organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-Methyl­thio­benzamide

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan, and bDepartment of Chemistry, Saint Mary's University, Halifax, Nova Scotia, Canada B3H 3C3
*Correspondence e-mail: shameed@qau.edu.pk

(Received 23 May 2009; accepted 25 May 2009; online 29 May 2009)

In the title compound, C8H9NS, the dihedral angle between the aromatic ring and the thio­amide fragment is 36.0 (2)°. There are π-stacking inter­actions between coplanar aryl fragments, with a centroid–centroid separation of 3.658 (2) Å. In addition, there are inter­molecular hydrogen bonds between the amino group and the S atoms.

Related literature

For our previous work on the synthesis and biological screening of five-membered heterocycles, see: Akhtar et al. (2006[Akhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). X-ray Struct. Anal. Online, 22, x307-308.], 2007[Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316-322.], 2008[Akhtar, T., Hameed, S., Khan, K. M. & Choudhary, M. I. (2008). Med. Chem. 4, 539-543.]); Serwar et al. (2009[Serwar, M., Akhtar, T., Hameed, S. & Khan, K. M. (2009). ARKIVOC, pp. 210-221.]). For related structures, see: Jian et al. (2006[Jian, F. F., Zhao, P., Zhang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63-67.]); Khan et al. (2009a[Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009a). Acta Cryst. E65, o1128.],b[Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009b). Acta Cryst. E65, o1333.]).

[Scheme 1]

Experimental

Crystal data
  • C8H9NS

  • Mr = 151.22

  • Monoclinic, P 21 /c

  • a = 7.717 (5) Å

  • b = 10.267 (7) Å

  • c = 10.100 (7) Å

  • β = 97.186 (9)°

  • V = 794.0 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 296 K

  • 0.37 × 0.27 × 0.20 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.793, Tmax = 0.930

  • 6234 measured reflections

  • 1797 independent reflections

  • 1447 reflections with I > 2σ(I)

  • Rint = 0.021

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.112

  • S = 1.08

  • 1797 reflections

  • 92 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯S1i 0.86 2.66 3.455 (2) 155
N1—H1B⋯S1ii 0.86 2.58 3.422 (3) 165
Symmetry codes: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) -x, -y+1, -z.

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Thioamides are not only important intermediates in the synthesis of heterocyclic compounds but they also possess enormous biologically activities as reported in our previous articles (Khan et al., 2009a). In the present article, we report the crystal structure of 3-methylthiobenzamide, synthesized as a continuation of our previous work on the synthesis and biological screenings of five membered heterocycles (Akhtar et al., 2006, 2007, 2008; Serwar et al., 2009).

There are two distinct hydrogen bonding interactions between the nitrogen and sulfur atoms. The first arranges the dimer with N···S distances of 3.422 (3)Å and the second links two thioamide dimers through another N···S interaction on the order of 3.455 (2) Å. These N—H···S hydrogen bonding interactions are similar to those seen in p-trifluoromethylbenzothioamide where the corresponding interactions are between 3.3735Å and 3.5133Å (Jian et al., 2006), in 4-chlorobenzothioamide where the N···S distances are 3.3769 (15)Å and 3.4527 (15)Å (Khan et al., 2009a) and in 4-bromobenzothioamide where the N···S distances are between 3.500 (2)Å and 3.605 (3) Å (Khan et al., 2009b).

Related literature top

For our previous work on the synthesis and biological screening of five-membered heterocycles, see: Akhtar et al. (2006, 2007, 2008); Serwar et al. (2009). For related structures, see: Jian et al. (2006); Khan et al. (2009a,b).

Experimental top

The title compound was synthesized from 3-methylbenzonitrile according to a reported procedure (Khan et al., 2009a). The recrystallization of the product from chloroform afforded crystals suitable for X-ray analysis.

Refinement top

The hydrogen atoms were placed in geometrically idealized positions with C—H distances of 0.93Å (aromatic C—H), 0.96Å (methyl) and 0.86Å (amide N—H) and constrained to ride on the parent atom with Uiso(H) = 1.2 Ueq(C) for aromatic and amide protons or Uiso(H) = 1.5 Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of 3-methylthiobenzamide showing displacement ellipsoids at the 50% probability level (for non-H atoms).
[Figure 2] Fig. 2. Packing diagram of 3-methylthiobenzamide. Hydrogen bonds shown as dashed lines.
3-Methylthiobenzamide top
Crystal data top
C8H9NSF(000) = 320
Mr = 151.22Dx = 1.265 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2572 reflections
a = 7.717 (5) Åθ = 2.7–27.1°
b = 10.267 (7) ŵ = 0.33 mm1
c = 10.100 (7) ÅT = 296 K
β = 97.186 (9)°Block, yellow
V = 794.0 (9) Å30.37 × 0.27 × 0.20 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
1797 independent reflections
Radiation source: fine-focus sealed tube1447 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
ϕ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 109
Tmin = 0.793, Tmax = 0.930k = 1313
6234 measured reflectionsl = 1113
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0556P)2 + 0.242P]
where P = (Fo2 + 2Fc2)/3
1797 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H9NSV = 794.0 (9) Å3
Mr = 151.22Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.717 (5) ŵ = 0.33 mm1
b = 10.267 (7) ÅT = 296 K
c = 10.100 (7) Å0.37 × 0.27 × 0.20 mm
β = 97.186 (9)°
Data collection top
Bruker APEXII CCD
diffractometer
1797 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1447 reflections with I > 2σ(I)
Tmin = 0.793, Tmax = 0.930Rint = 0.021
6234 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.112H-atom parameters constrained
S = 1.08Δρmax = 0.22 e Å3
1797 reflectionsΔρmin = 0.29 e Å3
92 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.13324 (7)0.62675 (4)0.16035 (4)0.05023 (19)
N10.0243 (2)0.38549 (15)0.17149 (16)0.0521 (4)
H1A0.01870.31130.21030.063*
H1B0.02600.39630.09140.063*
C20.1933 (2)0.45618 (15)0.37261 (16)0.0358 (4)
C10.1099 (2)0.48241 (16)0.23470 (16)0.0379 (4)
C30.2661 (2)0.33439 (17)0.40481 (18)0.0406 (4)
H3A0.25350.26830.34140.049*
C70.2072 (2)0.55347 (17)0.46931 (18)0.0435 (4)
H7A0.15890.63520.44920.052*
C40.3569 (2)0.30980 (18)0.52939 (19)0.0455 (4)
C50.3695 (2)0.4084 (2)0.62387 (18)0.0500 (5)
H5A0.43030.39350.70790.060*
C60.2927 (3)0.5286 (2)0.59491 (19)0.0501 (5)
H6A0.29890.59270.66040.060*
C80.4466 (3)0.1803 (2)0.5575 (2)0.0671 (6)
H8A0.37100.11150.52100.101*
H8B0.47290.16860.65220.101*
H8C0.55290.17860.51730.101*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0774 (4)0.0330 (2)0.0387 (3)0.0000 (2)0.0007 (2)0.00264 (17)
N10.0726 (11)0.0435 (8)0.0363 (8)0.0142 (7)0.0089 (7)0.0048 (6)
C20.0384 (8)0.0362 (8)0.0329 (8)0.0031 (6)0.0046 (6)0.0001 (6)
C10.0439 (9)0.0345 (8)0.0351 (9)0.0016 (6)0.0042 (7)0.0013 (6)
C30.0461 (9)0.0380 (8)0.0379 (9)0.0003 (7)0.0066 (7)0.0007 (7)
C70.0508 (10)0.0396 (9)0.0398 (9)0.0018 (7)0.0045 (8)0.0032 (7)
C40.0433 (9)0.0492 (10)0.0446 (10)0.0012 (7)0.0078 (7)0.0129 (8)
C50.0482 (10)0.0674 (12)0.0332 (9)0.0082 (9)0.0003 (8)0.0076 (8)
C60.0576 (11)0.0554 (11)0.0369 (10)0.0097 (9)0.0040 (8)0.0083 (8)
C80.0737 (14)0.0647 (14)0.0630 (14)0.0205 (11)0.0093 (11)0.0223 (11)
Geometric parameters (Å, º) top
S1—C11.6811 (19)C7—H7A0.9300
N1—C11.315 (2)C4—C51.386 (3)
N1—H1A0.8600C4—C81.509 (3)
N1—H1B0.8600C5—C61.384 (3)
C2—C71.392 (2)C5—H5A0.9300
C2—C31.393 (2)C6—H6A0.9300
C2—C11.484 (2)C8—H8A0.9600
C3—C41.385 (3)C8—H8B0.9600
C3—H3A0.9300C8—H8C0.9600
C7—C61.379 (3)
C1—N1—H1A120.0C3—C4—C5118.45 (17)
C1—N1—H1B120.0C3—C4—C8119.99 (18)
H1A—N1—H1B120.0C5—C4—C8121.49 (19)
C7—C2—C3119.16 (16)C6—C5—C4120.95 (18)
C7—C2—C1120.98 (15)C6—C5—H5A119.5
C3—C2—C1119.80 (15)C4—C5—H5A119.5
N1—C1—C2116.80 (15)C7—C6—C5120.17 (17)
N1—C1—S1121.71 (14)C7—C6—H6A119.9
C2—C1—S1121.41 (12)C5—C6—H6A119.9
C4—C3—C2121.29 (17)C4—C8—H8A109.5
C4—C3—H3A119.4C4—C8—H8B109.5
C2—C3—H3A119.4H8A—C8—H8B109.5
C6—C7—C2119.91 (17)C4—C8—H8C109.5
C6—C7—H7A120.0H8A—C8—H8C109.5
C2—C7—H7A120.0H8B—C8—H8C109.5
N1—C1—C2—C336.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.663.455 (2)155
N1—H1B···S1ii0.862.583.422 (3)165
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC8H9NS
Mr151.22
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)7.717 (5), 10.267 (7), 10.100 (7)
β (°) 97.186 (9)
V3)794.0 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.37 × 0.27 × 0.20
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2008)
Tmin, Tmax0.793, 0.930
No. of measured, independent and
observed [I > 2σ(I)] reflections
6234, 1797, 1447
Rint0.021
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.112, 1.08
No. of reflections1797
No. of parameters92
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.29

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.862.663.455 (2)155.0
N1—H1B···S1ii0.862.583.422 (3)164.9
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x, y+1, z.
 

Acknowledgements

The authors thank the HEC, Pakistan for a PhD fellowship awarded to MuHK under the indigenous PhD Program. JDM thanks Saint Mary's University for funding.

References

First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322.  Web of Science CrossRef CAS Google Scholar
First citationAkhtar, T., Hameed, S., Khan, K. M. & Choudhary, M. I. (2008). Med. Chem. 4, 539–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Lu, X., Yasin, K. A. & Khan, M. H. (2006). X-ray Struct. Anal. Online, 22, x307–308.  CSD CrossRef CAS Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationJian, F. F., Zhao, P., Zhang, L. & Zheng, J. (2006). J. Fluorine Chem. 127, 63–67.  Web of Science CSD CrossRef CAS Google Scholar
First citationKhan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009a). Acta Cryst. E65, o1128.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKhan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009b). Acta Cryst. E65, o1333.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSerwar, M., Akhtar, T., Hameed, S. & Khan, K. M. (2009). ARKIVOC, pp. 210–221.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds