organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1441-o1442

(E)-Methyl 2-[(2S,3S,12bR)-3-ethyl-8-meth­­oxy-1,2,3,4,6,7,12,12b-octa­hydro­indolo[2,3-a]quinolizin-2-yl]-3-meth­oxy­acrylate ethanol solvate

aDepartment of Medicinal Chemistry, University of Mississippi, 417 Faser Hall, University, MS 38677, USA, and bDepartment of Medicinal Chemistry and Department of Pharmacology, University of Mississippi, 417 Faser Hall, University, MS 38677, USA
*Correspondence e-mail: cmccurdy@olemiss.edu

(Received 24 April 2009; accepted 8 May 2009; online 29 May 2009)

In the title compound, C23H30N2O4·C2H6O, the indole derivative has four fused rings, forming an indolo[2-3a]quinolizine system, in which one six-membered ring is directly connected to the indole unit and has a distorted chair conformation. The fourth ring is also a six-membered ring, depicting a regular chair conformation. In the crystal, the mol­ecules are linked by N—H⋯O and O—H⋯N inter­actions, forming a C(7) chain.

Related literature

For previous crystallographic analysis of mitragynine salts (hydro­bromide and hydro­iodide), see: Zacharias et al. (1965[Zacharias, D. E., Rosenstein, R. D. & Jeffrey, G. A. (1965). Acta Cryst. 18, 1039-1043.]). For the method of extraction, see: Ponglux et al. (1994[Ponglux, D., Wongseripipatana, S., Takayama, H., Kikuchi, M., Kurihara, M., Kitajima, M., Aimi, N. & Sakai, S. (1994). Planta Med. 60, 580-581.]). For synthetic studies, see: Ma et al. (2009[Ma, J., Yin, W., Zhou, H., Liao, X. & Cook, J. M. (2009). J. Org. Chem. 74, 264-273.]). For medicinal properties, see: Boyer et al. (2008[Boyer, E. W., Babu, K. M., Adkins, J. E., McCurdy, C. R. & Halpern, J. H. (2008). Addiction, 103, 1048-1050.]); Weibrecht et al. (2008[Weibrecht, K. W., Courtney, J. M., Halpern, J., McCurdy, C. & Boyer, E. W. (2008). Clin. Toxicol. 46, 395-399.]). For hydrogen-bond motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C23H30N2O4·C2H6O

  • Mr = 444.56

  • Orthorhombic, P 21 21 21

  • a = 7.60450 (10) Å

  • b = 11.7534 (2) Å

  • c = 26.5735 (4) Å

  • V = 2375.11 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.70 mm−1

  • T = 100 K

  • 0.12 × 0.09 × 0.06 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: none

  • 34365 measured reflections

  • 4158 independent reflections

  • 3649 reflections with I > 2σ(I)

  • Rint = 0.083

Refinement
  • R[F2 > 2σ(F2)] = 0.036

  • wR(F2) = 0.089

  • S = 1.05

  • 4158 reflections

  • 295 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.18 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1758 Friedel pairs

  • Flack parameter: 0.2 (2)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5⋯N2 0.82 2.07 2.876 (2) 169
N1—H1⋯O5i 0.86 2.01 2.866 (2) 170
Symmetry code: (i) x-1, y, z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL and ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]).

Supporting information


Comment top

Kratom (Mitragynia speciosa korth) is a medicinal herb endogenous to southeast Asia traditionally used as a treatment for opium withdrawal. Patients with chronic pain are increasingly aware of kratom as opioid replacement therapy. Mitragynine, the predominant alkaloid of kratom, binds with high affinity at human adrenergic, serotinergic, and adenosine CNS receptors. The binding affinity of mitragynine at mu (KD = 204 plus or minus 26 nM), delta (KD = 2250 plus or minus 47nM) and kappa (KD = 455 plus or minus 47 nM) receptors suggest that the mu-opioid agonism of mitragynine may minimize opioid withdrawal symptoms; as a kappa agonist, the molecule may oppose mu-opioid effects to modulatere inforcement and produce aversion. Furthermore, adrenergic agonist activity at alpha-2 receptors may permit kratom to mimic adjunctive therapies for opioid withdrawal such as clonidine (Weibrecht et al., 2008). The title compound has four fused rings, forming an indolo[2-3a]quinolizine system, in which one six-membered ring is directly connected to the indol moiety and has a distorted chair conformation. The fourth ring is also a six-membered ring, depicting a regular chair conformation. The molecules are linked by N—H···O and O—H···N interactions, forming a chain C(7) (Bernstein et al., 1995) along [100] directions (Fig. 2).

Related literature top

For previous crystallographic analysis of mitragynine salts (hydrobromide and hydroiodide), see: Zacharias et al. (1965). For the method of extraction, see: Ponglux et al. (1994). For synthetic studies, see: Ma et al. (2009). For medicinal properties, see: Boyer et al. (2008); Weibrecht et al. (2008). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

Mitragynine was extracted from dried M. speciosa leaves according to the procedure published by Ponglux et al., (1994), and crystallized from a solution in ethanol.

Refinement top

All H atoms were located in difference maps and treated as riding atoms, with the following distance restraints: C—H = 0.93 Å, Uiso(H) = 1.2Ueq(C) for Csp2, C—H = 0.98 Å, Uiso(H) = 1.2Ueq(C) for CH, C—H = 0.97 Å, Uiso(H) = 1.2Ueq(C) for CH2, C—H = 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3, N—H = 0.86 Å, Uiso(H) = 1.2Ueq(N), O—H = 0.82 Å, Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of the title compound, showing the formation of a C(7) chain, along [100]. H atoms not involved in this motiv were omitted for the sake of clarity.
(E)-methyl 2-[(2S,3S,12bR)-3-ethyl-8-methoxy-1,2,3,4,6,7,12,12b-octahydroindolo[2,3-a]quinolizin-2-yl]-3-methoxyacrylate ethanol solvate top
Crystal data top
C23H30N2O4·C2H6OF(000) = 960
Mr = 444.56Dx = 1.243 Mg m3
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 3152 reflections
a = 7.6045 (1) Åθ = 3.3–64.6°
b = 11.7534 (2) ŵ = 0.70 mm1
c = 26.5735 (4) ÅT = 100 K
V = 2375.11 (6) Å3Needle, colourless
Z = 40.12 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3649 reflections with I > 2σ(I)
Radiation source: Sealed TubeRint = 0.083
Graphite monochromatorθmax = 66.4°, θmin = 3.3°
ϕ and ω scansh = 99
34365 measured reflectionsk = 1313
4158 independent reflectionsl = 3131
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.089 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.2771P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4158 reflectionsΔρmax = 0.19 e Å3
295 parametersΔρmin = 0.18 e Å3
0 restraintsAbsolute structure: Flack (1983), 1758 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.2 (2)
Crystal data top
C23H30N2O4·C2H6OV = 2375.11 (6) Å3
Mr = 444.56Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.6045 (1) ŵ = 0.70 mm1
b = 11.7534 (2) ÅT = 100 K
c = 26.5735 (4) Å0.12 × 0.09 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3649 reflections with I > 2σ(I)
34365 measured reflectionsRint = 0.083
4158 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.089Δρmax = 0.19 e Å3
S = 1.05Δρmin = 0.18 e Å3
4158 reflectionsAbsolute structure: Flack (1983), 1758 Friedel pairs
295 parametersAbsolute structure parameter: 0.2 (2)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C30.3530 (3)0.08591 (16)0.79611 (7)0.0226 (4)
H30.29200.01270.79870.027*
C20.3100 (3)0.13687 (16)0.74583 (7)0.0224 (4)
C140.2990 (3)0.15900 (16)0.84110 (7)0.0224 (4)
H14A0.17500.17780.83880.027*
H14B0.36570.22930.84120.027*
C50.6061 (3)0.00338 (18)0.75273 (7)0.0269 (5)
H5A0.53600.06470.74790.032*
H5B0.72750.01970.75740.032*
C160.2800 (3)0.14709 (17)0.93877 (7)0.0237 (4)
C210.5794 (3)0.00691 (16)0.84300 (7)0.0245 (4)
H21A0.70320.02670.84390.029*
H21B0.51240.07690.84050.029*
C200.5303 (3)0.05433 (16)0.89183 (7)0.0228 (4)
H200.54060.00140.91910.027*
C70.4161 (3)0.13592 (16)0.70469 (7)0.0234 (4)
C110.0631 (3)0.29780 (17)0.60685 (8)0.0301 (5)
H110.02150.33220.58670.036*
C170.2551 (3)0.25695 (16)0.94916 (7)0.0257 (4)
H170.21980.27640.98150.031*
C80.3190 (3)0.19029 (16)0.66512 (7)0.0231 (4)
C100.2287 (3)0.27195 (17)0.58613 (7)0.0281 (5)
H100.25230.29040.55280.034*
C60.5923 (3)0.07864 (19)0.70579 (8)0.0286 (5)
H6A0.68470.13550.70630.034*
H6B0.60700.03250.67580.034*
C150.3348 (3)0.09212 (16)0.88976 (7)0.0226 (4)
H150.26580.02200.88710.027*
C90.3566 (3)0.21944 (17)0.61479 (7)0.0246 (4)
C130.1537 (3)0.21960 (17)0.68469 (7)0.0241 (4)
C120.0231 (3)0.27357 (17)0.65616 (7)0.0281 (4)
H120.08560.29210.66990.034*
C190.6535 (3)0.15316 (18)0.90462 (8)0.0268 (4)
H19A0.65270.20680.87690.032*
H19B0.60810.19230.93400.032*
C180.8419 (3)0.1177 (2)0.91491 (9)0.0359 (5)
H18A0.89460.09050.88440.054*
H18B0.84320.05830.93970.054*
H18C0.90710.18190.92720.054*
C240.2472 (3)0.06448 (17)0.98062 (7)0.0245 (4)
C220.5687 (3)0.2261 (2)0.54835 (8)0.0362 (5)
H22A0.55350.30680.54500.054*
H22B0.49410.18750.52470.054*
H22C0.68920.20660.54180.054*
C250.2001 (4)0.0389 (2)1.06740 (8)0.0398 (6)
H25A0.28610.02081.06880.060*
H25B0.08560.00651.06230.060*
H25C0.20130.08081.09840.060*
C230.2173 (4)0.45082 (18)0.93323 (9)0.0393 (6)
H23A0.27950.47100.96340.059*
H23B0.09360.44680.94020.059*
H23C0.23840.50730.90790.059*
C270.7975 (3)0.33626 (19)0.79406 (9)0.0404 (6)
H27A0.69480.34920.81490.048*
H27B0.77130.36270.76030.048*
C260.9507 (4)0.4008 (2)0.81476 (12)0.0505 (7)
H26A1.05190.38810.79390.076*
H26B0.97500.37520.84840.076*
H26C0.92350.48060.81530.076*
N20.5446 (2)0.06406 (13)0.79818 (6)0.0223 (4)
N10.1505 (2)0.18655 (14)0.73471 (6)0.0237 (4)
H10.06420.19550.75520.028*
O50.83716 (18)0.21863 (12)0.79292 (5)0.0297 (3)
H50.74620.18180.79600.045*
O30.2266 (2)0.03588 (11)0.97486 (5)0.0323 (3)
O20.2782 (2)0.34155 (11)0.91554 (5)0.0303 (3)
O10.52291 (19)0.19211 (12)0.59849 (5)0.0310 (3)
O40.2410 (2)0.11472 (11)1.02612 (5)0.0343 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C30.0226 (10)0.0251 (10)0.0201 (9)0.0001 (8)0.0008 (9)0.0000 (8)
C20.0197 (10)0.0247 (10)0.0226 (9)0.0004 (8)0.0025 (8)0.0016 (8)
C140.0200 (10)0.0273 (10)0.0200 (9)0.0005 (8)0.0001 (8)0.0007 (8)
C50.0234 (11)0.0319 (11)0.0253 (10)0.0065 (9)0.0002 (8)0.0038 (8)
C160.0182 (10)0.0317 (10)0.0213 (9)0.0008 (8)0.0002 (8)0.0010 (8)
C210.0229 (10)0.0281 (10)0.0226 (10)0.0029 (8)0.0003 (8)0.0007 (8)
C200.0224 (11)0.0282 (10)0.0177 (9)0.0038 (8)0.0005 (8)0.0026 (8)
C70.0236 (10)0.0263 (10)0.0204 (9)0.0017 (8)0.0004 (8)0.0023 (8)
C110.0329 (12)0.0302 (11)0.0273 (10)0.0005 (9)0.0086 (9)0.0016 (9)
C170.0236 (11)0.0309 (11)0.0227 (10)0.0034 (9)0.0005 (9)0.0013 (8)
C80.0258 (11)0.0237 (9)0.0197 (9)0.0041 (8)0.0009 (8)0.0026 (7)
C100.0363 (12)0.0287 (10)0.0193 (9)0.0048 (10)0.0024 (9)0.0007 (8)
C60.0255 (11)0.0397 (12)0.0207 (10)0.0034 (9)0.0019 (9)0.0028 (9)
C150.0209 (10)0.0257 (10)0.0213 (10)0.0012 (8)0.0009 (8)0.0010 (8)
C90.0272 (11)0.0255 (10)0.0212 (9)0.0043 (8)0.0018 (9)0.0041 (8)
C130.0262 (11)0.0243 (9)0.0218 (9)0.0031 (8)0.0015 (8)0.0015 (8)
C120.0260 (11)0.0293 (11)0.0291 (10)0.0008 (9)0.0026 (9)0.0009 (9)
C190.0235 (11)0.0340 (11)0.0229 (10)0.0016 (9)0.0020 (9)0.0024 (8)
C180.0241 (12)0.0469 (14)0.0366 (12)0.0017 (10)0.0020 (10)0.0038 (10)
C240.0181 (10)0.0314 (11)0.0240 (10)0.0005 (9)0.0029 (9)0.0051 (8)
C220.0450 (14)0.0369 (12)0.0265 (11)0.0045 (11)0.0109 (10)0.0016 (9)
C250.0561 (17)0.0359 (12)0.0275 (11)0.0033 (11)0.0084 (11)0.0037 (9)
C230.0493 (15)0.0280 (11)0.0406 (13)0.0020 (11)0.0050 (11)0.0023 (9)
C270.0389 (14)0.0370 (12)0.0452 (13)0.0090 (10)0.0105 (12)0.0091 (10)
C260.0404 (15)0.0308 (13)0.0804 (19)0.0015 (11)0.0045 (14)0.0067 (13)
N20.0185 (8)0.0288 (9)0.0196 (8)0.0024 (7)0.0006 (7)0.0012 (7)
N10.0217 (9)0.0294 (8)0.0201 (8)0.0026 (7)0.0026 (7)0.0002 (7)
O50.0237 (7)0.0330 (7)0.0326 (8)0.0005 (6)0.0038 (7)0.0013 (6)
O30.0413 (9)0.0279 (8)0.0276 (7)0.0012 (7)0.0041 (7)0.0005 (6)
O20.0394 (9)0.0246 (7)0.0269 (7)0.0017 (7)0.0045 (6)0.0020 (5)
O10.0348 (9)0.0368 (8)0.0215 (7)0.0023 (7)0.0047 (6)0.0005 (6)
O40.0527 (10)0.0285 (7)0.0216 (7)0.0041 (7)0.0050 (7)0.0012 (6)
Geometric parameters (Å, º) top
C3—N21.481 (3)C6—H6B0.9700
C3—C21.500 (3)C15—H150.9800
C3—C141.528 (2)C9—O11.375 (2)
C3—H30.9800C13—N11.385 (2)
C2—C71.359 (3)C13—C121.401 (3)
C2—N11.378 (3)C12—H120.9300
C14—C151.538 (2)C19—C181.517 (3)
C14—H14A0.9700C19—H19A0.9700
C14—H14B0.9700C19—H19B0.9700
C5—N21.479 (2)C18—H18A0.9600
C5—C61.533 (3)C18—H18B0.9600
C5—H5A0.9700C18—H18C0.9600
C5—H5B0.9700C24—O31.200 (2)
C16—C171.334 (3)C24—O41.346 (2)
C16—C241.497 (3)C22—O11.434 (2)
C16—C151.512 (3)C22—H22A0.9600
C21—N21.478 (2)C22—H22B0.9600
C21—C201.530 (3)C22—H22C0.9600
C21—H21A0.9700C25—O41.447 (2)
C21—H21B0.9700C25—H25A0.9600
C20—C191.530 (3)C25—H25B0.9600
C20—C151.553 (3)C25—H25C0.9600
C20—H200.9800C23—O21.444 (3)
C7—C81.435 (3)C23—H23A0.9600
C7—C61.500 (3)C23—H23B0.9600
C11—C121.375 (3)C23—H23C0.9600
C11—C101.408 (3)C27—O51.415 (3)
C11—H110.9300C27—C261.495 (4)
C17—O21.348 (2)C27—H27A0.9700
C17—H170.9300C27—H27B0.9700
C8—C131.403 (3)C26—H26A0.9600
C8—C91.410 (3)C26—H26B0.9600
C10—C91.381 (3)C26—H26C0.9600
C10—H100.9300N1—H10.8600
C6—H6A0.9700O5—H50.8200
N2—C3—C2108.46 (15)O1—C9—C8115.38 (17)
N2—C3—C14109.44 (16)C10—C9—C8119.27 (18)
C2—C3—C14114.45 (16)N1—C13—C12129.34 (18)
N2—C3—H3108.1N1—C13—C8107.59 (17)
C2—C3—H3108.1C12—C13—C8123.07 (18)
C14—C3—H3108.1C11—C12—C13116.90 (19)
C7—C2—N1110.71 (16)C11—C12—H12121.5
C7—C2—C3125.74 (18)C13—C12—H12121.5
N1—C2—C3123.47 (17)C18—C19—C20114.17 (18)
C3—C14—C15108.83 (15)C18—C19—H19A108.7
C3—C14—H14A109.9C20—C19—H19A108.7
C15—C14—H14A109.9C18—C19—H19B108.7
C3—C14—H14B109.9C20—C19—H19B108.7
C15—C14—H14B109.9H19A—C19—H19B107.6
H14A—C14—H14B108.3C19—C18—H18A109.5
N2—C5—C6111.38 (16)C19—C18—H18B109.5
N2—C5—H5A109.4H18A—C18—H18B109.5
C6—C5—H5A109.4C19—C18—H18C109.5
N2—C5—H5B109.4H18A—C18—H18C109.5
C6—C5—H5B109.4H18B—C18—H18C109.5
H5A—C5—H5B108.0O3—C24—O4122.76 (18)
C17—C16—C24116.77 (17)O3—C24—C16124.37 (17)
C17—C16—C15129.11 (18)O4—C24—C16112.86 (16)
C24—C16—C15114.11 (16)O1—C22—H22A109.5
N2—C21—C20111.97 (15)O1—C22—H22B109.5
N2—C21—H21A109.2H22A—C22—H22B109.5
C20—C21—H21A109.2O1—C22—H22C109.5
N2—C21—H21B109.2H22A—C22—H22C109.5
C20—C21—H21B109.2H22B—C22—H22C109.5
H21A—C21—H21B107.9O4—C25—H25A109.5
C21—C20—C19113.32 (17)O4—C25—H25B109.5
C21—C20—C15109.77 (16)H25A—C25—H25B109.5
C19—C20—C15112.13 (16)O4—C25—H25C109.5
C21—C20—H20107.1H25A—C25—H25C109.5
C19—C20—H20107.1H25B—C25—H25C109.5
C15—C20—H20107.1O2—C23—H23A109.5
C2—C7—C8106.27 (17)O2—C23—H23B109.5
C2—C7—C6121.23 (18)H23A—C23—H23B109.5
C8—C7—C6132.39 (18)O2—C23—H23C109.5
C12—C11—C10121.73 (19)H23A—C23—H23C109.5
C12—C11—H11119.1H23B—C23—H23C109.5
C10—C11—H11119.1O5—C27—C26109.7 (2)
C16—C17—O2123.94 (18)O5—C27—H27A109.7
C16—C17—H17118.0C26—C27—H27A109.7
O2—C17—H17118.0O5—C27—H27B109.7
C13—C8—C9118.26 (18)C26—C27—H27B109.7
C13—C8—C7107.40 (16)H27A—C27—H27B108.2
C9—C8—C7134.32 (19)C27—C26—H26A109.5
C9—C10—C11120.73 (18)C27—C26—H26B109.5
C9—C10—H10119.6H26A—C26—H26B109.5
C11—C10—H10119.6C27—C26—H26C109.5
C7—C6—C5109.66 (16)H26A—C26—H26C109.5
C7—C6—H6A109.7H26B—C26—H26C109.5
C5—C6—H6A109.7C21—N2—C5109.23 (14)
C7—C6—H6B109.7C21—N2—C3107.72 (15)
C5—C6—H6B109.7C5—N2—C3111.39 (15)
H6A—C6—H6B108.2C2—N1—C13108.02 (16)
C16—C15—C14117.18 (16)C2—N1—H1126.0
C16—C15—C20110.83 (16)C13—N1—H1126.0
C14—C15—C20110.24 (15)C27—O5—H5109.5
C16—C15—H15105.9C17—O2—C23113.49 (15)
C14—C15—H15105.9C9—O1—C22116.81 (16)
C20—C15—H15105.9C24—O4—C25114.73 (16)
O1—C9—C10125.35 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N20.822.072.876 (2)169
N1—H1···O5i0.862.012.866 (2)170
Symmetry code: (i) x1, y, z.

Experimental details

Crystal data
Chemical formulaC23H30N2O4·C2H6O
Mr444.56
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)7.6045 (1), 11.7534 (2), 26.5735 (4)
V3)2375.11 (6)
Z4
Radiation typeCu Kα
µ (mm1)0.70
Crystal size (mm)0.12 × 0.09 × 0.06
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
34365, 4158, 3649
Rint0.083
(sin θ/λ)max1)0.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.089, 1.05
No. of reflections4158
No. of parameters295
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.18
Absolute structureFlack (1983), 1758 Friedel pairs
Absolute structure parameter0.2 (2)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5···N20.822.072.876 (2)169.1
N1—H1···O5i0.862.012.866 (2)170.4
Symmetry code: (i) x1, y, z.
 

Acknowledgements

This work was supported by the NIH–NCRR (grant No. 5P20RR021919). The authors also thank the Center for Disease Control and Prevention, USA, for providing financial assistance (CDC cooperative agreements 1UO1 CI000211-03 and 1UO1 CI000362-01). This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program grant No. C06Rr-14503-01 from the National Center for Research Resources, National Institutes of Health.

References

First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBoyer, E. W., Babu, K. M., Adkins, J. E., McCurdy, C. R. & Halpern, J. H. (2008). Addiction, 103, 1048–1050.  Web of Science CrossRef PubMed Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMa, J., Yin, W., Zhou, H., Liao, X. & Cook, J. M. (2009). J. Org. Chem. 74, 264–273.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPonglux, D., Wongseripipatana, S., Takayama, H., Kikuchi, M., Kurihara, M., Kitajima, M., Aimi, N. & Sakai, S. (1994). Planta Med. 60, 580–581.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWeibrecht, K. W., Courtney, J. M., Halpern, J., McCurdy, C. & Boyer, E. W. (2008). Clin. Toxicol. 46, 395–399.  Google Scholar
First citationZacharias, D. E., Rosenstein, R. D. & Jeffrey, G. A. (1965). Acta Cryst. 18, 1039–1043.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1441-o1442
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds