organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(2-meth­oxy­phenyl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai 36, Tamil Nadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 27 April 2009; accepted 18 May 2009; online 23 May 2009)

In the title compound, C22H25NO3, the mol­ecule has a pseudo-mirror plane. The structure is a positional isomer of 2,4-bis(4-methoxy­phenyl)-3-aza­bicyclo­[3.3.1]nonan-9-one [Cox, McCabe, Milne & Sim (1985[Cox, P. J., McCabe, P. H., Milne, N. J. & Sim, G. A. (1985). J. Chem. Soc. Chem. Commun. pp. 626-628.]). J. Chem. Soc. Chem. Commun. pp. 626–628]. The 3-aza­bicyclo­[3.3.1]nonan-9-one moiety adopts a double chair conformation with equatorial orientations of both 2-methoxy­phenyl substituents on either side of the secondary amino group. The benzene rings are oriented at an angle of 33.86 (4)° with respect to each other and the meth­oxy groups point towards the carbonyl group. The crystal structure is stabilized by intermolecular N—H⋯π inter­actions.

Related literature

For prevalence and biological activities of 3-aza­bicyclo­nonan-9-ones, see: Hardick et al. (1996[Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860-4866.]); Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]); Barker et al. (2005[Barker, D., Lin, D. H.-S., Carland, J. E., Chu, C. P.-Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]). For similiar structures, see: Parthiban et al. (2008a[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.],b[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2385.]); Cox et al. (1985[Cox, P. J., McCabe, P. H., Milne, N. J. & Sim, G. A. (1985). J. Chem. Soc. Chem. Commun. pp. 626-628.]). For ring-puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C22H25NO3

  • Mr = 351.43

  • Monoclinic, P 21 /n

  • a = 7.8616 (2) Å

  • b = 20.8443 (6) Å

  • c = 11.4984 (3) Å

  • β = 95.670(10)°

  • V = 1874.37 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.58 × 0.42 × 0.35 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.972

  • 14712 measured reflections

  • 4527 independent reflections

  • 3202 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.135

  • S = 1.03

  • 4527 reflections

  • 241 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
N—H⋯π geometry (Å, ° )

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1ACg1i 0.90 (4) 2.75 (4) 3.58 (5) 152.87 (3)
Symmetry code: (i) -x+1, -y+2, -z. Cg1 is the centroid of the C9–C14 ring.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2; data reduction: SAINT-Plus (Bruker, 2004[Bruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Widespread interest in the chemistry of 3-azabicyclononan-9-ones is due to their presence in numerous naturally occurring alkaloids and broad spectrum biological activities (Jeyaraman & Avila, 1981; Hardick et al., 1996; Barker et al., 2005). Since the stereochemistry plays a crucial role in eliciting the biological response, it is immense to establish the stereochemistry of the biologically important molecules. Even though similar compounds show double chair conformation (Parthiban et al., 2008a,b), we have carried out the single-crystal XRD study for the title compound to know the impact of comparatively bulkier methoxy substituent on ortho position of the phenyl group, attached on either side of the secondary amino group.The molecule has a pseudo mirror plane.The structure is a positional isomer of 2,4-Bis(p-methoxyphenyl)-3-azabicyclo(3.3.1)nonan-9-one (Cox et al., 1985). The title compound C22H25NO3, exists in double chair conformation with an equatorial orientation of the ortho-methoxyphenyl group on both sides of the secondary amino group with the torsion angle of C8—C2—C1—C9 and C8—C6—C7—C15 are -179.66 (3) and -179.76 (4)°, respectively. In both aryl groups, the methoxy substituent point towards the carbonyl group at an angle of 33.86 (4)° to each other. A study of torsion angles, asymmetry parameters and least-squares plane calculation shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by -0.641 (3) and 0.718 (3) Å, respectively; QT = 0.6101 (15) Å, q(2)= 0.0490 (15) Å, q(3)= -0.6081 (15) Å, θ = 175.41 (14)° (Cremer & Pople, 1975) whereas the cyclohexane ring atoms C4 and C8 deviate from the C2/C3/C5/C6 plane by -0.537 (4) and 0.710 (3) Å, respectively; QT = 0.5528 (17) Å, q(2)= 0.1286 (17) Å, q(3)= -0.5376 (17) Å, θ = 166.55 (18)°.

Related literature top

For prevalence and biological activities of 3-azabicyclononan-9-ones, see: Hardick et al. (1996); Jeyaraman & Avila (1981); Barker et al. (2005). For similiar structures, see: Parthiban et al. (2008a,b); Cox et al. (1985). For ring-puckering parameters, see: Cremer & Pople (1975). [Please check amended text]

Experimental top

A mixture of cyclohexanone (4.90 g) and ortho-methoxybenzaldehyde (13.62 g) was added to a warm solution of ammonium acetate (5.78 g) in 50 ml of absolute ethanol. The mixture was gently warmed with stirring till the yellow color was formed during the mixing of the reactants and then allowed to stirring at room temperature up to the formation of product. At the end, the crude azabicyclic ketone was separated by filtration and washed with 1:5 ethanol–ether mixture till the solid became colorless. Recrystallization of the compound from ethanol gave X-ray diffraction quality crystals of 2,4-bis(2-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one.

Refinement top

Nitrogen H atoms were located in a difference Fourier map and refined isotropically. Other H atoms were fixed geometrically and allowed to ride on the parent C atoms,with aromatic C—H = 0.93 Å, aliphatic C—H = 0.98 Å and methylen C—H = 0.97 Å. The displacement parameters were set for phenyl, methylen and aliphatic H atoms at Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 (Bruker, 2004); data reduction: SAINT-Plus (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title molecule with atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. The N—H···π interactions.
2,4-Bis(2-methoxyphenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C22H25NO3F(000) = 752
Mr = 351.43Dx = 1.245 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 4251 reflections
a = 7.8616 (2) Åθ = 2.6–27.0°
b = 20.8443 (6) ŵ = 0.08 mm1
c = 11.4984 (3) ÅT = 298 K
β = 95.867 (1)°Block, colourless
V = 1874.37 (9) Å30.58 × 0.42 × 0.35 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4527 independent reflections
Radiation source: fine-focus sealed tube3202 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ϕ and ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
h = 910
Tmin = 0.945, Tmax = 0.972k = 2726
14712 measured reflectionsl = 1513
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.065P)2 + 0.3026P]
where P = (Fo2 + 2Fc2)/3
4527 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C22H25NO3V = 1874.37 (9) Å3
Mr = 351.43Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.8616 (2) ŵ = 0.08 mm1
b = 20.8443 (6) ÅT = 298 K
c = 11.4984 (3) Å0.58 × 0.42 × 0.35 mm
β = 95.867 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
4527 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1999)
3202 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.972Rint = 0.023
14712 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.17 e Å3
4527 reflectionsΔρmin = 0.25 e Å3
241 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.72892 (16)0.98913 (6)0.17176 (12)0.0343 (3)
H10.79740.98510.10550.041*
C20.85201 (18)1.00058 (7)0.28460 (14)0.0417 (3)
H20.92081.03890.27350.050*
C30.7636 (2)1.00894 (8)0.39684 (15)0.0531 (4)
H3A0.84791.02320.45890.064*
H3B0.67811.04240.38400.064*
C40.6779 (2)0.94870 (9)0.43724 (15)0.0582 (4)
H4A0.57020.94240.38940.070*
H4B0.65290.95450.51750.070*
C50.7881 (2)0.88909 (8)0.42979 (15)0.0552 (4)
H5A0.71790.85150.43900.066*
H5B0.87750.88960.49450.066*
C60.87146 (18)0.88257 (7)0.31544 (14)0.0435 (4)
H60.95210.84660.32290.052*
C70.74651 (17)0.87292 (6)0.20328 (13)0.0366 (3)
H70.81450.86890.13680.044*
C80.96882 (18)0.94334 (7)0.29817 (14)0.0431 (4)
C90.60420 (16)1.04380 (6)0.14722 (12)0.0336 (3)
C100.43367 (18)1.03906 (7)0.16792 (13)0.0415 (3)
H100.39471.00140.19940.050*
C110.32021 (19)1.08937 (8)0.14269 (15)0.0478 (4)
H110.20611.08510.15600.057*
C120.37750 (19)1.14550 (7)0.09793 (14)0.0467 (4)
H120.30191.17940.08180.056*
C130.54701 (18)1.15209 (7)0.07648 (13)0.0422 (3)
H130.58501.19030.04620.051*
C140.65935 (17)1.10152 (6)0.10043 (12)0.0352 (3)
C150.63790 (17)0.81319 (6)0.20774 (13)0.0372 (3)
C160.69939 (18)0.75399 (6)0.17200 (13)0.0402 (3)
C170.5962 (2)0.69992 (7)0.16825 (15)0.0500 (4)
H170.63720.66090.14360.060*
C180.4323 (2)0.70404 (8)0.20125 (16)0.0547 (4)
H180.36310.66770.19820.066*
C190.3707 (2)0.76145 (8)0.23863 (15)0.0515 (4)
H190.26100.76390.26180.062*
C200.47349 (18)0.81559 (7)0.24150 (14)0.0440 (4)
H200.43140.85430.26660.053*
C210.8836 (2)1.15648 (10)0.01693 (18)0.0661 (5)
H21A0.81961.15790.05870.099*
H21B1.00301.15190.00790.099*
H21C0.86561.19550.05830.099*
C220.9277 (2)0.69656 (8)0.09613 (18)0.0615 (5)
H22A0.93300.66410.15560.092*
H22B1.04020.70410.07360.092*
H22C0.85380.68250.02930.092*
N10.63559 (14)0.92907 (5)0.18328 (11)0.0358 (3)
O11.12212 (14)0.94572 (6)0.29471 (13)0.0676 (4)
O20.82804 (12)1.10343 (5)0.08112 (10)0.0470 (3)
O30.86248 (14)0.75428 (5)0.14027 (11)0.0532 (3)
H1A0.567 (2)0.9222 (7)0.1162 (15)0.046 (4)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0332 (6)0.0317 (6)0.0388 (8)0.0012 (5)0.0068 (6)0.0005 (5)
C20.0361 (7)0.0370 (7)0.0508 (9)0.0062 (6)0.0013 (6)0.0005 (6)
C30.0589 (10)0.0535 (9)0.0449 (10)0.0039 (8)0.0036 (7)0.0115 (7)
C40.0631 (11)0.0733 (12)0.0390 (9)0.0011 (9)0.0097 (8)0.0040 (8)
C50.0598 (10)0.0600 (10)0.0444 (10)0.0077 (8)0.0023 (8)0.0127 (8)
C60.0362 (7)0.0377 (7)0.0556 (10)0.0035 (6)0.0008 (7)0.0060 (7)
C70.0354 (7)0.0309 (6)0.0446 (8)0.0010 (5)0.0093 (6)0.0003 (6)
C80.0344 (7)0.0488 (8)0.0448 (9)0.0028 (6)0.0019 (6)0.0000 (7)
C90.0345 (7)0.0327 (6)0.0336 (8)0.0008 (5)0.0029 (5)0.0025 (5)
C100.0378 (7)0.0399 (7)0.0477 (9)0.0026 (6)0.0091 (6)0.0008 (6)
C110.0347 (7)0.0532 (9)0.0567 (10)0.0050 (7)0.0110 (7)0.0022 (8)
C120.0453 (8)0.0438 (8)0.0507 (10)0.0126 (7)0.0038 (7)0.0008 (7)
C130.0473 (8)0.0356 (7)0.0433 (9)0.0015 (6)0.0033 (7)0.0029 (6)
C140.0339 (7)0.0374 (7)0.0346 (7)0.0021 (6)0.0041 (5)0.0008 (6)
C150.0397 (7)0.0348 (7)0.0371 (8)0.0029 (6)0.0031 (6)0.0040 (6)
C160.0436 (8)0.0344 (7)0.0431 (9)0.0013 (6)0.0060 (6)0.0058 (6)
C170.0620 (10)0.0343 (7)0.0540 (10)0.0063 (7)0.0073 (8)0.0020 (7)
C180.0591 (10)0.0470 (9)0.0577 (11)0.0202 (8)0.0045 (8)0.0071 (8)
C190.0427 (8)0.0565 (10)0.0561 (10)0.0111 (7)0.0089 (7)0.0090 (8)
C200.0431 (8)0.0427 (8)0.0469 (9)0.0021 (6)0.0086 (7)0.0025 (7)
C210.0463 (9)0.0827 (13)0.0698 (13)0.0097 (9)0.0081 (8)0.0362 (10)
C220.0672 (11)0.0458 (9)0.0744 (13)0.0096 (8)0.0209 (9)0.0044 (8)
N10.0344 (6)0.0299 (6)0.0419 (7)0.0020 (5)0.0015 (5)0.0003 (5)
O10.0330 (6)0.0683 (8)0.1010 (11)0.0040 (5)0.0034 (6)0.0059 (7)
O20.0359 (5)0.0468 (6)0.0593 (7)0.0022 (4)0.0104 (5)0.0138 (5)
O30.0511 (6)0.0345 (5)0.0773 (8)0.0022 (5)0.0220 (6)0.0021 (5)
Geometric parameters (Å, º) top
C1—N11.4640 (16)C11—C121.373 (2)
C1—C91.5110 (17)C11—H110.9300
C1—C21.556 (2)C12—C131.387 (2)
C1—H10.9800C12—H120.9300
C2—C81.504 (2)C13—C141.3846 (19)
C2—C31.537 (2)C13—H130.9300
C2—H20.9800C14—O21.3674 (16)
C3—C41.520 (2)C15—C201.3879 (19)
C3—H3A0.9700C15—C161.4021 (19)
C3—H3B0.9700C16—O31.3684 (17)
C4—C51.522 (2)C16—C171.3868 (19)
C4—H4A0.9700C17—C181.383 (2)
C4—H4B0.9700C17—H170.9300
C5—C61.534 (2)C18—C191.376 (2)
C5—H5A0.9700C18—H180.9300
C5—H5B0.9700C19—C201.386 (2)
C6—C81.504 (2)C19—H190.9300
C6—C71.552 (2)C20—H200.9300
C6—H60.9800C21—O21.4227 (18)
C7—N11.4636 (16)C21—H21A0.9600
C7—C151.5136 (17)C21—H21B0.9600
C7—H70.9800C21—H21C0.9600
C8—O11.2109 (17)C22—O31.4216 (18)
C9—C101.3889 (18)C22—H22A0.9600
C9—C141.4044 (18)C22—H22B0.9600
C10—C111.388 (2)C22—H22C0.9600
C10—H100.9300N1—H1A0.907 (17)
N1—C1—C9109.89 (10)C11—C10—H10119.3
N1—C1—C2109.30 (11)C9—C10—H10119.3
C9—C1—C2112.12 (11)C12—C11—C10119.60 (13)
N1—C1—H1108.5C12—C11—H11120.2
C9—C1—H1108.5C10—C11—H11120.2
C2—C1—H1108.5C11—C12—C13120.61 (13)
C8—C2—C3109.05 (13)C11—C12—H12119.7
C8—C2—C1106.62 (11)C13—C12—H12119.7
C3—C2—C1114.94 (12)C14—C13—C12119.63 (13)
C8—C2—H2108.7C14—C13—H13120.2
C3—C2—H2108.7C12—C13—H13120.2
C1—C2—H2108.7O2—C14—C13123.71 (12)
C4—C3—C2114.56 (13)O2—C14—C9115.45 (12)
C4—C3—H3A108.6C13—C14—C9120.84 (12)
C2—C3—H3A108.6C20—C15—C16118.20 (13)
C4—C3—H3B108.6C20—C15—C7121.64 (12)
C2—C3—H3B108.6C16—C15—C7120.09 (12)
H3A—C3—H3B107.6O3—C16—C17123.81 (13)
C3—C4—C5112.60 (14)O3—C16—C15115.77 (12)
C3—C4—H4A109.1C17—C16—C15120.41 (13)
C5—C4—H4A109.1C18—C17—C16119.98 (15)
C3—C4—H4B109.1C18—C17—H17120.0
C5—C4—H4B109.1C16—C17—H17120.0
H4A—C4—H4B107.8C19—C18—C17120.47 (14)
C4—C5—C6114.58 (13)C19—C18—H18119.8
C4—C5—H5A108.6C17—C18—H18119.8
C6—C5—H5A108.6C18—C19—C20119.51 (14)
C4—C5—H5B108.6C18—C19—H19120.2
C6—C5—H5B108.6C20—C19—H19120.2
H5A—C5—H5B107.6C19—C20—C15121.41 (14)
C8—C6—C5107.83 (13)C19—C20—H20119.3
C8—C6—C7106.67 (12)C15—C20—H20119.3
C5—C6—C7115.74 (12)O2—C21—H21A109.5
C8—C6—H6108.8O2—C21—H21B109.5
C5—C6—H6108.8H21A—C21—H21B109.5
C7—C6—H6108.8O2—C21—H21C109.5
N1—C7—C15109.52 (11)H21A—C21—H21C109.5
N1—C7—C6110.07 (11)H21B—C21—H21C109.5
C15—C7—C6112.93 (11)O3—C22—H22A109.5
N1—C7—H7108.1O3—C22—H22B109.5
C15—C7—H7108.1H22A—C22—H22B109.5
C6—C7—H7108.1O3—C22—H22C109.5
O1—C8—C6124.11 (14)H22A—C22—H22C109.5
O1—C8—C2124.27 (14)H22B—C22—H22C109.5
C6—C8—C2111.62 (12)C7—N1—C1113.70 (10)
C10—C9—C14117.90 (12)C7—N1—H1A107.5 (10)
C10—C9—C1122.25 (12)C1—N1—H1A108.7 (10)
C14—C9—C1119.85 (11)C14—O2—C21117.45 (12)
C11—C10—C9121.42 (13)C16—O3—C22118.24 (12)
N1—C1—C2—C858.24 (14)C11—C12—C13—C140.0 (2)
C9—C1—C2—C8179.66 (11)C12—C13—C14—O2179.37 (14)
N1—C1—C2—C362.72 (15)C12—C13—C14—C90.6 (2)
C9—C1—C2—C359.38 (15)C10—C9—C14—O2179.60 (12)
C8—C2—C3—C451.29 (18)C1—C9—C14—O20.42 (19)
C1—C2—C3—C468.33 (18)C10—C9—C14—C130.4 (2)
C2—C3—C4—C543.6 (2)C1—C9—C14—C13179.54 (13)
C3—C4—C5—C645.3 (2)N1—C7—C15—C2026.68 (19)
C4—C5—C6—C854.13 (17)C6—C7—C15—C2096.37 (16)
C4—C5—C6—C765.18 (18)N1—C7—C15—C16150.24 (13)
C8—C6—C7—N157.03 (14)C6—C7—C15—C1686.71 (16)
C5—C6—C7—N162.93 (15)C20—C15—C16—O3179.66 (13)
C8—C6—C7—C15179.76 (11)C7—C15—C16—O33.3 (2)
C5—C6—C7—C1559.81 (16)C20—C15—C16—C171.4 (2)
C5—C6—C8—O1117.71 (18)C7—C15—C16—C17175.58 (13)
C7—C6—C8—O1117.36 (17)O3—C16—C17—C18179.58 (15)
C5—C6—C8—C262.84 (16)C15—C16—C17—C180.8 (2)
C7—C6—C8—C262.09 (16)C16—C17—C18—C190.4 (3)
C3—C2—C8—O1118.78 (18)C17—C18—C19—C200.9 (3)
C1—C2—C8—O1116.57 (17)C18—C19—C20—C150.2 (2)
C3—C2—C8—C661.77 (16)C16—C15—C20—C191.0 (2)
C1—C2—C8—C662.88 (16)C7—C15—C20—C19176.01 (14)
N1—C1—C9—C1017.27 (18)C15—C7—N1—C1177.14 (11)
C2—C1—C9—C10104.49 (15)C6—C7—N1—C158.14 (15)
N1—C1—C9—C14161.87 (12)C9—C1—N1—C7178.03 (11)
C2—C1—C9—C1476.37 (16)C2—C1—N1—C758.54 (15)
C14—C9—C10—C110.4 (2)C13—C14—O2—C219.8 (2)
C1—C9—C10—C11178.73 (14)C9—C14—O2—C21170.19 (14)
C9—C10—C11—C121.0 (2)C17—C16—O3—C222.8 (2)
C10—C11—C12—C130.7 (2)C15—C16—O3—C22176.03 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg1i0.90 (4)2.75 (4)3.58 (5)152.87 (3)
Symmetry code: (i) x+1, y+2, z.

Experimental details

Crystal data
Chemical formulaC22H25NO3
Mr351.43
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)7.8616 (2), 20.8443 (6), 11.4984 (3)
β (°) 95.867 (1)
V3)1874.37 (9)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.58 × 0.42 × 0.35
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1999)
Tmin, Tmax0.945, 0.972
No. of measured, independent and
observed [I > 2σ(I)] reflections
14712, 4527, 3202
Rint0.023
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.135, 1.03
No. of reflections4527
No. of parameters241
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.25

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···Cg1i0.90 (4)2.75 (4)3.58 (5)152.87 (3)
Symmetry code: (i) x+1, y+2, z.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBarker, D., Lin, D. H.-S., Carland, J. E., Chu, C. P.-Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCox, P. J., McCabe, P. H., Milne, N. J. & Sim, G. A. (1985). J. Chem. Soc. Chem. Commun. pp. 626–628.  CrossRef Web of Science Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds