organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-{2-[4-(Di­methyl­amino)phen­yl]ethyl­­idene}benzo­nitrile

aDepartamento de Química, Facultad de Ciencias, Universidad del Valle, Apartado 25360, Santiago de Cali, Colombia, and bInstituto de Física de São Carlos, Universidade de São Paulo, USP, São Carlos, SP, Brazil
*Correspondence e-mail: rodimo26@yahoo.es

(Received 26 February 2009; accepted 17 May 2009; online 23 May 2009)

In the crystal of the title compound, C17H16N2, mol­ecules are linked by C—H⋯N hydrogen bonds, forming rings of graph-set motifs R21(6) and R22(10). The title mol­ecule is close to planar, with a dihedral angle between the aromatic rings of 0.6 (1)°. Torsion angles confirm a conformational trans structure.

Related literature

For background information on photonic materials, see: Blanchard-Desce et al. (1988[Blanchard-Desce, M., Ledoux, I., Lehn, J. M., Malthete, J. & Zyss, J. (1988). J. Chem. Soc. Chem. Commun. pp. 737-739.]); Lapouyade et al. (1993[Lapouyade, R., Kuhn, A., Letard, J. F. & Retting, W. (1993). Chem. Phys. Lett. 208, 48-58.]); Papper et al. (1997[Papper, V., Pines, D., Likhtenshtein, G. & Pines, E. (1997). J. Photochem. Photobiol. A, 111, 87-96.]). For background information on spectroscopic properties, see: Daum et al. (1995[Daum, R., Hansson, T., Norenberg, R., Schwarzer, D. & Schroeder, J. (1995). Chem. Phys. Lett. 246, 607-614.]); Kubicki (2007[Kubicki, A. A. (2007). Chem. Phys. Lett. 439, 243-246.]). For graph-set motifs, see: Etter (1990[Etter, M. (1990). Acc. Chem. Res. 23, 120-126.]). For related literature, see: Craig et al. (2006[Craig, N. C., Groner, P. & McKean, D. C. (2006). J. Phys. Chem. A, 110, 7461-7469.]); Maryanoff & Reitz (1989[Maryanoff, B. E. & Reitz, A. B. (1989). J. Chem. Rev. 89, 863.]).

[Scheme 1]

Experimental

Crystal data
  • C17H16N2

  • Mr = 248.32

  • Monoclinic, P 21 /n

  • a = 6.2009 (2) Å

  • b = 7.9706 (3) Å

  • c = 27.9619 (11) Å

  • β = 93.6027 (13)°

  • V = 1379.28 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 291 K

  • 0.28 × 0.14 × 0.08 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: none

  • 4640 measured reflections

  • 2443 independent reflections

  • 1428 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.173

  • S = 1.02

  • 2443 reflections

  • 192 parameters

  • H-atom parameters constrained

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.16 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1C⋯N2i 0.96 2.99 3.858 (3) 151
C2—H2C⋯N2i 0.96 2.80 3.646 (3) 147
C13—H13⋯N2ii 0.93 2.88 3.696 (3) 147
Symmetry codes: (i) [x-{\script{3\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (ii) -x+2, -y+1, -z.

Data collection: COLLECT (Nonius, 2000[Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: PARST95 (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Polyene systems are often used as π conjugating units as they provide an effective pathway for the efficient push-pull charge transfer between the donor and acceptor groups (Blanchard-Desce et al., 1988). Stilbene materials are expected to have diverse applications in photochemistry, fluorescense and non linear optical (NLO) processes when donor-acceptor substituents are introduced in the phenyl rings in order to spread the conjugation over the whole molecule (Lapouyade et al., 1993; Papper et al., 1997). Spectroscopic properties of the title 4-dimethylamino-4-cyano-stilbene (DCS) system have been extensively studied (Daum et al., 1995; Kubicki, 2007). Nevertheless, a survey of the literature shows that crystallographic information of stilbene compounds is still rather scarce.

The main aim of this work is to present the molecular and crystal structure of the DCS, one of the best exponents of the stilbene series, to analyse its configuration, its C=C double bond and to show the supramolecular arranging of the system. A perspective view of the molecule of the title compound, showing the atomic numbering scheme, is given in Fig. 1. The DCS molecule suffers a rotational disorder, atoms C9 and C10 were modeled as exchanged with a minor occupancy fraction refined to 39 (1)%. The dimethylamino group forms a dihedral angle of 20.9 (2)° with respect to its phenyl ring. The phenyl rings of the title structure is almost coplanar showing a dihedral angle of 0.6 (1)° between the planes of the rings. The phenyl rings are twisted out of the ethylene bond plane, and are defined by the torsion angles C16—C11=C10A—C9A and C10A=C9A—C6—C5 (Table 1). The C9A=C10A bond length is close to the reported value for the ethylene C=C bond length [1.330 (1) A°] (Craig et al., 2006). The title molecule shows a torsion angle C6 C9A C10A C11 equal to 177.4 (3)° and it also shows that the bond angles between the olefinic double bond and the two aromatic rings C6—C9A=C10A and C11—C10A=C9A are close to 120° (Table 1) indicating small repulsion between the aromatic rings. These values allow to define its configuration as trans.

The molecules of the title compound are linked into sheets by a C—H···N weak intermolecular interactions (Table 2) (Nardelli, 1995) generating two dimensional substructures. In the first substructure, methyl amino C1 and C2 atoms in the molecule at (1 + x, y, z) acts as a hydrogen bond donors to cyano N2 atom in the molecule at (-1/2 + x, 1/2 - y, 1/2 + z) so forming a R21(6) rings (Etter, 1990) and generating sheets which lie in the (104) plane (Fig. 2, Supp. Mat). In the second substructure, atom C13 in the molecule at (x, y, z) acts as a hydrogen bond donor to cyano N2 atom in the molecule at (3/2 - x, -1/2 + y, 1/2 - z) so forming a R22(10) rings which are running parallel to the [112] direction (Fig. 3, Supp. Mat).

Related literature top

For background information on photonic materials, see: Blanchard-Desce et al. (1988); Lapouyade et al. (1993); Papper et al. (1997). For background information on spectroscopic properties, see: Daum et al. (1995); Kubicki (2007). For graph-set motifs, see: Etter (1990).

For related literature, see: Craig et al. (2006); Maryanoff & Reitz (1989).

Experimental top

By means of Wittig reaction (Maryanoff & Reitz, 1989), the 4-dimethylamino-benzyl-triphenylphosphonium iodide was prepared. The title stilbene was obtained by the reaction of equimolar quantities of phosphonium salt and 4-cyano benzaldehyde (0.02 mol) in THF solution. The mixture was maintained with stirring under argon atmosphere. The reaction mixture was kept at 273 K and it was dropped with a solution of tert-butanol and potassium tert-butoxide. Crystals of suitable quality for single-crystal X-ray diffraction were grown in chloroform. Thin layer chromatography (TLC) was used to confirm the structure of the individual compounds. IR spectra were recorded on a Shimadzu FT—IR 8400 spectrophotometer.

N-(p-chlorophenyl)maleimide. Yellow crystals; yield 40%; mp 384 (1) K. IR (KBr) 3051 cm-1 (C—H), 2922 cm-1 (=C—H), 2217 cm-1 (C—N), 1590 cm-1 (C=C).

Refinement top

The space group P 21/n was uniquely assigned from the systematic absences. All H-atoms were located from difference maps and then they were treated as riding atoms [Caro—H= 0.93 A° and Csp3—H= 0.96 A°, Uiso(H)= 1.2Ueq(Caro), Uiso(H)= 1.5Ueq(Csp3)).

Some reflections were omitted in the FCF file perhaps because the crystal was placed in a position very close to the detector and therefore some diffracted reflections at low angle were potentially covered by the beamstop.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: PARST95 (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. An ORTEP-3 (Farrugia, 1997) plot of the DCS compound, with the atomic labelling scheme. The shapes of the ellipsoids correspond to 50% probability contours of atomic displacement and, for the sake of clarity, H atoms are shown as spheres of arbitrary radius.
[Figure 2] Fig. 2. (Supp. Mat). Part of the crystal structure of DCS showing the formation of R21(6) rings and generating sheets which lie in the (104) plane. [Symmetry codes: (i) 1 + x, y, z; (ii) -x, 1/2 + y, 1 - z; (iii) 3/2 - x,1/2 + y, 1/2 - z; (iv) -1/2 + x, 1/2 - y, 1/2 + z.]
[Figure 3] Fig. 3. (Supp. Mat). Part of the crystal structure of DCS showing the formation of R22(10) rings which are running parallel to the [112] direction. [Symmetry codes: (i) 3/2 - x, -1/2 + y, 1/2 - z; (ii) 1/2 + x, 1/2 - y, 1/2 + z; (iii) 5/2 - x, -1/2 + y, 1/2 - z; (iv) -1/2 + x, 1/2 - y, 1/2 + z.]
4-{2-[4-(Dimethylamino)phenyl]ethylidene}benzonitrile top
Crystal data top
C17H16N2F(000) = 528
Mr = 248.32Dx = 1.196 Mg m3
Monoclinic, P21/nMelting point: 384(1) K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.2009 (2) ÅCell parameters from 4640 reflections
b = 7.9706 (3) Åθ = 2.9–27.5°
c = 27.9619 (11) ŵ = 0.07 mm1
β = 93.6027 (13)°T = 291 K
V = 1379.28 (9) Å3Prism, yellow
Z = 40.28 × 0.14 × 0.08 mm
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1428 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Horizonally mounted graphite crystal monochromatorθmax = 25.1°, θmin = 3.3°
Detector resolution: 9 pixels mm-1h = 77
CCD scansk = 99
4640 measured reflectionsl = 3333
2443 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0926P)2 + 0.0631P]
where P = (Fo2 + 2Fc2)/3
2443 reflections(Δ/σ)max < 0.001
192 parametersΔρmax = 0.12 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C17H16N2V = 1379.28 (9) Å3
Mr = 248.32Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.2009 (2) ŵ = 0.07 mm1
b = 7.9706 (3) ÅT = 291 K
c = 27.9619 (11) Å0.28 × 0.14 × 0.08 mm
β = 93.6027 (13)°
Data collection top
Bruker–Nonius KappaCCD
diffractometer
1428 reflections with I > 2σ(I)
4640 measured reflectionsRint = 0.037
2443 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.173H-atom parameters constrained
S = 1.02Δρmax = 0.12 e Å3
2443 reflectionsΔρmin = 0.16 e Å3
192 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.0557 (2)0.34596 (18)0.41210 (5)0.0821 (5)
N21.1813 (3)0.3178 (3)0.01870 (7)0.1246 (8)
C10.1199 (3)0.4594 (3)0.41729 (7)0.1036 (7)
H1A0.22080.45030.38990.155*
H1B0.06580.57210.41970.155*
H1C0.19120.43200.44580.155*
C20.1629 (4)0.2885 (3)0.45672 (7)0.1152 (8)
H2A0.28720.35730.46450.173*
H2B0.20750.17400.45330.173*
H2C0.06480.29610.48190.173*
C30.1650 (3)0.34508 (19)0.37074 (6)0.0701 (5)
C40.0836 (3)0.4231 (2)0.32872 (6)0.0797 (5)
H40.04940.47720.32820.096*
C50.1975 (4)0.4211 (2)0.28796 (7)0.0934 (6)
H50.13950.47500.26060.112*
C60.3973 (4)0.3406 (3)0.28637 (9)0.1056 (8)
C70.4692 (4)0.2609 (3)0.32802 (11)0.1121 (8)
H70.59920.20260.32830.135*
C80.3615 (3)0.2627 (3)0.36853 (8)0.0935 (6)
H80.42040.20740.39560.112*
C9A0.5574 (9)0.3187 (5)0.25116 (12)0.0751 (9)0.60
H9A0.67910.25350.25880.075*0.60
C10A0.5323 (10)0.3906 (6)0.20808 (14)0.0727 (9)0.60
H10A0.41410.45960.20050.073*0.60
C110.6991 (4)0.3586 (3)0.17129 (8)0.0981 (7)
C120.6354 (3)0.4322 (3)0.12852 (8)0.0905 (6)
H120.50500.49020.12610.109*
C130.7552 (3)0.4241 (2)0.08934 (6)0.0803 (5)
H130.70710.47690.06100.096*
C140.9488 (3)0.3369 (2)0.09185 (6)0.0732 (5)
C151.0198 (3)0.2606 (2)0.13431 (7)0.0889 (6)
H151.15020.20250.13650.107*
C160.8952 (5)0.2714 (3)0.17349 (7)0.1034 (7)
H160.94290.21940.20200.124*
C171.0761 (3)0.3277 (3)0.05086 (7)0.0880 (6)
C9B0.4576 (10)0.3811 (9)0.2327 (3)0.0708 (13)0.40
H9B0.36770.44250.21130.071*0.40
C10B0.6456 (9)0.3229 (8)0.2215 (3)0.0737 (13)0.40
H10B0.73700.26290.24290.074*0.40
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0877 (10)0.0838 (10)0.0747 (10)0.0108 (8)0.0039 (8)0.0070 (7)
N20.1098 (15)0.150 (2)0.1173 (16)0.0013 (13)0.0338 (13)0.0152 (13)
C10.0975 (14)0.1195 (17)0.0957 (14)0.0204 (13)0.0203 (11)0.0006 (12)
C20.1341 (19)0.1260 (18)0.0844 (14)0.0219 (15)0.0015 (13)0.0214 (12)
C30.0744 (11)0.0586 (10)0.0770 (11)0.0002 (8)0.0043 (9)0.0007 (8)
C40.0851 (12)0.0759 (12)0.0776 (12)0.0027 (10)0.0001 (9)0.0036 (9)
C50.1241 (17)0.0847 (13)0.0718 (12)0.0215 (13)0.0105 (11)0.0066 (10)
C60.1192 (19)0.0875 (15)0.1158 (18)0.0355 (14)0.0531 (16)0.0418 (13)
C70.1003 (17)0.0895 (16)0.150 (2)0.0056 (13)0.0389 (17)0.0172 (16)
C80.0871 (13)0.0776 (13)0.1165 (16)0.0126 (11)0.0113 (12)0.0065 (11)
C9A0.077 (2)0.071 (2)0.076 (2)0.0044 (19)0.003 (2)0.0016 (19)
C10A0.072 (3)0.068 (2)0.077 (3)0.001 (2)0.000 (2)0.002 (2)
C110.1216 (18)0.0869 (15)0.0880 (15)0.0386 (14)0.0244 (14)0.0234 (12)
C120.0883 (13)0.0880 (14)0.0967 (15)0.0082 (10)0.0177 (11)0.0184 (11)
C130.0801 (12)0.0784 (12)0.0821 (12)0.0027 (9)0.0024 (10)0.0007 (9)
C140.0737 (11)0.0689 (11)0.0769 (12)0.0083 (9)0.0034 (9)0.0078 (9)
C150.0949 (14)0.0773 (12)0.0920 (14)0.0007 (11)0.0143 (11)0.0034 (10)
C160.153 (2)0.0870 (14)0.0688 (13)0.0326 (15)0.0075 (13)0.0035 (10)
C170.0785 (12)0.0918 (14)0.0936 (14)0.0045 (11)0.0064 (11)0.0123 (11)
C9B0.072 (4)0.066 (3)0.072 (4)0.003 (3)0.010 (3)0.002 (3)
C10B0.078 (3)0.072 (3)0.070 (4)0.002 (3)0.005 (3)0.005 (3)
Geometric parameters (Å, º) top
N1—C31.377 (2)C9A—C10A1.334 (6)
N1—C11.430 (2)C9A—H9A0.9300
N1—C21.451 (2)C9A—H10B1.2345
N2—C171.146 (2)C10A—C111.525 (6)
C1—H1A0.9600C10A—H10A0.9300
C1—H1B0.9600C10A—H9B1.1103
C1—H1C0.9600C11—C121.368 (3)
C2—H2A0.9600C11—C161.399 (3)
C2—H2B0.9600C11—C10B1.491 (8)
C2—H2C0.9600C12—C131.363 (2)
C3—C81.389 (3)C12—H120.9300
C3—C41.396 (2)C13—C141.385 (2)
C4—C51.378 (3)C13—H130.9300
C4—H40.9300C14—C151.381 (2)
C5—C61.398 (3)C14—C171.434 (3)
C5—H50.9300C15—C161.382 (3)
C6—C71.376 (3)C15—H150.9300
C6—C9A1.452 (5)C16—H160.9300
C6—C9B1.603 (9)C9B—C10B1.310 (9)
C7—C81.350 (3)C9B—H9B0.9300
C7—H70.9300C10B—H10B0.9300
C8—H80.9300
C3—N1—C1120.45 (15)C10A—C9A—H9A119.5
C3—N1—C2119.86 (16)C6—C9A—H9A119.5
C1—N1—C2115.03 (16)C10A—C9A—H10B92.3
N1—C1—H1A109.5C6—C9A—H10B146.5
N1—C1—H1B109.5C9A—C10A—C11119.5 (6)
H1A—C1—H1B109.5C9A—C10A—H10A120.3
N1—C1—H1C109.5C11—C10A—H10A120.3
H1A—C1—H1C109.5C9A—C10A—H9B98.2
H1B—C1—H1C109.5C11—C10A—H9B141.5
N1—C2—H2A109.5C12—C11—C16117.02 (19)
N1—C2—H2B109.5C12—C11—C10B146.8 (4)
H2A—C2—H2B109.5C16—C11—C10B96.2 (3)
N1—C2—H2C109.5C12—C11—C10A110.3 (3)
H2A—C2—H2C109.5C16—C11—C10A132.7 (3)
H2B—C2—H2C109.5C13—C12—C11122.7 (2)
N1—C3—C8121.29 (17)C13—C12—H12118.7
N1—C3—C4122.25 (16)C11—C12—H12118.7
C8—C3—C4116.45 (17)C12—C13—C14119.85 (18)
C5—C4—C3120.92 (18)C12—C13—H13120.1
C5—C4—H4119.5C14—C13—H13120.1
C3—C4—H4119.5C15—C14—C13119.55 (17)
C4—C5—C6122.2 (2)C15—C14—C17120.16 (18)
C4—C5—H5118.9C13—C14—C17120.28 (17)
C6—C5—H5118.9C14—C15—C16119.3 (2)
C7—C6—C5115.18 (19)C14—C15—H15120.3
C7—C6—C9A108.6 (3)C16—C15—H15120.3
C5—C6—C9A136.2 (3)C15—C16—C11121.58 (19)
C7—C6—C9B143.5 (3)C15—C16—H16119.2
C5—C6—C9B101.4 (3)C11—C16—H16119.2
C8—C7—C6123.7 (2)N2—C17—C14178.3 (2)
C8—C7—H7118.2C10B—C9B—C6114.5 (9)
C6—C7—H7118.2C10B—C9B—H9B122.7
C7—C8—C3121.6 (2)C6—C9B—H9B122.8
C7—C8—H8119.2C9B—C10B—C11114.2 (9)
C3—C8—H8119.2C9B—C10B—H10B123.0
C10A—C9A—C6121.0 (7)C11—C10B—H10B122.8
C1—N1—C3—C8166.46 (18)C9A—C10A—C11—C164.6 (5)
C2—N1—C3—C811.9 (3)C9A—C10A—C11—C10B2.9 (4)
C1—N1—C3—C414.9 (3)C16—C11—C12—C130.5 (3)
C2—N1—C3—C4169.52 (18)C10B—C11—C12—C13178.3 (4)
N1—C3—C4—C5179.55 (15)C10A—C11—C12—C13179.7 (2)
C8—C3—C4—C51.8 (3)C11—C12—C13—C140.7 (3)
C3—C4—C5—C60.5 (3)C12—C13—C14—C150.7 (3)
C4—C5—C6—C71.3 (3)C12—C13—C14—C17179.97 (16)
C4—C5—C6—C9A178.0 (2)C13—C14—C15—C160.6 (3)
C4—C5—C6—C9B178.5 (2)C17—C14—C15—C16179.78 (16)
C5—C6—C7—C82.1 (3)C14—C15—C16—C110.3 (3)
C9A—C6—C7—C8177.5 (2)C12—C11—C16—C150.3 (3)
C9B—C6—C7—C8177.6 (4)C10B—C11—C16—C15179.1 (2)
C6—C7—C8—C30.9 (3)C10A—C11—C16—C15179.9 (2)
N1—C3—C8—C7179.79 (17)C7—C6—C9B—C10B1.6 (7)
C4—C3—C8—C71.1 (3)C5—C6—C9B—C10B178.1 (4)
C7—C6—C9A—C10A176.8 (3)C9A—C6—C9B—C10B1.3 (3)
C5—C6—C9A—C10A2.5 (5)C6—C9B—C10B—C11179.1 (3)
C9B—C6—C9A—C10A3.3 (4)C12—C11—C10B—C9B1.2 (7)
C6—C9A—C10A—C11177.4 (3)C16—C11—C10B—C9B176.8 (4)
C9A—C10A—C11—C12175.2 (3)C10A—C11—C10B—C9B4.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···N2i0.962.993.858 (3)151
C2—H2C···N2i0.962.803.646 (3)147
C13—H13···N2ii0.932.883.696 (3)147
Symmetry codes: (i) x3/2, y+1/2, z+1/2; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formulaC17H16N2
Mr248.32
Crystal system, space groupMonoclinic, P21/n
Temperature (K)291
a, b, c (Å)6.2009 (2), 7.9706 (3), 27.9619 (11)
β (°) 93.6027 (13)
V3)1379.28 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.07
Crystal size (mm)0.28 × 0.14 × 0.08
Data collection
DiffractometerBruker–Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4640, 2443, 1428
Rint0.037
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.173, 1.02
No. of reflections2443
No. of parameters192
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.16

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), PARST95 (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1C···N2i0.962.993.858 (3)150.7
C2—H2C···N2i0.962.803.646 (3)147.2
C13—H13···N2ii0.932.883.696 (3)146.7
Symmetry codes: (i) x3/2, y+1/2, z+1/2; (ii) x+2, y+1, z.
 

Acknowledgements

RM-F is grateful to the Spanish Research Council (CSIC) for the use of a free-of-charge license to the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). RM-F also acknowledges Dr K. A. Abboud of the University of Florida, USA, for his valuable discussions on this structure and the Universidad del Valle, Colombia, for partial financial support.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlanchard-Desce, M., Ledoux, I., Lehn, J. M., Malthete, J. & Zyss, J. (1988). J. Chem. Soc. Chem. Commun. pp. 737–739.  CrossRef Web of Science Google Scholar
First citationCraig, N. C., Groner, P. & McKean, D. C. (2006). J. Phys. Chem. A, 110, 7461–7469.  Web of Science CrossRef PubMed CAS Google Scholar
First citationDaum, R., Hansson, T., Norenberg, R., Schwarzer, D. & Schroeder, J. (1995). Chem. Phys. Lett. 246, 607–614.  CrossRef CAS Web of Science Google Scholar
First citationEtter, M. (1990). Acc. Chem. Res. 23, 120–126.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKubicki, A. A. (2007). Chem. Phys. Lett. 439, 243–246.  Web of Science CrossRef CAS Google Scholar
First citationLapouyade, R., Kuhn, A., Letard, J. F. & Retting, W. (1993). Chem. Phys. Lett. 208, 48–58.  CrossRef CAS Web of Science Google Scholar
First citationMaryanoff, B. E. & Reitz, A. B. (1989). J. Chem. Rev. 89, 863.  CrossRef Web of Science Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationNonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPapper, V., Pines, D., Likhtenshtein, G. & Pines, E. (1997). J. Photochem. Photobiol. A, 111, 87–96.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds