metal-organic compounds
Redetermination of tetrakis(N,N-diethyldithiocarbamato)tin(IV)
aDepartamento de Quimíca, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia, and bDepartamento de Física, ICEx, UFMG, Brazil
*Correspondence e-mail: kaokio@unal.edu.co
The 5H10NS2)4], was originally determined by Harreld & Schlemper [Acta Cryst. (1971), B27, 1964–1969] using intensity data estimated from Weissenberg films. In comparison with the previous the current redetermination reveals anisotropic displacement parameters for all non-H atoms, localization of the H atoms, and higher precision of lattice parameters and interatomic distances. The complex features a distorted S6 octahedral coordination geometry for tin and a cis disposition of the monodentate dithiocarbamate ligands.
of the title compound, [Sn(CRelated literature
For the original ). For related structures, see: Tiekink (2008).
see: Harreld & Schlemper (1971Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809018522/bx2209sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809018522/bx2209Isup2.hkl
Compound (I) was obtained by reacting tin (IV) tetrachloride (883 mg, 3.39 mmol) with sodium N,N-diethyldithiocarbamate (1160 mg, 6.78 mmol) in ethanol. Orange crystals suitable for X-ray analysis were grown by recrystallization from dichlomethane/hexane.
H atoms were positioned geometrically, with C—H distances in the range 0.96 - 0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).
Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell
CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).[Sn(C5H10NS2)4] | F(000) = 1464 |
Mr = 711.73 | Dx = 1.507 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.7107 Å |
Hall symbol: -C 2yc | Cell parameters from 33587 reflections |
a = 16.3250 (2) Å | θ = 3.0–37.7° |
b = 15.7544 (2) Å | µ = 1.36 mm−1 |
c = 13.9478 (2) Å | T = 293 K |
β = 118.995 (2)° | Prism, orange |
V = 3137.64 (8) Å3 | 0.3 × 0.25 × 0.2 mm |
Z = 4 |
Oxford Diffraction GEMINI diffractometer | 8173 independent reflections |
Radiation source: Enhance (Mo) X-ray Source | 6349 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.024 |
Detector resolution: 10.4186 pixels mm-1 | θmax = 37.9°, θmin = 3.0° |
π scans | h = −27→27 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | k = −27→27 |
Tmin = 0.794, Tmax = 1.000 | l = −23→23 |
64449 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.037 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
8173 reflections | (Δ/σ)max = 0.001 |
150 parameters | Δρmax = 1.24 e Å−3 |
0 restraints | Δρmin = −0.61 e Å−3 |
[Sn(C5H10NS2)4] | V = 3137.64 (8) Å3 |
Mr = 711.73 | Z = 4 |
Monoclinic, C2/c | Mo Kα radiation |
a = 16.3250 (2) Å | µ = 1.36 mm−1 |
b = 15.7544 (2) Å | T = 293 K |
c = 13.9478 (2) Å | 0.3 × 0.25 × 0.2 mm |
β = 118.995 (2)° |
Oxford Diffraction GEMINI diffractometer | 8173 independent reflections |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) | 6349 reflections with I > 2σ(I) |
Tmin = 0.794, Tmax = 1.000 | Rint = 0.024 |
64449 measured reflections |
R[F2 > 2σ(F2)] = 0.037 | 0 restraints |
wR(F2) = 0.145 | H-atom parameters constrained |
S = 1.07 | Δρmax = 1.24 e Å−3 |
8173 reflections | Δρmin = −0.61 e Å−3 |
150 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Sn | 1.0000 | 0.202248 (11) | 0.2500 | 0.03412 (6) | |
S4 | 0.80944 (4) | 0.24306 (5) | 0.33596 (5) | 0.05278 (14) | |
S3 | 1.17240 (3) | 0.16968 (3) | 0.37176 (4) | 0.03869 (10) | |
S2 | 1.01793 (3) | 0.09568 (4) | 0.39719 (5) | 0.04590 (12) | |
S1 | 0.98344 (4) | 0.32210 (4) | 0.35808 (4) | 0.04406 (12) | |
C1 | 0.91736 (14) | 0.27902 (13) | 0.41621 (15) | 0.0378 (3) | |
N1 | 0.95774 (13) | 0.28033 (13) | 0.52591 (14) | 0.0433 (3) | |
C2 | 0.9021 (2) | 0.25988 (19) | 0.5803 (2) | 0.0554 (6) | |
H2A | 0.8384 | 0.2794 | 0.5345 | 0.066* | |
H2B | 0.9278 | 0.2905 | 0.6492 | 0.066* | |
C3 | 0.9003 (3) | 0.1671 (3) | 0.6025 (3) | 0.0771 (9) | |
H3A | 0.8628 | 0.1579 | 0.6374 | 0.116* | |
H3B | 0.9630 | 0.1476 | 0.6497 | 0.116* | |
H3C | 0.8740 | 0.1364 | 0.5346 | 0.116* | |
C4 | 1.05786 (18) | 0.29665 (16) | 0.5989 (2) | 0.0528 (6) | |
H4A | 1.0920 | 0.2834 | 0.5601 | 0.063* | |
H4B | 1.0802 | 0.2589 | 0.6615 | 0.063* | |
C5 | 1.0788 (2) | 0.3865 (2) | 0.6392 (2) | 0.0725 (8) | |
H5A | 1.1450 | 0.3930 | 0.6861 | 0.109* | |
H5B | 1.0466 | 0.3998 | 0.6794 | 0.109* | |
H5C | 1.0583 | 0.4243 | 0.5778 | 0.109* | |
C6 | 1.13681 (12) | 0.10712 (12) | 0.44702 (14) | 0.0351 (3) | |
N2 | 1.19789 (12) | 0.06819 (10) | 0.53695 (14) | 0.0405 (3) | |
C7 | 1.29923 (14) | 0.07507 (16) | 0.5782 (2) | 0.0543 (6) | |
H7A | 1.3309 | 0.0810 | 0.6574 | 0.065* | |
H7B | 1.3121 | 0.1256 | 0.5480 | 0.065* | |
C8 | 1.3367 (3) | −0.0006 (3) | 0.5485 (4) | 0.0923 (13) | |
H8A | 1.4028 | 0.0062 | 0.5761 | 0.139* | |
H8B | 1.3059 | −0.0063 | 0.4702 | 0.139* | |
H8C | 1.3256 | −0.0505 | 0.5800 | 0.139* | |
C9 | 1.16890 (17) | 0.01398 (14) | 0.60174 (17) | 0.0477 (5) | |
H9A | 1.1044 | −0.0033 | 0.5556 | 0.057* | |
H9B | 1.2072 | −0.0369 | 0.6238 | 0.057* | |
C10 | 1.1771 (4) | 0.0561 (3) | 0.7004 (3) | 0.0904 (12) | |
H10A | 1.1575 | 0.0176 | 0.7388 | 0.136* | |
H10B | 1.1380 | 0.1056 | 0.6793 | 0.136* | |
H10C | 1.2410 | 0.0723 | 0.7473 | 0.136* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn | 0.02512 (8) | 0.04321 (10) | 0.03155 (9) | 0.000 | 0.01177 (6) | 0.000 |
S4 | 0.0354 (2) | 0.0764 (4) | 0.0425 (2) | −0.0047 (2) | 0.01571 (19) | −0.0066 (2) |
S3 | 0.02504 (17) | 0.0478 (2) | 0.0397 (2) | −0.00161 (15) | 0.01292 (15) | 0.00968 (17) |
S2 | 0.0283 (2) | 0.0557 (3) | 0.0517 (3) | −0.00264 (17) | 0.01786 (18) | 0.0135 (2) |
S1 | 0.0497 (3) | 0.0484 (2) | 0.0412 (2) | −0.0090 (2) | 0.0277 (2) | −0.00716 (19) |
C1 | 0.0360 (8) | 0.0449 (8) | 0.0333 (7) | 0.0028 (7) | 0.0175 (6) | −0.0020 (6) |
N1 | 0.0409 (8) | 0.0569 (9) | 0.0330 (7) | −0.0002 (7) | 0.0186 (6) | −0.0033 (6) |
C2 | 0.0600 (14) | 0.0738 (16) | 0.0439 (10) | −0.0090 (12) | 0.0344 (10) | −0.0115 (10) |
C3 | 0.093 (3) | 0.086 (2) | 0.0622 (17) | −0.0131 (19) | 0.0463 (18) | 0.0043 (15) |
C4 | 0.0406 (11) | 0.0719 (16) | 0.0365 (9) | 0.0047 (9) | 0.0112 (8) | −0.0020 (8) |
C5 | 0.0586 (16) | 0.086 (2) | 0.0582 (15) | −0.0105 (15) | 0.0166 (12) | −0.0127 (14) |
C6 | 0.0277 (6) | 0.0383 (7) | 0.0355 (7) | −0.0030 (5) | 0.0124 (6) | 0.0015 (6) |
N2 | 0.0316 (7) | 0.0412 (7) | 0.0404 (7) | −0.0035 (5) | 0.0110 (6) | 0.0094 (6) |
C7 | 0.0301 (8) | 0.0561 (12) | 0.0561 (12) | −0.0041 (8) | 0.0047 (8) | 0.0155 (10) |
C8 | 0.0567 (18) | 0.079 (2) | 0.143 (4) | 0.0141 (15) | 0.049 (2) | 0.021 (2) |
C9 | 0.0507 (11) | 0.0436 (9) | 0.0432 (9) | −0.0068 (8) | 0.0183 (8) | 0.0093 (7) |
C10 | 0.144 (4) | 0.077 (2) | 0.0719 (19) | −0.028 (2) | 0.069 (2) | −0.0128 (16) |
Sn—S1 | 2.5111 (5) | C4—H4A | 0.9700 |
Sn—S1i | 2.5111 (5) | C4—H4B | 0.9700 |
Sn—S3i | 2.5366 (4) | C5—H5A | 0.9600 |
Sn—S3 | 2.5366 (4) | C5—H5B | 0.9600 |
Sn—S2 | 2.5567 (5) | C5—H5C | 0.9600 |
Sn—S2i | 2.5567 (5) | C6—N2 | 1.316 (2) |
S4—C1 | 1.663 (2) | N2—C7 | 1.468 (3) |
S3—C6 | 1.7327 (19) | N2—C9 | 1.478 (3) |
S2—C6 | 1.7247 (18) | C7—C8 | 1.488 (5) |
S1—C1 | 1.769 (2) | C7—H7A | 0.9700 |
C1—N1 | 1.341 (2) | C7—H7B | 0.9700 |
N1—C4 | 1.470 (3) | C8—H8A | 0.9600 |
N1—C2 | 1.474 (3) | C8—H8B | 0.9600 |
C2—C3 | 1.497 (5) | C8—H8C | 0.9600 |
C2—H2A | 0.9700 | C9—C10 | 1.474 (4) |
C2—H2B | 0.9700 | C9—H9A | 0.9700 |
C3—H3A | 0.9600 | C9—H9B | 0.9700 |
C3—H3B | 0.9600 | C10—H10A | 0.9600 |
C3—H3C | 0.9600 | C10—H10B | 0.9600 |
C4—C5 | 1.501 (4) | C10—H10C | 0.9600 |
S1—Sn—S1i | 82.48 (3) | N1—C4—H4B | 108.9 |
S1—Sn—S3i | 98.433 (17) | C5—C4—H4B | 108.9 |
S1i—Sn—S3i | 99.063 (19) | H4A—C4—H4B | 107.7 |
S1—Sn—S3 | 99.064 (19) | C4—C5—H5A | 109.5 |
S1i—Sn—S3 | 98.434 (17) | C4—C5—H5B | 109.5 |
S3i—Sn—S3 | 156.66 (2) | H5A—C5—H5B | 109.5 |
S1—Sn—S2 | 90.89 (2) | C4—C5—H5C | 109.5 |
S1i—Sn—S2 | 166.429 (19) | H5A—C5—H5C | 109.5 |
S3i—Sn—S2 | 93.599 (17) | H5B—C5—H5C | 109.5 |
S3—Sn—S2 | 70.827 (15) | N2—C6—S2 | 121.35 (14) |
S1—Sn—S2i | 166.427 (19) | N2—C6—S3 | 121.40 (14) |
S1i—Sn—S2i | 90.89 (2) | S2—C6—S3 | 117.23 (10) |
S3i—Sn—S2i | 70.826 (15) | C6—N2—C7 | 121.91 (17) |
S3—Sn—S2i | 93.599 (17) | C6—N2—C9 | 122.20 (17) |
S2—Sn—S2i | 97.91 (3) | C7—N2—C9 | 115.89 (17) |
C6—S3—Sn | 86.08 (6) | N2—C7—C8 | 111.7 (2) |
C6—S2—Sn | 85.61 (6) | N2—C7—H7A | 109.3 |
C1—S1—Sn | 104.69 (7) | C8—C7—H7A | 109.3 |
N1—C1—S4 | 123.21 (16) | N2—C7—H7B | 109.3 |
N1—C1—S1 | 116.44 (15) | C8—C7—H7B | 109.3 |
S4—C1—S1 | 120.30 (11) | H7A—C7—H7B | 108.0 |
C1—N1—C4 | 124.02 (19) | C7—C8—H8A | 109.5 |
C1—N1—C2 | 119.95 (19) | C7—C8—H8B | 109.5 |
C4—N1—C2 | 115.94 (19) | H8A—C8—H8B | 109.5 |
N1—C2—C3 | 113.5 (2) | C7—C8—H8C | 109.5 |
N1—C2—H2A | 108.9 | H8A—C8—H8C | 109.5 |
C3—C2—H2A | 108.9 | H8B—C8—H8C | 109.5 |
N1—C2—H2B | 108.9 | C10—C9—N2 | 113.6 (2) |
C3—C2—H2B | 108.9 | C10—C9—H9A | 108.8 |
H2A—C2—H2B | 107.7 | N2—C9—H9A | 108.8 |
C2—C3—H3A | 109.5 | C10—C9—H9B | 108.8 |
C2—C3—H3B | 109.5 | N2—C9—H9B | 108.8 |
H3A—C3—H3B | 109.5 | H9A—C9—H9B | 107.7 |
C2—C3—H3C | 109.5 | C9—C10—H10A | 109.5 |
H3A—C3—H3C | 109.5 | C9—C10—H10B | 109.5 |
H3B—C3—H3C | 109.5 | H10A—C10—H10B | 109.5 |
N1—C4—C5 | 113.6 (2) | C9—C10—H10C | 109.5 |
N1—C4—H4A | 108.9 | H10A—C10—H10C | 109.5 |
C5—C4—H4A | 108.9 | H10B—C10—H10C | 109.5 |
Symmetry code: (i) −x+2, y, −z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Sn(C5H10NS2)4] |
Mr | 711.73 |
Crystal system, space group | Monoclinic, C2/c |
Temperature (K) | 293 |
a, b, c (Å) | 16.3250 (2), 15.7544 (2), 13.9478 (2) |
β (°) | 118.995 (2) |
V (Å3) | 3137.64 (8) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.36 |
Crystal size (mm) | 0.3 × 0.25 × 0.2 |
Data collection | |
Diffractometer | Oxford Diffraction GEMINI diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2008) |
Tmin, Tmax | 0.794, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 64449, 8173, 6349 |
Rint | 0.024 |
(sin θ/λ)max (Å−1) | 0.864 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.037, 0.145, 1.07 |
No. of reflections | 8173 |
No. of parameters | 150 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.24, −0.61 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).
References
Harreld, C. S. & Schlemper, E. O. (1971). Acta Cryst. B27, 1964–1969. CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550. Web of Science CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
Organotin dithiocarbamate compounds continue to attract interest owing to their use as precursors for Chemical Vapor Deposition (CVD) of SnS, as pharmaceuticals, and their structural diversity (Tiekink, 2008). The title compound (I) has been synthesized and its crystal structure reported here. In the previously reported structure (Harreld & Schlemper,1971), no hydrogen atoms were included and the crystal was found to be monoclinic with Z = 4, a=15.64 (2) Å, b=15.75 (2) Å, c=13.91 (2) Å, β=112.50 (2)°.These data are slightly different from the new ones due probably to the significantly improved precision with respect to the geometric parameters provided by this redetermination. The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1.The tin atom is octahedrally coordinated by two chelating ligands and two monodentate dithiocarbamate ligands with the latter occupying mutually cis-positions. Distortions from the ideal octahedral are clearly related to the restricted bite angle of the chelating ligands and further, the asymmetry in the Sn–S bond distances formed by the chelating ligand is related to the trans influence exerted by the monodentate ligands, i.e. the longer Sn–S bond distance formed by the chelating ligand is trans- to the sulfur atom of the monodentate ligand.