organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1418-o1419

Di­ethyl 2-[(5-meth­­oxy-2-methyl-1-phenyl­sulfonyl-1H-indol-3-yl)methyl­ene]malonate

aCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India, and bDepartment of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: mnpsy2004@yahoo.com

(Received 31 March 2009; accepted 21 May 2009; online 29 May 2009)

In the title compound, C24H25NO7S, the sulfonyl-bound phenyl ring is approximately perpendicular to the indole ring system [dihedral angle = 87.72 (5)°]. The methyl group of one of the ester units is disordered over two positions with occupancies of 0.527 (13) and 0.473 (13). An intra­molecular C—H⋯O hydrogen bond is observed. In the crystal structure, mol­ecules are linked into a ribbon structure running along the c axis by inter­molecular C—H⋯O hydrogen bonds and C—H⋯π inter­actions involving the pyrrole ring.

Related literature

For general background on indoles, see: El-Sayed et al. (1986[El-Sayed, K., Barnhart, D. M., Ammon, H. L. & Wassel, G. M. (1986). Acta Cryst. C42, 1383-1385.]); Farhanullah et al. (2004[Farhanullah, S. A., Maulik, P. R. & Ji Ram, V. (2004). Tetrahedron Lett. 45, 5099-5102.]); Okabe & Adachi (1998[Okabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386-387.]); Schollmeyer et al. (1995[Schollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572-2575.]). For the Thorpe–Ingold effect, see: Bassindale (1984[Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.]). For hybridization, see: Beddoes et al. (1986[Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787-797.]). For a related structure, see: Chakkaravarthi et al. (2008[Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1139.]).

[Scheme 1]

Experimental

Crystal data
  • C24H25NO7S

  • Mr = 471.51

  • Triclinic, [P \overline 1]

  • a = 8.7597 (2) Å

  • b = 10.9029 (2) Å

  • c = 12.5186 (3) Å

  • α = 88.402 (1)°

  • β = 79.723 (1)°

  • γ = 83.635 (2)°

  • V = 1169.13 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.22 × 0.18 × 0.15 mm

Data collection
  • Bruker Kappa APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2001[Sheldrick, G. M. (2001). SADABS. University of Go¨ttingen, Germany.]) Tmin = 0.964, Tmax = 0.971

  • 27454 measured reflections

  • 6218 independent reflections

  • 4628 reflections with I > 2σ(I)

  • Rint = 0.023

Refinement
  • R[F2 > 2σ(F2)] = 0.053

  • wR(F2) = 0.176

  • S = 1.07

  • 6218 reflections

  • 309 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1/C2–C5 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O1 0.93 2.32 2.901 (3) 120
C14—H14⋯O5i 0.93 2.42 3.349 (3) 173
C25—H25CCg1ii 0.96 2.92 3.515 (3) 140
Symmetry codes: (i) x, y, z+1; (ii) -x+1, -y+1, -z+1.

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Indoles form an integral part of many natural products and possess potentially reactive sites to perform variety of chemical reactions to generate molecular diversity (Farhanullah et al., 2004). Many of the indole derivatives are found to possess antibacterial (Okabe & Adachi, 1998), antitumour (Schollmeyer et al., 1995) and antimicrobial (El-Sayed et al., 1986) activities.

The bond angles around atom S1 show significant deviation from regular tetrahedral geometry. The widening of O1—S1—O2 [120.42 (11)°] and the narrowing of the angle N1—S1—C10 [104.43 (9)°] are attributed to the Thorpe-Ingold effect (Bassindale, 1984). The indole ring system is planar. The bond lengths and angles are comparable to those observed in a related structure (Chakkaravarthi et al., 2008). The sum of bond angles around atom N1 (357.9°) indicates that the atom N1 is in sp2 hybridized state (Beddoes et al., 1986). The sulfonyl bound phenyl ring (C10–C15) is approximately perpendicular to the indole ring system, with the dihedral angle being 87.72 (5)°. The C18–C21/O3/O4 ester group shows an extended conformation, as is evident from the torsion angles C18—C19—O4—C20 = 179.8 (2)° and C19—O4—C20—C21 = -169.9 (3)°. The terminal methyl group of the other ester group is disordered over two positions. An intramolecular C6—H6···O1 hydrogen bond is observed.

In the crystal structure, the molecules are linked into a zigzag C(12) chain running along the c axis by intermolecular C—H···O hydrogen bonds involving atoms C14 and O5 (Table 1). The inversion-related molecules of adjacent chains are linked via weak C—H···π interactions involving the N1/C2–C5 ring (centroid Cg1) to form a ribbon structure (Fig. 2).

Related literature top

For general background on indoles, see: El-Sayed et al. (1986); Farhanullah et al. (2004); Okabe & Adachi (1998); Schollmeyer et al. (1995). For the Thorpe–Ingold effect, see: Bassindale (1984). For hybridization, see: Beddoes et al. (1986). For a related structure, see: Chakkaravarthi et al. (2008).

Experimental top

A solution of TiCl4 (0.37 ml, 3.34 mmol) in dry dichloromethane (DCM; 20 ml) was added drop by drop into dry DCM (10 ml) kept at 273 K and stirred at the same temperature for 45 min. To this, a solution of 5-methoxy-2-methyl-1-(phenylsulfonyl)-1H-indole-3-carbaldehyde (0.5 g, 1.52 mmol) and diethylmalonate (0.24 ml, 1.60 mmol) in dry DCM (20 ml) was slowly added. After the addition was completed, the reaction mixture was stirred at 273 K for 1 h. A solution of pyridine (0.6 ml, 6.08 mmol) in dry DCM (20 ml) was then added dropwise for 30 min. The content was stirred at 273 K for 12 h and then at room temperature for 48 h. The reaction mass was quenched with water and extracted with CHCl3 (2 × 10 ml). The organic layer was washed with 0.5 M HCl (2 × 20 ml) followed by brine solution (2 × 20 ml). Removal of solvent followed by flash column chromatographic purification (n-hexane–ethyl acetate 97:3) afforded the title compound as a yellow solid. Single crystals were obtained by recrystallizing the compound from n-hexane–ethyl acetate (97:3).

Refinement top

The methyl group at the end of one of ethyl carboxylate chains is disordered over two positions (C24 and C24') with refined occupancies of 0.527 (13) and 0.473 (13). The C23—C24 and C23—C24'bond distances were restrained to be 1.50 (5) Å. The components of the anisotropic displacement parameters of atoms C13, C14, C23 and O6 in the direction of the bond between them were restrained to be equal within an effective standard deviation of 0.001. The Uij parameters of atoms C24 and C24' were restrained to an approximate isotropic behaviour. H atoms were positioned geometrically and refined using riding model with C-H = 0.93-0.97 Å and Uiso(H) = 1.2Ueq(C) and 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound. Displacement ellipsoids are drawn at the 20% probability level. H atoms have been omitted for clarity. Both disorder components are shown.
[Figure 2] Fig. 2. Crystal packing of the title compound. H atoms not involved in hydrogen bonding (dashed lines) have been omitted.
Diethyl 2-[(5-methoxy-2-methyl-1-phenylsulfonyl-1H-indol-3-yl)methylene]malonate top
Crystal data top
C24H25NO7SZ = 2
Mr = 471.51F(000) = 496
Triclinic, P1Dx = 1.339 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7597 (2) ÅCell parameters from 6218 reflections
b = 10.9029 (2) Åθ = 1.6–29.1°
c = 12.5186 (3) ŵ = 0.18 mm1
α = 88.402 (1)°T = 293 K
β = 79.723 (1)°Block, yellow
γ = 83.635 (2)°0.22 × 0.18 × 0.15 mm
V = 1169.13 (4) Å3
Data collection top
Bruker Kappa-APEXII area-detector
diffractometer
6218 independent reflections
Radiation source: fine-focus sealed tube4628 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
ω and ϕ scansθmax = 29.1°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
h = 1111
Tmin = 0.964, Tmax = 0.971k = 1414
27454 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.176H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.09P)2 + 0.3748P]
where P = (Fo2 + 2Fc2)/3
6218 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.66 e Å3
16 restraintsΔρmin = 0.45 e Å3
Crystal data top
C24H25NO7Sγ = 83.635 (2)°
Mr = 471.51V = 1169.13 (4) Å3
Triclinic, P1Z = 2
a = 8.7597 (2) ÅMo Kα radiation
b = 10.9029 (2) ŵ = 0.18 mm1
c = 12.5186 (3) ÅT = 293 K
α = 88.402 (1)°0.22 × 0.18 × 0.15 mm
β = 79.723 (1)°
Data collection top
Bruker Kappa-APEXII area-detector
diffractometer
6218 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2001)
4628 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.971Rint = 0.023
27454 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.05316 restraints
wR(F2) = 0.176H-atom parameters constrained
S = 1.07Δρmax = 0.66 e Å3
6218 reflectionsΔρmin = 0.45 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C20.1929 (2)0.26604 (18)0.44185 (16)0.0459 (4)
C30.2837 (2)0.35252 (17)0.39343 (15)0.0423 (4)
C40.2631 (2)0.45572 (17)0.46608 (14)0.0390 (4)
C50.1556 (2)0.43026 (17)0.55745 (15)0.0399 (4)
C60.1105 (2)0.51428 (18)0.64167 (15)0.0462 (4)
H60.03720.49790.70230.055*
C70.1787 (2)0.62274 (19)0.63165 (16)0.0482 (4)
H70.15230.67970.68760.058*
C80.2861 (2)0.64990 (18)0.54028 (16)0.0442 (4)
C90.3283 (2)0.56763 (18)0.45571 (15)0.0427 (4)
H90.39790.58610.39370.051*
C100.1592 (2)0.15262 (18)0.70459 (16)0.0461 (4)
C110.2091 (3)0.0301 (2)0.68271 (18)0.0550 (5)
H110.16550.01220.63420.066*
C120.3239 (3)0.0290 (2)0.7332 (2)0.0682 (6)
H120.35840.11170.71900.082*
C130.3875 (3)0.0341 (3)0.8045 (2)0.0745 (7)
H130.46540.00610.83840.089*
C140.3377 (4)0.1551 (3)0.8262 (2)0.0756 (7)
H140.38180.19680.87490.091*
C150.2218 (3)0.2167 (2)0.77638 (19)0.0611 (6)
H150.18730.29930.79110.073*
C160.1853 (4)0.1390 (2)0.4038 (2)0.0672 (6)
H16A0.08830.13540.37900.101*
H16B0.19240.08130.46250.101*
H16C0.27040.11830.34520.101*
C170.3945 (2)0.34685 (18)0.29260 (16)0.0465 (4)
H170.48660.38080.29520.056*
C180.3860 (2)0.30077 (18)0.19641 (16)0.0470 (4)
C190.2432 (2)0.2538 (2)0.17047 (16)0.0506 (5)
C200.1390 (3)0.0829 (3)0.1115 (3)0.0788 (8)
H20A0.11120.11960.04520.095*
H20B0.04940.09750.16930.095*
C210.1827 (5)0.0488 (3)0.0973 (3)0.1081 (12)
H21A0.09690.08650.07890.162*
H21B0.20870.08460.16360.162*
H21C0.27140.06250.04000.162*
C220.5148 (3)0.3041 (2)0.10308 (19)0.0587 (5)
C230.7754 (4)0.3516 (4)0.0435 (3)0.1053 (13)
H23A0.79170.28180.00510.126*
H23B0.86860.35370.07480.126*
C240.7462 (13)0.4658 (8)0.0169 (9)0.136 (4)0.527 (13)
H24A0.83450.47530.07300.204*0.527 (13)
H24B0.72990.53460.03150.204*0.527 (13)
H24C0.65510.46260.04910.204*0.527 (13)
C24'0.8132 (13)0.4810 (6)0.0454 (10)0.125 (4)0.473 (13)
H24D0.90140.49250.01020.187*0.473 (13)
H24E0.83750.49770.11500.187*0.473 (13)
H24F0.72510.53640.03260.187*0.473 (13)
C250.4367 (3)0.8015 (2)0.4473 (2)0.0655 (6)
H25A0.46780.88090.45930.098*
H25B0.37890.80730.38870.098*
H25C0.52770.74330.42910.098*
N10.10926 (19)0.31258 (15)0.54194 (13)0.0450 (4)
O10.07993 (18)0.31630 (15)0.71397 (14)0.0640 (4)
O20.05720 (19)0.14123 (16)0.59054 (15)0.0668 (5)
O30.11914 (19)0.31388 (18)0.17716 (15)0.0703 (5)
O40.27014 (18)0.13750 (15)0.13834 (14)0.0620 (4)
O50.5020 (3)0.2806 (3)0.01285 (16)0.1019 (8)
O60.6431 (2)0.3383 (2)0.12855 (16)0.0883 (7)
O70.34224 (19)0.76187 (14)0.54229 (13)0.0588 (4)
S10.01286 (6)0.23002 (5)0.64069 (4)0.04951 (16)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C20.0544 (10)0.0432 (10)0.0434 (9)0.0068 (8)0.0163 (8)0.0002 (8)
C30.0455 (9)0.0434 (9)0.0398 (9)0.0034 (7)0.0130 (7)0.0031 (7)
C40.0372 (8)0.0437 (9)0.0376 (8)0.0026 (7)0.0115 (7)0.0017 (7)
C50.0388 (8)0.0407 (9)0.0412 (9)0.0036 (7)0.0111 (7)0.0038 (7)
C60.0467 (10)0.0499 (10)0.0397 (9)0.0027 (8)0.0031 (7)0.0012 (8)
C70.0522 (10)0.0478 (10)0.0436 (10)0.0023 (8)0.0064 (8)0.0076 (8)
C80.0439 (9)0.0434 (10)0.0473 (10)0.0062 (7)0.0128 (8)0.0022 (8)
C90.0397 (8)0.0478 (10)0.0414 (9)0.0075 (7)0.0079 (7)0.0001 (7)
C100.0471 (9)0.0492 (10)0.0428 (9)0.0094 (8)0.0088 (8)0.0095 (8)
C110.0635 (12)0.0507 (11)0.0528 (11)0.0101 (9)0.0147 (10)0.0068 (9)
C120.0740 (15)0.0624 (14)0.0659 (15)0.0076 (12)0.0171 (12)0.0075 (12)
C130.0711 (15)0.0868 (14)0.0675 (15)0.0054 (13)0.0279 (13)0.0119 (13)
C140.0849 (18)0.0880 (15)0.0622 (14)0.0091 (14)0.0347 (14)0.0049 (13)
C150.0748 (15)0.0584 (13)0.0537 (12)0.0061 (11)0.0216 (11)0.0009 (10)
C160.1018 (19)0.0461 (11)0.0566 (13)0.0175 (12)0.0155 (13)0.0015 (10)
C170.0470 (10)0.0458 (10)0.0471 (10)0.0044 (8)0.0089 (8)0.0051 (8)
C180.0461 (10)0.0489 (10)0.0460 (10)0.0036 (8)0.0078 (8)0.0071 (8)
C190.0474 (10)0.0630 (12)0.0409 (9)0.0042 (9)0.0062 (8)0.0079 (9)
C200.0690 (16)0.093 (2)0.0817 (18)0.0299 (14)0.0183 (13)0.0193 (15)
C210.112 (3)0.092 (2)0.126 (3)0.050 (2)0.008 (2)0.026 (2)
C220.0522 (11)0.0685 (14)0.0543 (12)0.0114 (10)0.0009 (9)0.0172 (10)
C230.0772 (19)0.128 (3)0.105 (2)0.044 (2)0.0246 (15)0.035 (2)
C240.135 (4)0.136 (4)0.136 (4)0.0144 (11)0.0234 (12)0.0001 (10)
C24'0.125 (4)0.125 (4)0.125 (4)0.0152 (11)0.0213 (12)0.0003 (10)
C250.0642 (14)0.0622 (14)0.0728 (15)0.0255 (11)0.0089 (11)0.0043 (11)
N10.0512 (9)0.0430 (8)0.0429 (8)0.0096 (7)0.0122 (7)0.0052 (6)
O10.0498 (8)0.0646 (10)0.0700 (10)0.0029 (7)0.0056 (7)0.0129 (8)
O20.0590 (9)0.0645 (10)0.0867 (12)0.0265 (8)0.0296 (8)0.0149 (9)
O30.0480 (8)0.0871 (12)0.0744 (11)0.0051 (8)0.0117 (8)0.0208 (9)
O40.0545 (8)0.0616 (9)0.0736 (10)0.0097 (7)0.0169 (7)0.0169 (8)
O50.0799 (13)0.169 (2)0.0583 (11)0.0429 (14)0.0093 (9)0.0447 (13)
O60.0620 (11)0.1307 (18)0.0742 (12)0.0402 (11)0.0049 (8)0.0285 (12)
O70.0675 (9)0.0513 (8)0.0599 (9)0.0203 (7)0.0080 (7)0.0071 (7)
S10.0422 (3)0.0513 (3)0.0567 (3)0.0116 (2)0.0114 (2)0.0123 (2)
Geometric parameters (Å, º) top
C2—C31.360 (3)C17—H170.93
C2—N11.411 (3)C18—C221.475 (3)
C2—C161.490 (3)C18—C191.493 (3)
C3—C41.442 (2)C19—O31.196 (3)
C3—C171.447 (3)C19—O41.324 (3)
C4—C51.388 (3)C20—O41.445 (3)
C4—C91.396 (3)C20—C211.452 (5)
C5—C61.390 (3)C20—H20A0.97
C5—N11.416 (2)C20—H20B0.97
C6—C71.376 (3)C21—H21A0.96
C6—H60.93C21—H21B0.96
C7—C81.393 (3)C21—H21C0.96
C7—H70.93C22—O51.193 (3)
C8—O71.368 (2)C22—O61.316 (3)
C8—C91.379 (3)C23—O61.445 (3)
C9—H90.93C23—C241.461 (5)
C10—C151.376 (3)C23—C24'1.486 (5)
C10—C111.378 (3)C23—H23A0.97
C10—S11.756 (2)C23—H23B0.97
C11—C121.373 (3)C24—H24A0.96
C11—H110.93C24—H24B0.96
C12—C131.370 (4)C24—H24C0.96
C12—H120.93C24'—H24D0.96
C13—C141.362 (4)C24'—H24E0.96
C13—H130.93C24'—H24F0.96
C14—C151.386 (3)C25—O71.409 (3)
C14—H140.93C25—H25A0.96
C15—H150.93C25—H25B0.96
C16—H16A0.96C25—H25C0.96
C16—H16B0.96N1—S11.6690 (16)
C16—H16C0.96O1—S11.4141 (17)
C17—C181.335 (3)O2—S11.4181 (17)
C3—C2—N1108.67 (16)O4—C19—C18111.98 (17)
C3—C2—C16128.0 (2)O4—C20—C21108.4 (3)
N1—C2—C16123.20 (19)O4—C20—H20A110.0
C2—C3—C4107.82 (17)C21—C20—H20A110.0
C2—C3—C17129.75 (18)O4—C20—H20B110.0
C4—C3—C17122.24 (17)C21—C20—H20B110.0
C5—C4—C9120.75 (17)H20A—C20—H20B108.4
C5—C4—C3108.18 (16)C20—C21—H21A109.5
C9—C4—C3131.05 (17)C20—C21—H21B109.5
C4—C5—C6121.34 (17)H21A—C21—H21B109.5
C4—C5—N1106.95 (16)C20—C21—H21C109.5
C6—C5—N1131.70 (17)H21A—C21—H21C109.5
C7—C6—C5117.28 (18)H21B—C21—H21C109.5
C7—C6—H6121.4O5—C22—O6123.5 (2)
C5—C6—H6121.4O5—C22—C18122.8 (2)
C6—C7—C8122.06 (18)O6—C22—C18113.66 (19)
C6—C7—H7119.0O6—C23—C24109.3 (5)
C8—C7—H7119.0O6—C23—C24'107.6 (5)
O7—C8—C9124.44 (18)O6—C23—H23A109.8
O7—C8—C7114.95 (17)C24—C23—H23A109.8
C9—C8—C7120.60 (18)C24'—C23—H23A140.2
C8—C9—C4117.94 (17)O6—C23—H23B109.8
C8—C9—H9121.0C24—C23—H23B109.8
C4—C9—H9121.0C24'—C23—H23B70.5
C15—C10—C11121.2 (2)H23A—C23—H23B108.3
C15—C10—S1118.66 (17)C23—C24—H24A109.5
C11—C10—S1120.13 (16)C23—C24—H24B109.5
C12—C11—C10119.4 (2)H24A—C24—H24B109.5
C12—C11—H11120.3C23—C24—H24C109.5
C10—C11—H11120.3H24A—C24—H24C109.5
C13—C12—C11119.9 (2)H24B—C24—H24C109.5
C13—C12—H12120.1C23—C24'—H24D109.5
C11—C12—H12120.1C23—C24'—H24E109.5
C14—C13—C12120.7 (2)H24D—C24'—H24E109.5
C14—C13—H13119.7C23—C24'—H24F109.5
C12—C13—H13119.7H24D—C24'—H24F109.5
C13—C14—C15120.5 (2)H24E—C24'—H24F109.5
C13—C14—H14119.7O7—C25—H25A109.5
C15—C14—H14119.7O7—C25—H25B109.5
C10—C15—C14118.3 (2)H25A—C25—H25B109.5
C10—C15—H15120.8O7—C25—H25C109.5
C14—C15—H15120.8H25A—C25—H25C109.5
C2—C16—H16A109.5H25B—C25—H25C109.5
C2—C16—H16B109.5C2—N1—C5108.32 (15)
H16A—C16—H16B109.5C2—N1—S1125.65 (13)
C2—C16—H16C109.5C5—N1—S1123.91 (13)
H16A—C16—H16C109.5C19—O4—C20116.42 (19)
H16B—C16—H16C109.5C22—O6—C23119.1 (2)
C18—C17—C3130.42 (19)C8—O7—C25117.79 (17)
C18—C17—H17114.8O1—S1—O2120.42 (11)
C3—C17—H17114.8O1—S1—N1106.20 (9)
C17—C18—C22121.49 (19)O2—S1—N1107.38 (10)
C17—C18—C19123.87 (18)O1—S1—C10108.77 (10)
C22—C18—C19114.37 (17)O2—S1—C10108.50 (10)
O3—C19—O4123.8 (2)N1—S1—C10104.43 (9)
O3—C19—C18124.2 (2)
N1—C2—C3—C42.4 (2)C17—C18—C19—O4122.7 (2)
C16—C2—C3—C4173.8 (2)C22—C18—C19—O463.2 (2)
N1—C2—C3—C17177.27 (18)C17—C18—C22—O5168.7 (3)
C16—C2—C3—C171.0 (3)C19—C18—C22—O55.6 (4)
C2—C3—C4—C51.4 (2)C17—C18—C22—O69.7 (3)
C17—C3—C4—C5176.76 (16)C19—C18—C22—O6176.0 (2)
C2—C3—C4—C9179.75 (18)C3—C2—N1—C52.5 (2)
C17—C3—C4—C94.9 (3)C16—C2—N1—C5173.94 (19)
C9—C4—C5—C60.6 (3)C3—C2—N1—S1166.42 (13)
C3—C4—C5—C6179.14 (16)C16—C2—N1—S110.0 (3)
C9—C4—C5—N1178.41 (15)C4—C5—N1—C21.58 (19)
C3—C4—C5—N10.13 (19)C6—C5—N1—C2179.56 (19)
C4—C5—C6—C71.1 (3)C4—C5—N1—S1165.83 (13)
N1—C5—C6—C7179.83 (18)C6—C5—N1—S115.3 (3)
C5—C6—C7—C81.4 (3)O3—C19—O4—C200.6 (3)
C6—C7—C8—O7179.45 (18)C18—C19—O4—C20179.8 (2)
C6—C7—C8—C90.0 (3)C21—C20—O4—C19169.9 (3)
O7—C8—C9—C4178.90 (17)O5—C22—O6—C231.6 (5)
C7—C8—C9—C41.7 (3)C18—C22—O6—C23176.8 (3)
C5—C4—C9—C82.0 (3)C24—C23—O6—C2275.7 (6)
C3—C4—C9—C8179.87 (18)C24'—C23—O6—C22121.2 (6)
C15—C10—C11—C120.2 (3)C9—C8—O7—C256.9 (3)
S1—C10—C11—C12179.85 (18)C7—C8—O7—C25172.56 (19)
C10—C11—C12—C130.0 (4)C2—N1—S1—O1167.59 (16)
C11—C12—C13—C140.2 (4)C5—N1—S1—O130.90 (18)
C12—C13—C14—C150.1 (5)C2—N1—S1—O237.54 (18)
C11—C10—C15—C140.3 (4)C5—N1—S1—O2160.94 (15)
S1—C10—C15—C14179.8 (2)C2—N1—S1—C1077.54 (17)
C13—C14—C15—C100.1 (4)C5—N1—S1—C1083.98 (16)
C2—C3—C17—C1841.7 (3)C15—C10—S1—O134.6 (2)
C4—C3—C17—C18144.1 (2)C11—C10—S1—O1145.35 (17)
C3—C17—C18—C22179.7 (2)C15—C10—S1—O2167.21 (18)
C3—C17—C18—C196.6 (4)C11—C10—S1—O212.7 (2)
C17—C18—C19—O357.7 (3)C15—C10—S1—N178.50 (19)
C22—C18—C19—O3116.4 (2)C11—C10—S1—N1101.59 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.322.901 (3)120
C14—H14···O5i0.932.423.349 (3)173
C25—H25C···Cg1ii0.962.923.515 (3)140
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC24H25NO7S
Mr471.51
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.7597 (2), 10.9029 (2), 12.5186 (3)
α, β, γ (°)88.402 (1), 79.723 (1), 83.635 (2)
V3)1169.13 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.18
Crystal size (mm)0.22 × 0.18 × 0.15
Data collection
DiffractometerBruker Kappa-APEXII area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2001)
Tmin, Tmax0.964, 0.971
No. of measured, independent and
observed [I > 2σ(I)] reflections
27454, 6218, 4628
Rint0.023
(sin θ/λ)max1)0.684
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.176, 1.07
No. of reflections6218
No. of parameters309
No. of restraints16
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.66, 0.45

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C6—H6···O10.932.322.901 (3)120
C14—H14···O5i0.932.423.349 (3)173
C25—H25C···Cg1ii0.962.923.515 (3)140
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
 

Acknowledgements

TK thanks Dr Babu Varghese, SAIF, IIT-Madras, Chennai, India, for his help with the data collection.

References

First citationBassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.  Google Scholar
First citationBeddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.  CSD CrossRef Google Scholar
First citationBruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationChakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o1139.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEl-Sayed, K., Barnhart, D. M., Ammon, H. L. & Wassel, G. M. (1986). Acta Cryst. C42, 1383–1385.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFarhanullah, S. A., Maulik, P. R. & Ji Ram, V. (2004). Tetrahedron Lett. 45, 5099–5102.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationOkabe, N. & Adachi, Y. (1998). Acta Cryst. C54, 386–387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSchollmeyer, D., Fischer, G. & Pindur, U. (1995). Acta Cryst. C51, 2572–2575.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationSheldrick, G. M. (2001). SADABS. University of Go¨ttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1418-o1419
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds