organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

5-Hydr­­oxy-1,7-bis­­(1H-indol-3-yl)hepta-1,4,6-trien-3-one hemihydrate

aSchool of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China, and bDepartment of Chemistry, Tulane University, New Orleans, LA 70118, USA
*Correspondence e-mail: sungangchun@163.com

(Received 9 April 2009; accepted 16 May 2009; online 29 May 2009)

The title compound, C23H18N2O2·0.5H2O, a derivative of the biologically active compound curcumin, crystallizes with two organic mol­ecules and a solvent water mol­ecule in the asymmetric unit. Each of the two independent mol­ecules is close to being planar (the dihedral angles between the indole ring systems are approximately 9 and 12°) and each exists in the keto–enol form. There is an intra­molecular O—H⋯O hydrogen bond between the keto and enol groups. In the crystal, the components interact by way of N—H⋯N, N—H⋯O and O—H⋯O hydrogen bonds.

Related literature

For biological activities of curcumin and related analogues, see: Ammon & Wahl (1991[Ammon, H. P. T. & Wahl, M. A. (1991). Planta Med. 57, 1-7.]); Lee (2004[Lee, K. H. (2004). J. Nat. Prod. 67, 273-283.]). For related structures, see: Arrieta et al. (2000[Arrieta, A. F., Haglund, K. A. & Mostad, A. (2000). Acta Cryst. C56, e594-e595.]); Mague et al. (2004[Mague, J. T., Alworth, W. L. & Payton, F. L. (2004). Acta Cryst. C60, o608-o610.]); Pedersen et al. (1985[Pedersen, U., Rasmussen, P. B. & Laweson, S. O. (1985). Liebigs Ann. Chem. pp. 1557-1569.]).

[Scheme 1]

Experimental

Crystal data
  • C23H18N2O2·0.5H2O

  • Mr = 363.4

  • Orthorhombic, P 21 21 21

  • a = 5.5285 (7) Å

  • b = 22.916 (3) Å

  • c = 28.194 (4) Å

  • V = 3571.9 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.29 × 0.20 × 0.18 mm

Data collection
  • Bruker APEX-I CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]) Tmin = 0.913, Tmax = 0.984

  • 61988 measured reflections

  • 5073 independent reflections

  • 4650 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.084

  • S = 1.06

  • 5073 reflections

  • 496 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.15 e Å−3

  • Absolute structure: the absolute structure could not be determined with certainty

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O⋯O2 0.98 1.58 2.5148 (18) 158
N1—H1N⋯N1i 0.90 2.55 3.4254 (18) 167
N2—H2N⋯O5ii 0.86 2.08 2.912 (2) 161
O3—H3O⋯O4 0.90 1.71 2.5120 (19) 147
O5—H5OA⋯O5iii 0.90 2.11 3.0062 (10) 177
O5—H5OB⋯O4iv 0.91 1.83 2.7128 (18) 162
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z]; (ii) [x-{\script{3\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (iv) x+1, y, z.

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker 2008[Bruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Curcumin and related analogues have antioxidant, antibacterial, anti-inflammatory and other biological activities (Ammon & Wahl, 1991; Lee, 2004). This fact has made these molecules, as well as synthetic analogues (Pedersen et al., 1985), interesting targets for structural study(Arrieta et al., 2000; Mague et al., 2004).

The title compound, (I) (Fig. 1), is new to this class of compounds and crystallizes with two molecules and a solvent water molecule in the asymmetric unit.The two independent molecules are close to being planar as indicated by the torsion angles along the chains with molecule 2 being less planar than molecule 1. This is also shown by the dihedral angles between the indolyl moieties and the central C3O2 unit which are 3.06 (8) and 9.09 (9) ° in molecule 1 and 9.90 (9) and 21.07 (9) ° in molecule 2. The molecular geometry and H-atom locations reveal that 3,5-dione moieties of both molecules exist in the keto-enol form and display intramolecular C—H···O hydrogen bonds between the keto and enol groups.

The packing of the molecules in the lattice is also stabilized by by strong O—H···O and N—H···O intermolecular hydrogen bonds.

Related literature top

For biological activities of curcumin and related analogues, see: Ammon & Wahl (1991); Lee (2004). For related structures, see: Arrieta et al. (2000); Mague et al. (2004); Pedersen et al. (1985). Please check added text.

Experimental top

2,4-Pentanedione (2.0 g, 20 mmol) and boric anhydride (1.0 g, 15 mmol) were dissolved in 20 ml of EtOAc.The solution was stirred at 60 °C for 4 h,then 3-indolylaldehyde (5.8 g, 40 mmol) dissolved in 60 ml of EtOAc and tributyl borate (9.2 g, 40 mmol) were added. After stirring for 30 min at a temperature of 85 °C, n-butylamine (3.0 mL, 30 mmol) dissolved in 10 ml of EtOAc was added dropwise over 30 min and the stirring was continued for 5 h at 85 °C. The mixture was kept in 5 °C overnight and then hydrolyzed by adding 30 ml of 1 N HCl and stirring for 2 h at 60 °C. The organic layer was separated and the aqueous layer was extracted with EtOAc. The combined organic layers were washed until neutral and dried over anhydrous sodium sulfate. The solvent was removed in vacuo, and the crude product was purified by recrystallization from MeOH to give 8.1 g of red crystalline solid in 59% yield. mp 214–216 °C. Crystals suitable for X-ray determination were obtained by slowly evaporating an acetonitrile solution at room temperature over 2 days.

Refinement top

All Hydrogen atoms were found in difference maps.Those attached to carbon were placed in calculated positions (C—H = 0.95%A) while those attached to nitrogen and the lattice water were placed in locations derived from the difference map. All H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker 2008); data reduction: SAINT (Bruker 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008a); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008a); molecular graphics: SHELXTL (Sheldrick, 2008a); software used to prepare material for publication: SHELXTL (Sheldrick, 2008a).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H-atoms are represented by spheres of arbitrary radius.
[Figure 2] Fig. 2. The cystal packing of (I), viewed down the a axis.
5-Hydroxy-1,7-bis(1H-indol-3-yl)hepta-1,4,6-trien-3-one hemihydrate top
Crystal data top
C23H18N2O2·0.5H2OF(000) = 1528
Mr = 363.4Dx = 1.352 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9666 reflections
a = 5.5285 (7) Åθ = 2.3–28.3°
b = 22.916 (3) ŵ = 0.09 mm1
c = 28.194 (4) ÅT = 100 K
V = 3571.9 (8) Å3Block, red
Z = 80.29 × 0.20 × 0.18 mm
Data collection top
Bruker APEX-I CCD
diffractometer
5073 independent reflections
Radiation source: fine-focus sealed tube4650 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
ϕ and ω scansθmax = 28.3°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
h = 77
Tmin = 0.913, Tmax = 0.984k = 3030
61988 measured reflectionsl = 3737
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H-atom parameters constrained
wR(F2) = 0.084 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.8427P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
5073 reflectionsΔρmax = 0.19 e Å3
496 parametersΔρmin = 0.15 e Å3
0 restraintsAbsolute structure: The absolute structure could not be determined with certainty
Primary atom site location: structure-invariant direct methods
Crystal data top
C23H18N2O2·0.5H2OV = 3571.9 (8) Å3
Mr = 363.4Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 5.5285 (7) ŵ = 0.09 mm1
b = 22.916 (3) ÅT = 100 K
c = 28.194 (4) Å0.29 × 0.20 × 0.18 mm
Data collection top
Bruker APEX-I CCD
diffractometer
5073 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008b)
4650 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.984Rint = 0.038
61988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.084H-atom parameters constrained
S = 1.06Δρmax = 0.19 e Å3
5073 reflectionsΔρmin = 0.15 e Å3
496 parametersAbsolute structure: The absolute structure could not be determined with certainty
Special details top

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5 °. in omega, colllected at phi = 0.00, 90.00 and 180.00 °. and 2 sets of 800 frames, each of width 0.45 ° in phi, collected at omega = -30.00 and 210.00 °. The scan time was 20 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95%A) while those attached to nitrogen and oxygen were placed in locations derived from a difference map. All H atoms were included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5647 (2)0.68150 (5)0.20031 (4)0.0263 (3)
H1O0.46280.67330.22800.032*
O20.2393 (2)0.67798 (5)0.26257 (4)0.0270 (3)
N11.2107 (3)0.77241 (7)0.03091 (5)0.0282 (3)
H1N1.35280.76640.01640.034*
N20.6358 (3)0.77437 (7)0.39136 (5)0.0282 (3)
H2N0.71770.76550.41640.034*
C11.0616 (3)0.81969 (7)0.02378 (6)0.0243 (3)
C21.0791 (4)0.86367 (8)0.01049 (6)0.0306 (4)
H21.20880.86460.03260.037*
C30.9002 (4)0.90557 (9)0.01081 (7)0.0335 (4)
H30.90650.93610.03350.040*
C40.7087 (4)0.90380 (8)0.02193 (7)0.0311 (4)
H40.58770.93320.02090.037*
C50.6925 (3)0.86010 (8)0.05568 (6)0.0262 (4)
H50.56250.85960.07770.031*
C60.8706 (3)0.81654 (7)0.05694 (5)0.0220 (3)
C70.9142 (3)0.76498 (7)0.08545 (6)0.0226 (3)
C81.1237 (3)0.73994 (8)0.06790 (6)0.0260 (4)
H81.19640.70530.07980.031*
C90.7844 (3)0.74040 (7)0.12523 (6)0.0232 (3)
H90.85200.70610.13880.028*
C100.5801 (3)0.76008 (7)0.14533 (6)0.0233 (3)
H100.50780.79450.13300.028*
C110.4647 (3)0.73097 (7)0.18516 (6)0.0220 (3)
C120.2620 (3)0.75363 (7)0.20656 (6)0.0240 (3)
H120.19110.78820.19420.029*
C130.1558 (3)0.72601 (7)0.24710 (6)0.0228 (3)
C140.0496 (3)0.75494 (7)0.26938 (6)0.0240 (3)
H140.12150.78700.25340.029*
C150.1434 (3)0.73862 (7)0.31154 (6)0.0237 (3)
H150.06760.70660.32700.028*
C160.3456 (3)0.76457 (7)0.33547 (6)0.0234 (3)
C170.4999 (3)0.81296 (7)0.32258 (6)0.0222 (3)
C180.5089 (3)0.85307 (7)0.28474 (6)0.0247 (3)
H180.38850.85240.26070.030*
C190.6946 (3)0.89340 (8)0.28295 (6)0.0283 (4)
H190.70120.92020.25730.034*
C200.8737 (3)0.89564 (8)0.31818 (6)0.0292 (4)
H201.00040.92350.31580.035*
C210.8678 (3)0.85780 (8)0.35632 (6)0.0281 (4)
H210.98710.85940.38050.034*
C220.6801 (3)0.81715 (7)0.35796 (6)0.0245 (3)
C230.4386 (4)0.74313 (8)0.37779 (6)0.0272 (4)
H230.37340.71110.39490.033*
O30.1070 (3)0.64304 (5)0.39766 (5)0.0326 (3)
H3O0.00430.65750.41770.039*
O40.2323 (3)0.64271 (5)0.45693 (5)0.0307 (3)
N30.9824 (3)0.55581 (7)0.27354 (5)0.0306 (3)
H3N1.10110.56660.25160.037*
N40.9549 (3)0.54556 (7)0.61481 (6)0.0310 (3)
H4N1.08340.55510.63330.037*
C240.9811 (3)0.50219 (8)0.29622 (6)0.0257 (4)
C251.1444 (4)0.45637 (8)0.29259 (7)0.0303 (4)
H251.27880.45820.27160.036*
C261.1037 (4)0.40804 (8)0.32061 (6)0.0307 (4)
H261.21310.37610.31940.037*
C270.9031 (4)0.40543 (8)0.35091 (6)0.0291 (4)
H270.87790.37140.36950.035*
C280.7414 (3)0.45103 (7)0.35440 (6)0.0261 (4)
H280.60630.44850.37510.031*
C290.7792 (3)0.50139 (7)0.32683 (6)0.0224 (3)
C300.6606 (3)0.55752 (7)0.32232 (6)0.0243 (3)
C310.7936 (4)0.58820 (8)0.28923 (6)0.0281 (4)
H310.75770.62670.27890.034*
C320.4623 (3)0.58270 (7)0.34775 (6)0.0247 (3)
H320.42020.62160.33970.030*
C330.3288 (3)0.55712 (7)0.38193 (6)0.0250 (3)
H330.36220.51760.38990.030*
C340.1383 (3)0.58676 (7)0.40696 (6)0.0239 (3)
C350.0057 (3)0.55879 (7)0.44003 (6)0.0250 (3)
H350.02040.51850.44620.030*
C360.1906 (3)0.58855 (7)0.46478 (6)0.0243 (3)
C370.3279 (3)0.55676 (7)0.50033 (6)0.0247 (3)
H370.27690.51850.50870.030*
C380.5247 (3)0.57924 (7)0.52196 (6)0.0253 (3)
H380.57970.61600.51080.030*
C390.6598 (3)0.55357 (7)0.56006 (6)0.0243 (3)
C400.6107 (3)0.50315 (7)0.58930 (6)0.0237 (3)
C410.4243 (4)0.46185 (8)0.59151 (6)0.0271 (4)
H410.29280.46370.56990.032*
C420.4335 (4)0.41834 (8)0.62545 (6)0.0307 (4)
H420.30500.39090.62760.037*
C430.6307 (4)0.41406 (8)0.65692 (6)0.0334 (4)
H430.63680.38270.67890.040*
C440.8153 (4)0.45465 (8)0.65628 (6)0.0324 (4)
H440.94700.45230.67780.039*
C450.8006 (3)0.49921 (8)0.62277 (6)0.0267 (4)
C460.8710 (3)0.57775 (8)0.57792 (6)0.0278 (4)
H460.94630.61200.56600.033*
O50.6429 (3)0.73209 (6)0.51507 (4)0.0335 (3)
H5OA0.49140.74180.50680.040*
H5OB0.66090.69790.49890.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0264 (6)0.0262 (6)0.0264 (6)0.0027 (5)0.0007 (5)0.0030 (5)
O20.0282 (6)0.0263 (6)0.0264 (6)0.0006 (5)0.0016 (5)0.0037 (5)
N10.0231 (7)0.0327 (8)0.0288 (7)0.0015 (7)0.0048 (7)0.0026 (6)
N20.0298 (8)0.0324 (7)0.0223 (7)0.0052 (7)0.0076 (6)0.0000 (6)
C10.0215 (8)0.0282 (8)0.0233 (7)0.0026 (7)0.0001 (7)0.0029 (7)
C20.0264 (9)0.0378 (10)0.0278 (8)0.0071 (8)0.0002 (8)0.0033 (8)
C30.0289 (10)0.0378 (10)0.0339 (9)0.0048 (9)0.0039 (8)0.0114 (8)
C40.0250 (9)0.0307 (9)0.0375 (9)0.0011 (8)0.0040 (8)0.0063 (8)
C50.0229 (8)0.0287 (8)0.0270 (8)0.0003 (7)0.0010 (7)0.0005 (7)
C60.0207 (8)0.0253 (7)0.0200 (7)0.0019 (7)0.0012 (6)0.0034 (6)
C70.0217 (8)0.0239 (7)0.0222 (7)0.0000 (7)0.0004 (7)0.0032 (6)
C80.0245 (8)0.0254 (8)0.0280 (8)0.0006 (7)0.0009 (7)0.0020 (7)
C90.0235 (8)0.0229 (7)0.0233 (7)0.0015 (7)0.0019 (7)0.0019 (6)
C100.0235 (8)0.0238 (7)0.0227 (7)0.0000 (7)0.0010 (7)0.0011 (6)
C110.0231 (8)0.0225 (7)0.0205 (7)0.0028 (7)0.0023 (7)0.0016 (6)
C120.0250 (8)0.0237 (8)0.0234 (8)0.0011 (7)0.0005 (7)0.0015 (6)
C130.0230 (8)0.0237 (7)0.0218 (7)0.0031 (7)0.0019 (7)0.0024 (6)
C140.0243 (8)0.0236 (7)0.0242 (8)0.0000 (7)0.0003 (7)0.0001 (6)
C150.0250 (8)0.0232 (7)0.0230 (7)0.0026 (7)0.0009 (7)0.0018 (6)
C160.0260 (8)0.0232 (7)0.0210 (7)0.0028 (7)0.0002 (7)0.0020 (6)
C170.0206 (8)0.0247 (7)0.0213 (7)0.0035 (7)0.0000 (7)0.0044 (6)
C180.0223 (8)0.0294 (8)0.0226 (7)0.0007 (7)0.0001 (7)0.0007 (7)
C190.0250 (9)0.0317 (9)0.0281 (8)0.0001 (8)0.0049 (8)0.0012 (7)
C200.0198 (8)0.0335 (9)0.0342 (9)0.0021 (7)0.0047 (8)0.0093 (7)
C210.0220 (8)0.0333 (9)0.0290 (8)0.0032 (8)0.0025 (7)0.0103 (7)
C220.0236 (8)0.0272 (8)0.0226 (7)0.0062 (7)0.0012 (7)0.0042 (7)
C230.0293 (9)0.0276 (8)0.0246 (8)0.0039 (8)0.0021 (7)0.0001 (7)
O30.0383 (8)0.0247 (6)0.0348 (7)0.0054 (6)0.0101 (6)0.0022 (5)
O40.0343 (7)0.0258 (6)0.0319 (6)0.0045 (6)0.0064 (6)0.0018 (5)
N30.0281 (8)0.0326 (8)0.0309 (8)0.0022 (7)0.0067 (7)0.0051 (6)
N40.0237 (8)0.0375 (8)0.0319 (8)0.0004 (7)0.0052 (7)0.0076 (7)
C240.0258 (9)0.0273 (8)0.0241 (8)0.0027 (7)0.0007 (7)0.0012 (7)
C250.0236 (9)0.0357 (9)0.0315 (9)0.0000 (8)0.0001 (8)0.0055 (8)
C260.0294 (9)0.0293 (9)0.0333 (9)0.0058 (8)0.0074 (8)0.0061 (7)
C270.0339 (10)0.0250 (8)0.0284 (8)0.0005 (8)0.0060 (8)0.0009 (7)
C280.0275 (9)0.0251 (8)0.0256 (8)0.0015 (7)0.0012 (7)0.0018 (7)
C290.0221 (8)0.0249 (7)0.0203 (7)0.0025 (7)0.0028 (7)0.0017 (6)
C300.0267 (9)0.0229 (7)0.0232 (8)0.0021 (7)0.0004 (7)0.0008 (6)
C310.0306 (9)0.0255 (8)0.0282 (8)0.0019 (8)0.0017 (8)0.0027 (7)
C320.0273 (9)0.0232 (7)0.0237 (8)0.0002 (7)0.0010 (7)0.0009 (6)
C330.0266 (9)0.0237 (7)0.0248 (8)0.0014 (7)0.0007 (7)0.0020 (6)
C340.0272 (8)0.0234 (7)0.0210 (7)0.0006 (7)0.0020 (7)0.0008 (6)
C350.0280 (9)0.0231 (7)0.0237 (8)0.0019 (7)0.0008 (7)0.0005 (6)
C360.0240 (8)0.0266 (8)0.0223 (7)0.0000 (7)0.0028 (7)0.0014 (6)
C370.0245 (8)0.0257 (8)0.0240 (8)0.0002 (7)0.0010 (7)0.0012 (6)
C380.0235 (8)0.0260 (8)0.0263 (8)0.0012 (7)0.0022 (7)0.0029 (7)
C390.0203 (8)0.0255 (8)0.0271 (8)0.0011 (7)0.0009 (7)0.0060 (7)
C400.0208 (8)0.0275 (8)0.0228 (8)0.0021 (7)0.0015 (7)0.0058 (7)
C410.0256 (9)0.0283 (8)0.0272 (8)0.0014 (7)0.0028 (7)0.0044 (7)
C420.0319 (10)0.0282 (8)0.0319 (9)0.0001 (8)0.0002 (8)0.0012 (7)
C430.0387 (11)0.0341 (9)0.0275 (8)0.0070 (9)0.0017 (9)0.0023 (7)
C440.0310 (10)0.0416 (10)0.0247 (8)0.0064 (9)0.0048 (8)0.0029 (8)
C450.0224 (8)0.0321 (9)0.0258 (8)0.0025 (8)0.0011 (7)0.0077 (7)
C460.0234 (8)0.0319 (8)0.0281 (8)0.0001 (8)0.0015 (7)0.0054 (7)
O50.0364 (8)0.0346 (7)0.0295 (6)0.0036 (6)0.0067 (6)0.0032 (5)
Geometric parameters (Å, º) top
O1—C111.331 (2)O3—H3O0.8981
O1—H1O0.9805O4—C361.282 (2)
O2—C131.271 (2)N3—C311.355 (2)
N1—C81.369 (2)N3—C241.385 (2)
N1—C11.376 (2)N3—H3N0.9343
N1—H1N0.8961N4—C461.357 (2)
N2—C231.359 (2)N4—C451.381 (2)
N2—C221.381 (2)N4—H4N0.9078
N2—H2N0.8622C24—C251.389 (3)
C1—C21.400 (2)C24—C291.411 (2)
C1—C61.412 (2)C25—C261.379 (3)
C2—C31.379 (3)C25—H250.9500
C2—H20.9500C26—C271.401 (3)
C3—C41.405 (3)C26—H260.9500
C3—H30.9500C27—C281.379 (2)
C4—C51.384 (2)C27—H270.9500
C4—H40.9500C28—C291.407 (2)
C5—C61.402 (2)C28—H280.9500
C5—H50.9500C29—C301.449 (2)
C6—C71.449 (2)C30—C311.380 (2)
C7—C81.384 (2)C30—C321.432 (2)
C7—C91.446 (2)C31—H310.9500
C8—H80.9500C32—C331.348 (2)
C9—C101.341 (2)C32—H320.9500
C9—H90.9500C33—C341.438 (2)
C10—C111.454 (2)C33—H330.9500
C10—H100.9500C34—C351.383 (2)
C11—C121.375 (2)C35—C361.413 (2)
C12—C131.433 (2)C35—H350.9500
C12—H120.9500C36—C371.453 (2)
C13—C141.458 (2)C37—C381.350 (2)
C14—C151.349 (2)C37—H370.9500
C14—H140.9500C38—C391.434 (2)
C15—C161.435 (2)C38—H380.9500
C15—H150.9500C39—C461.387 (3)
C16—C231.389 (2)C39—C401.445 (2)
C16—C171.446 (2)C40—C411.400 (3)
C17—C181.409 (2)C40—C451.414 (2)
C17—C221.413 (2)C41—C421.383 (2)
C18—C191.383 (2)C41—H410.9500
C18—H180.9500C42—C431.409 (3)
C19—C201.403 (3)C42—H420.9500
C19—H190.9500C43—C441.381 (3)
C20—C211.382 (3)C43—H430.9500
C20—H200.9500C44—C451.393 (3)
C21—C221.395 (3)C44—H440.9500
C21—H210.9500C46—H460.9500
C23—H230.9500O5—H5OA0.8980
O3—C341.327 (2)O5—H5OB0.9121
C11—O1—H1O100.4C31—N3—C24109.34 (15)
C8—N1—C1109.19 (15)C31—N3—H3N127.8
C8—N1—H1N124.9C24—N3—H3N122.9
C1—N1—H1N125.5C46—N4—C45109.37 (16)
C23—N2—C22108.92 (15)C46—N4—H4N125.2
C23—N2—H2N121.8C45—N4—H4N125.1
C22—N2—H2N129.2N3—C24—C25129.30 (17)
N1—C1—C2128.77 (17)N3—C24—C29107.34 (16)
N1—C1—C6108.13 (15)C25—C24—C29123.34 (16)
C2—C1—C6123.07 (17)C26—C25—C24117.31 (18)
C3—C2—C1117.15 (17)C26—C25—H25121.3
C3—C2—H2121.4C24—C25—H25121.3
C1—C2—H2121.4C25—C26—C27120.85 (17)
C2—C3—C4121.07 (17)C25—C26—H26119.6
C2—C3—H3119.5C27—C26—H26119.6
C4—C3—H3119.5C28—C27—C26121.63 (17)
C5—C4—C3121.40 (18)C28—C27—H27119.2
C5—C4—H4119.3C26—C27—H27119.2
C3—C4—H4119.3C27—C28—C29119.06 (17)
C4—C5—C6119.15 (17)C27—C28—H28120.5
C4—C5—H5120.4C29—C28—H28120.5
C6—C5—H5120.4C28—C29—C24117.79 (16)
C5—C6—C1118.15 (15)C28—C29—C30135.17 (16)
C5—C6—C7135.34 (16)C24—C29—C30107.01 (15)
C1—C6—C7106.51 (15)C31—C30—C32122.77 (16)
C8—C7—C9122.09 (16)C31—C30—C29105.70 (16)
C8—C7—C6106.21 (15)C32—C30—C29131.31 (16)
C9—C7—C6131.69 (16)N3—C31—C30110.60 (16)
N1—C8—C7109.95 (16)N3—C31—H31124.7
N1—C8—H8125.0C30—C31—H31124.7
C7—C8—H8125.0C33—C32—C30127.02 (16)
C10—C9—C7127.92 (17)C33—C32—H32116.5
C10—C9—H9116.0C30—C32—H32116.5
C7—C9—H9116.0C32—C33—C34123.11 (16)
C9—C10—C11122.78 (16)C32—C33—H33118.4
C9—C10—H10118.6C34—C33—H33118.4
C11—C10—H10118.6O3—C34—C35120.55 (17)
O1—C11—C12121.28 (15)O3—C34—C33117.22 (16)
O1—C11—C10117.16 (16)C35—C34—C33122.22 (15)
C12—C11—C10121.56 (16)C34—C35—C36121.69 (16)
C11—C12—C13121.16 (16)C34—C35—H35119.2
C11—C12—H12119.4C36—C35—H35119.2
C13—C12—H12119.4O4—C36—C35120.81 (16)
O2—C13—C12120.52 (16)O4—C36—C37120.72 (16)
O2—C13—C14121.95 (15)C35—C36—C37118.45 (15)
C12—C13—C14117.54 (15)C38—C37—C36122.78 (16)
C15—C14—C13123.55 (16)C38—C37—H37118.6
C15—C14—H14118.2C36—C37—H37118.6
C13—C14—H14118.2C37—C38—C39126.99 (17)
C14—C15—C16126.76 (16)C37—C38—H38116.5
C14—C15—H15116.6C39—C38—H38116.5
C16—C15—H15116.6C46—C39—C38123.12 (17)
C23—C16—C15123.09 (16)C46—C39—C40105.68 (16)
C23—C16—C17105.58 (16)C38—C39—C40131.10 (17)
C15—C16—C17131.27 (15)C41—C40—C45118.24 (16)
C18—C17—C22117.73 (16)C41—C40—C39134.74 (16)
C18—C17—C16135.35 (16)C45—C40—C39107.00 (16)
C22—C17—C16106.91 (14)C42—C41—C40119.42 (17)
C19—C18—C17119.33 (16)C42—C41—H41120.3
C19—C18—H18120.3C40—C41—H41120.3
C17—C18—H18120.3C41—C42—C43120.94 (19)
C18—C19—C20121.51 (17)C41—C42—H42119.5
C18—C19—H19119.2C43—C42—H42119.5
C20—C19—H19119.2C44—C43—C42121.10 (17)
C21—C20—C19120.75 (17)C44—C43—H43119.4
C21—C20—H20119.6C42—C43—H43119.4
C19—C20—H20119.6C43—C44—C45117.35 (18)
C20—C21—C22117.53 (17)C43—C44—H44121.3
C20—C21—H21121.2C45—C44—H44121.3
C22—C21—H21121.2N4—C45—C44129.63 (17)
N2—C22—C21128.92 (16)N4—C45—C40107.52 (16)
N2—C22—C17107.94 (16)C44—C45—C40122.85 (18)
C21—C22—C17123.12 (16)N4—C46—C39110.41 (17)
N2—C23—C16110.64 (16)N4—C46—H46124.8
N2—C23—H23124.7C39—C46—H46124.8
C16—C23—H23124.7H5OA—O5—H5OB100.6
C34—O3—H3O108.8
C7—C8—C9—C100.8 (3)C30—C31—C32—C335.6 (3)
C8—C9—C10—C11178.9 (2)C31—C32—C33—C34174.1 (2)
C9—C10—C11—C12176.78 (16)C32—C33—C34—C35176.24 (18)
C10—C11—C12—C13177.21 (16)C33—C34—C35—C36179.28 (16)
C11—C12—C13—C14176.22 (15)C34—C35—C36—C37177.59 (16)
C12—C13—C14—C15169.74 (17)C35—C36—C37—C38172.36 (16)
C13—C14—C15—C16179.53 (16)C36—C37—C38—C39174.38 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.981.582.5148 (18)158
N1—H1N···N1i0.902.553.4254 (18)167
N2—H2N···O5ii0.862.082.912 (2)161
O3—H3O···O40.901.712.5120 (19)147
O5—H5OA···O5iii0.902.113.0062 (10)177
O5—H5OB···O4iv0.911.832.7128 (18)162
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x3/2, y+3/2, z+1; (iii) x1/2, y+3/2, z+1; (iv) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC23H18N2O2·0.5H2O
Mr363.4
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)5.5285 (7), 22.916 (3), 28.194 (4)
V3)3571.9 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.29 × 0.20 × 0.18
Data collection
DiffractometerBruker APEX-I CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008b)
Tmin, Tmax0.913, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
61988, 5073, 4650
Rint0.038
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.084, 1.06
No. of reflections5073
No. of parameters496
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.15
Absolute structureThe absolute structure could not be determined with certainty

Computer programs: APEX2 (Bruker, 2009), SAINT (Bruker 2008), SHELXS97 (Sheldrick, 2008a), SHELXL97 (Sheldrick, 2008a), SHELXTL (Sheldrick, 2008a).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O···O20.981.582.5148 (18)158
N1—H1N···N1i0.902.553.4254 (18)167
N2—H2N···O5ii0.862.082.912 (2)161
O3—H3O···O40.901.712.5120 (19)147
O5—H5OA···O5iii0.902.113.0062 (10)177
O5—H5OB···O4iv0.911.832.7128 (18)162
Symmetry codes: (i) x+1/2, y+3/2, z; (ii) x3/2, y+3/2, z+1; (iii) x1/2, y+3/2, z+1; (iv) x+1, y, z.
 

Footnotes

Additional correspondence author, e-mail: joelt@tulane.edu.

Acknowledgements

This work was supported by the Research Foundation of Henan University of Technology (grant No. 150207). JTM gratefully acknowledges Tulane University for support of the Tulane Crystallography Laboratory.

References

First citationAmmon, H. P. T. & Wahl, M. A. (1991). Planta Med. 57, 1–7.  CrossRef CAS PubMed Web of Science Google Scholar
First citationArrieta, A. F., Haglund, K. A. & Mostad, A. (2000). Acta Cryst. C56, e594–e595.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationBruker (2008). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2009). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationLee, K. H. (2004). J. Nat. Prod. 67, 273–283.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMague, J. T., Alworth, W. L. & Payton, F. L. (2004). Acta Cryst. C60, o608–o610.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationPedersen, U., Rasmussen, P. B. & Laweson, S. O. (1985). Liebigs Ann. Chem. pp. 1557–1569.  CrossRef Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds