C1—C2121.4 (2)C10—C11—C12119.3 (2)
N1—C1—C2112.4 (2)C10—C11—C16117.6 (2)
C3—C2—C1121.4 (2)C12—C11—C16123.2 (2)
C3—C2—S1128.4 (2)C13—C12—C11119.5 (2)
C1—C2—S1110.14 (19)C13—C12—H12120.2
C2—C3—C4117.1 (3)C11—C12—H12120.2
C2—C3—H3121.5C8—C13—C12121.5 (2)
C4—C3—H3121.5C8—C13—H13119.3
C3—C4—C5121.7 (3)C12—C13—H13119.3
C3—C4—H4A119.1O1—C14—O2126.5 (2)
C5—C4—H4A119.1O1—C14—C8117.49 (18)
C6—C5—C4121.1 (3)O2—C14—C8115.9 (2)
C6—C5—H5119.5O3—C15—O4122.5 (2)
C4—C5—H5119.5O3—C15—C9122.5 (2)
C1—C6—C5117.3 (3)O4—C15—C9115.03 (19)
C1—C6—H6A121.4O5—C16—O6123.6 (2)
C5—C6—H6A121.4O5—C16—C11121.2 (2)
N2—C7—N1125.3 (2)O6—C16—C11115.1 (2)
N2—C7—S1122.65 (19)H7A—O7—H7B117.1
C7—N1—C1—C6178.2 (2)C14—C8—C9—C154.4 (3)
C7—N1—C1—C20.3 (3)C8—C9—C10—C111.3 (3)
C6—C1—C2—C31.1 (4)C15—C9—C10—C11176.37 (19)
N1—C1—C2—C3177.0 (2)C9—C10—C11—C120.5 (3)
C6—C1—C2—S1179.4 (2)C9—C10—C11—C16178.6 (2)
N1—C1—C2—S11.4 (2)C10—C11—C12—C130.2 (3)
C7—S1—C2—C3176.6 (2)C16—C11—C12—C13179.2 (2)
C7—S1—C2—C11.59 (18)C9—C8—C13—C120.7 (3)
C1—C2—C3—C40.3 (4)C14—C8—C13—C12178.6 (2)
S1—C2—C3—C4178.29 (19)C11—C12—C13—C80.1 (3)
C2—C3—C4—C50.4 (4)C13—C8—C14—O184.9 (3)
C3—C4—C5—C60.4 (4)C9—C8—C14—O195.7 (3)
N1—C1—C6—C5176.7 (2)C13—C8—C14—O292.1 (2)
C2—C1—C6—C51.1 (4)C9—C8—C14—O287.3 (3)
C4—C5—C6—C10.4 (4)C10—C9—C15—O3171.0 (2)
C1—N1—C7—N2178.0 (2)C8—C9—C15—O36.6 (3)
C1—N1—C7—S11.0 (3)C10—C9—C15—O48.4 (3)
C2—S1—C7—N2177.5 (2)C8—C9—C15—O4173.95 (19)
C2—S1—C7—N11.47 (18)C10—C11—C16—O50.5 (3)
C13—C8—C9—C101.4 (3)C12—C11—C16—O5179.5 (2)
C14—C8—C9—C10178.0 (2)C10—C11—C16—O6178.40 (19)
C13—C8—C9—C15176.3 (2)C12—C11—C16—O60.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.821.862.674 (2)171
O6—H6···O2ii0.821.822.635 (2)171
N1—H1···O1iii0.861.852.698 (2)170
N2—H2A···O3iii0.862.032.838 (3)156
N2—H2B···O50.861.952.776 (3)160
O7—H7A···O1iv0.852.002.851 (2)177
O7—H7B···O2ii0.852.052.891 (2)170
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z1; (iii) x1/2, y+1/2, z1; (iv) x1, y, z1.

Experimental details

Crystal data
Chemical formulaC7H7N2S+·C9H5O6·H2O
Mr378.35
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)296
a, b, c (Å)6.8510 (4), 24.3789 (15), 9.7043 (6)
V3)1620.81 (17)
Z4
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.20 × 0.18 × 0.17
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.953, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
7728, 2632, 2446
Rint0.023
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.070, 1.04
No. of reflections2632
No. of parameters237
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.18
Absolute structureFlack (1983), 1116 Friedel pairs
Absolute structure parameter0.10 (8)

Computer programs: APEX2 (Bruker, 2003), SAINT (Bruker, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg & Berndt, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O7i0.821.862.674 (2)171.4
O6—H6···O2ii0.821.822.635 (2)170.5
N1—H1···O1iii0.861.852.698 (2)169.7
N2—H2A···O3iii0.862.032.838 (3)156.3
N2—H2B···O50.861.952.776 (3)159.8
O7—H7A···O1iv0.852.002.851 (2)176.9
O7—H7B···O2ii0.852.052.891 (2)170.4
Symmetry codes: (i) x+1/2, y+1/2, z+1; (ii) x, y, z1; (iii) x1/2, y+1/2, z1; (iv) x1, y, z1.
 

Acknowledgements

The authors gratefully acknowledge financial support from the Tianjin Education Committee (2006ZD07).

References

First citationBatı, H., Saraçoĝlu, H., Çalıs˛kan, N. & Soylu, S. (2005). Acta Cryst. C61, 342–343.  Google Scholar
First citationBatista, R. M. F., Costa, S. P. G., Malheiro, E. L., Belsley, M. & Raposo, M. M. M. (2007). Tetrahedron, 63, 4258–4265.  Web of Science CrossRef CAS Google Scholar
First citationBrandenburg, K. & Berndt, M. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2003). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChen, Q., Yang, E.-C., Zhang, R.-W., Wang, X.-G. & Zhao, X.-J. (2008). J. Coord. Chem. 61, 1951–1962.  Web of Science CSD CrossRef CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKovalska, V. B., Volkova, K. D., Losytskyy, M. Y., Tolmachev, O. I., Balanda, A. O. & Yarmoluk, S. M. (2006). Spectrochim. Acta Part A, 65, 271–277.  CrossRef Google Scholar
First citationLeng, W. N., Zhou, Y. M., Xu, Q. H. & Liu, J. Z. (2001). Polymer, 42, 9253–9259.  Web of Science CrossRef CAS Google Scholar
First citationLynch, D. E., Cooper, C. J., Chauhan, V., Smith, G., Healy, P. & Parsons, S. (1999). Aust. J. Chem. 52, 695–703.  CAS Google Scholar
First citationLynch, D. E., Smith, G., Byriel, K. A. & Kennard, C. H. L. (1998). Aust. J. Chem. 51, 587–592.  Web of Science CSD CrossRef CAS Google Scholar
First citationMarconato, J. C., Bulhoes, L. O. & Temperini, M. L. (1998). Electrochim. Acta, 43, 771–780.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSieroń, L. & Bukowska-Strżyzewska, M. (1999). Acta Cryst. C55, 167–169.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationUsman, A., Fun, H.-K., Chantrapromma, S., Zhang, M., Chen, Z.-F., Tang, Y.-Z., Shi, S.-M. & Liang, H. (2003). Acta Cryst. E59, m41–m43.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds