metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Redetermination of tetra­kis(N,N-di­ethyl­di­thio­carbamato)tin(IV)

aDepartamento de Quimíca, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia, and bDepartamento de Física, ICEx, UFMG, Brazil
*Correspondence e-mail: kaokio@unal.edu.co

(Received 30 April 2009; accepted 15 May 2009; online 23 May 2009)

The crystal structure of the title compound, [Sn(C5H10NS2)4], was originally determined by Harreld & Schlemper [Acta Cryst. (1971), B27, 1964–1969] using intensity data estimated from Weissenberg films. In comparison with the previous refinement, the current redetermination reveals anisotropic displacement parameters for all non-H atoms, localization of the H atoms, and higher precision of lattice parameters and inter­atomic distances. The complex features a distorted S6 octa­hedral coordination geometry for tin and a cis disposition of the monodentate dithio­carbamate ligands.

Related literature

For the original structure determination, see: Harreld & Schlemper (1971[Harreld, C. S. & Schlemper, E. O. (1971). Acta Cryst. B27, 1964-1969.]). For related structures, see: Tiekink (2008[Tiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533-550.]).

[Scheme 1]

Experimental

Crystal data
  • [Sn(C5H10NS2)4]

  • Mr = 711.73

  • Monoclinic, C 2/c

  • a = 16.3250 (2) Å

  • b = 15.7544 (2) Å

  • c = 13.9478 (2) Å

  • β = 118.995 (2)°

  • V = 3137.64 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.36 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Oxford Diffraction GEMINI diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]) Tmin = 0.794, Tmax = 1.000 (expected range = 0.605–0.761)

  • 64449 measured reflections

  • 8173 independent reflections

  • 6349 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.145

  • S = 1.07

  • 8173 reflections

  • 150 parameters

  • H-atom parameters constrained

  • Δρmax = 1.24 e Å−3

  • Δρmin = −0.61 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008[Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Organotin dithiocarbamate compounds continue to attract interest owing to their use as precursors for Chemical Vapor Deposition (CVD) of SnS, as pharmaceuticals, and their structural diversity (Tiekink, 2008). The title compound (I) has been synthesized and its crystal structure reported here. In the previously reported structure (Harreld & Schlemper,1971), no hydrogen atoms were included and the crystal was found to be monoclinic with Z = 4, a=15.64 (2) Å, b=15.75 (2) Å, c=13.91 (2) Å, β=112.50 (2)°.These data are slightly different from the new ones due probably to the significantly improved precision with respect to the geometric parameters provided by this redetermination. The molecular structure and the atom-numbering scheme of the title compound are shown in Fig. 1.The tin atom is octahedrally coordinated by two chelating ligands and two monodentate dithiocarbamate ligands with the latter occupying mutually cis-positions. Distortions from the ideal octahedral are clearly related to the restricted bite angle of the chelating ligands and further, the asymmetry in the Sn–S bond distances formed by the chelating ligand is related to the trans influence exerted by the monodentate ligands, i.e. the longer Sn–S bond distance formed by the chelating ligand is trans- to the sulfur atom of the monodentate ligand.

Related literature top

For the original structure determination, see: Harreld & Schlemper (1971). For related structures, see: Tiekink (2008).

Experimental top

Compound (I) was obtained by reacting tin (IV) tetrachloride (883 mg, 3.39 mmol) with sodium N,N-diethyldithiocarbamate (1160 mg, 6.78 mmol) in ethanol. Orange crystals suitable for X-ray analysis were grown by recrystallization from dichlomethane/hexane.

Refinement top

H atoms were positioned geometrically, with C—H distances in the range 0.96 - 0.97 Å, and constrained to ride on their parent atoms, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted. Unlabeled atoms are related to labeled by the symmetry code (-x+2, y, 1/2-z).
tetrakis(N,N-diethyldithiocarbamato)tin(IV) top
Crystal data top
[Sn(C5H10NS2)4]F(000) = 1464
Mr = 711.73Dx = 1.507 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.7107 Å
Hall symbol: -C 2ycCell parameters from 33587 reflections
a = 16.3250 (2) Åθ = 3.0–37.7°
b = 15.7544 (2) ŵ = 1.36 mm1
c = 13.9478 (2) ÅT = 293 K
β = 118.995 (2)°Prism, orange
V = 3137.64 (8) Å30.3 × 0.25 × 0.2 mm
Z = 4
Data collection top
Oxford Diffraction GEMINI
diffractometer
8173 independent reflections
Radiation source: Enhance (Mo) X-ray Source6349 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
Detector resolution: 10.4186 pixels mm-1θmax = 37.9°, θmin = 3.0°
π scansh = 2727
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
k = 2727
Tmin = 0.794, Tmax = 1.000l = 2323
64449 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
8173 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 0.61 e Å3
Crystal data top
[Sn(C5H10NS2)4]V = 3137.64 (8) Å3
Mr = 711.73Z = 4
Monoclinic, C2/cMo Kα radiation
a = 16.3250 (2) ŵ = 1.36 mm1
b = 15.7544 (2) ÅT = 293 K
c = 13.9478 (2) Å0.3 × 0.25 × 0.2 mm
β = 118.995 (2)°
Data collection top
Oxford Diffraction GEMINI
diffractometer
8173 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2008)
6349 reflections with I > 2σ(I)
Tmin = 0.794, Tmax = 1.000Rint = 0.024
64449 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0370 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 1.07Δρmax = 1.24 e Å3
8173 reflectionsΔρmin = 0.61 e Å3
150 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sn1.00000.202248 (11)0.25000.03412 (6)
S40.80944 (4)0.24306 (5)0.33596 (5)0.05278 (14)
S31.17240 (3)0.16968 (3)0.37176 (4)0.03869 (10)
S21.01793 (3)0.09568 (4)0.39719 (5)0.04590 (12)
S10.98344 (4)0.32210 (4)0.35808 (4)0.04406 (12)
C10.91736 (14)0.27902 (13)0.41621 (15)0.0378 (3)
N10.95774 (13)0.28033 (13)0.52591 (14)0.0433 (3)
C20.9021 (2)0.25988 (19)0.5803 (2)0.0554 (6)
H2A0.83840.27940.53450.066*
H2B0.92780.29050.64920.066*
C30.9003 (3)0.1671 (3)0.6025 (3)0.0771 (9)
H3A0.86280.15790.63740.116*
H3B0.96300.14760.64970.116*
H3C0.87400.13640.53460.116*
C41.05786 (18)0.29665 (16)0.5989 (2)0.0528 (6)
H4A1.09200.28340.56010.063*
H4B1.08020.25890.66150.063*
C51.0788 (2)0.3865 (2)0.6392 (2)0.0725 (8)
H5A1.14500.39300.68610.109*
H5B1.04660.39980.67940.109*
H5C1.05830.42430.57780.109*
C61.13681 (12)0.10712 (12)0.44702 (14)0.0351 (3)
N21.19789 (12)0.06819 (10)0.53695 (14)0.0405 (3)
C71.29923 (14)0.07507 (16)0.5782 (2)0.0543 (6)
H7A1.33090.08100.65740.065*
H7B1.31210.12560.54800.065*
C81.3367 (3)0.0006 (3)0.5485 (4)0.0923 (13)
H8A1.40280.00620.57610.139*
H8B1.30590.00630.47020.139*
H8C1.32560.05050.58000.139*
C91.16890 (17)0.01398 (14)0.60174 (17)0.0477 (5)
H9A1.10440.00330.55560.057*
H9B1.20720.03690.62380.057*
C101.1771 (4)0.0561 (3)0.7004 (3)0.0904 (12)
H10A1.15750.01760.73880.136*
H10B1.13800.10560.67930.136*
H10C1.24100.07230.74730.136*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn0.02512 (8)0.04321 (10)0.03155 (9)0.0000.01177 (6)0.000
S40.0354 (2)0.0764 (4)0.0425 (2)0.0047 (2)0.01571 (19)0.0066 (2)
S30.02504 (17)0.0478 (2)0.0397 (2)0.00161 (15)0.01292 (15)0.00968 (17)
S20.0283 (2)0.0557 (3)0.0517 (3)0.00264 (17)0.01786 (18)0.0135 (2)
S10.0497 (3)0.0484 (2)0.0412 (2)0.0090 (2)0.0277 (2)0.00716 (19)
C10.0360 (8)0.0449 (8)0.0333 (7)0.0028 (7)0.0175 (6)0.0020 (6)
N10.0409 (8)0.0569 (9)0.0330 (7)0.0002 (7)0.0186 (6)0.0033 (6)
C20.0600 (14)0.0738 (16)0.0439 (10)0.0090 (12)0.0344 (10)0.0115 (10)
C30.093 (3)0.086 (2)0.0622 (17)0.0131 (19)0.0463 (18)0.0043 (15)
C40.0406 (11)0.0719 (16)0.0365 (9)0.0047 (9)0.0112 (8)0.0020 (8)
C50.0586 (16)0.086 (2)0.0582 (15)0.0105 (15)0.0166 (12)0.0127 (14)
C60.0277 (6)0.0383 (7)0.0355 (7)0.0030 (5)0.0124 (6)0.0015 (6)
N20.0316 (7)0.0412 (7)0.0404 (7)0.0035 (5)0.0110 (6)0.0094 (6)
C70.0301 (8)0.0561 (12)0.0561 (12)0.0041 (8)0.0047 (8)0.0155 (10)
C80.0567 (18)0.079 (2)0.143 (4)0.0141 (15)0.049 (2)0.021 (2)
C90.0507 (11)0.0436 (9)0.0432 (9)0.0068 (8)0.0183 (8)0.0093 (7)
C100.144 (4)0.077 (2)0.0719 (19)0.028 (2)0.069 (2)0.0128 (16)
Geometric parameters (Å, º) top
Sn—S12.5111 (5)C4—H4A0.9700
Sn—S1i2.5111 (5)C4—H4B0.9700
Sn—S3i2.5366 (4)C5—H5A0.9600
Sn—S32.5366 (4)C5—H5B0.9600
Sn—S22.5567 (5)C5—H5C0.9600
Sn—S2i2.5567 (5)C6—N21.316 (2)
S4—C11.663 (2)N2—C71.468 (3)
S3—C61.7327 (19)N2—C91.478 (3)
S2—C61.7247 (18)C7—C81.488 (5)
S1—C11.769 (2)C7—H7A0.9700
C1—N11.341 (2)C7—H7B0.9700
N1—C41.470 (3)C8—H8A0.9600
N1—C21.474 (3)C8—H8B0.9600
C2—C31.497 (5)C8—H8C0.9600
C2—H2A0.9700C9—C101.474 (4)
C2—H2B0.9700C9—H9A0.9700
C3—H3A0.9600C9—H9B0.9700
C3—H3B0.9600C10—H10A0.9600
C3—H3C0.9600C10—H10B0.9600
C4—C51.501 (4)C10—H10C0.9600
S1—Sn—S1i82.48 (3)N1—C4—H4B108.9
S1—Sn—S3i98.433 (17)C5—C4—H4B108.9
S1i—Sn—S3i99.063 (19)H4A—C4—H4B107.7
S1—Sn—S399.064 (19)C4—C5—H5A109.5
S1i—Sn—S398.434 (17)C4—C5—H5B109.5
S3i—Sn—S3156.66 (2)H5A—C5—H5B109.5
S1—Sn—S290.89 (2)C4—C5—H5C109.5
S1i—Sn—S2166.429 (19)H5A—C5—H5C109.5
S3i—Sn—S293.599 (17)H5B—C5—H5C109.5
S3—Sn—S270.827 (15)N2—C6—S2121.35 (14)
S1—Sn—S2i166.427 (19)N2—C6—S3121.40 (14)
S1i—Sn—S2i90.89 (2)S2—C6—S3117.23 (10)
S3i—Sn—S2i70.826 (15)C6—N2—C7121.91 (17)
S3—Sn—S2i93.599 (17)C6—N2—C9122.20 (17)
S2—Sn—S2i97.91 (3)C7—N2—C9115.89 (17)
C6—S3—Sn86.08 (6)N2—C7—C8111.7 (2)
C6—S2—Sn85.61 (6)N2—C7—H7A109.3
C1—S1—Sn104.69 (7)C8—C7—H7A109.3
N1—C1—S4123.21 (16)N2—C7—H7B109.3
N1—C1—S1116.44 (15)C8—C7—H7B109.3
S4—C1—S1120.30 (11)H7A—C7—H7B108.0
C1—N1—C4124.02 (19)C7—C8—H8A109.5
C1—N1—C2119.95 (19)C7—C8—H8B109.5
C4—N1—C2115.94 (19)H8A—C8—H8B109.5
N1—C2—C3113.5 (2)C7—C8—H8C109.5
N1—C2—H2A108.9H8A—C8—H8C109.5
C3—C2—H2A108.9H8B—C8—H8C109.5
N1—C2—H2B108.9C10—C9—N2113.6 (2)
C3—C2—H2B108.9C10—C9—H9A108.8
H2A—C2—H2B107.7N2—C9—H9A108.8
C2—C3—H3A109.5C10—C9—H9B108.8
C2—C3—H3B109.5N2—C9—H9B108.8
H3A—C3—H3B109.5H9A—C9—H9B107.7
C2—C3—H3C109.5C9—C10—H10A109.5
H3A—C3—H3C109.5C9—C10—H10B109.5
H3B—C3—H3C109.5H10A—C10—H10B109.5
N1—C4—C5113.6 (2)C9—C10—H10C109.5
N1—C4—H4A108.9H10A—C10—H10C109.5
C5—C4—H4A108.9H10B—C10—H10C109.5
Symmetry code: (i) x+2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Sn(C5H10NS2)4]
Mr711.73
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)16.3250 (2), 15.7544 (2), 13.9478 (2)
β (°) 118.995 (2)
V3)3137.64 (8)
Z4
Radiation typeMo Kα
µ (mm1)1.36
Crystal size (mm)0.3 × 0.25 × 0.2
Data collection
DiffractometerOxford Diffraction GEMINI
diffractometer
Absorption correctionMulti-scan
(CrysAlis RED; Oxford Diffraction, 2008)
Tmin, Tmax0.794, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
64449, 8173, 6349
Rint0.024
(sin θ/λ)max1)0.864
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.037, 0.145, 1.07
No. of reflections8173
No. of parameters150
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 0.61

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

 

References

First citationHarreld, C. S. & Schlemper, E. O. (1971). Acta Cryst. B27, 1964–1969.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationOxford Diffraction (2008). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTiekink, E. R. T. (2008). Appl. Organomet. Chem. 22, 533–550.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds