organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1184-o1185

N′-[(E)-4-Bromo­benzyl­­idene]-2-(4-iso­butyl­phen­yl)propanohydrazide

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 21 April 2009; accepted 26 April 2009; online 7 May 2009)

The asymmetric unit of the title compound, C20H23BrN2O, contains two independent mol­ecules (A and B), in which the orientations of the 4-isobutyl­phenyl units are different. The dihedral angle between the two benzene rings is 88.45 (8)° in mol­ecule A and 89.87 (8)° in mol­ecule B. Mol­ecules A and B are linked by a C—H⋯N hydrogen bond. In the crystal, mol­ecules are linked into chains running along the a axis by inter­molcular N—H⋯O and C—H⋯O hydrogen bonds. The crystal structure is further stabilized by C—H⋯π inter­actions. The presence of pseudosymmetry in the structure suggests the higher symmetry space group Pbca. However, attempts to refine the structure in this space group resulted in a disorder model with high R (0.097) and wR (0.257) values. The crystal studied was an inversion twin with a 0.595 (4):0.405 (4) domain ratio.

Related literature

For the biological activities of hydrazone derivatives, see: Bedia et al. (2006[Bedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253-1261.]); Rollas et al. (2002[Rollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171-174.]); Terzioglu & Gürsoy (2003[Terzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781-786.]); Sridhar & Perumal (2003[Sridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483-1488.]); Amir & Kumar (2007[Amir, M. & Kumar, S. (2007). Acta Pharm. 57, 31-45.]). For a related structure, see: Fun et al. (2008[Fun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1001-o1002.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H23BrN2O

  • Mr = 387.31

  • Orthorhombic, P 21 21 21

  • a = 9.1440 (1) Å

  • b = 12.0110 (1) Å

  • c = 33.5670 (4) Å

  • V = 3686.62 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.24 mm−1

  • T = 100 K

  • 0.49 × 0.38 × 0.19 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.407, Tmax = 0.682

  • 120355 measured reflections

  • 20557 independent reflections

  • 13317 reflections with I > 2σ(I)

  • Rint = 0.045

Refinement
  • R[F2 > 2σ(F2)] = 0.042

  • wR(F2) = 0.103

  • S = 1.04

  • 20557 reflections

  • 448 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.72 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 9205 Friedel pairs

  • Flack parameter: 0.595 (4)

Table 1
Selected torsion angles (°)

C8A—C9A—C10A—C11A −96.54 (17)
C8A—C9A—C10A—C15A 80.18 (18)
C20A—C9A—C10A—C11A 141.61 (15)
C20A—C9A—C10A—C15A −41.7 (2)
C8B—C9B—C10B—C11B 77.53 (17)
C8B—C9B—C10B—C15B −101.83 (16)
C20B—C9B—C10B—C11B −160.06 (14)
C20B—C9B—C10B—C15B 20.6 (2)

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H1NA⋯O1Bi 0.91 (2) 1.97 (2) 2.830 (2) 157 (2)
N2B—H1NB⋯O1Aii 0.77 (2) 2.11 (2) 2.826 (2) 155 (2)
C7A—H7AA⋯O1Bi 0.93 2.45 3.241 (2) 143
C7B—H7BA⋯O1Aii 0.93 2.53 3.307 (3) 141
C20B—H20F⋯N1A 0.96 2.56 3.494 (2) 164
C12A—H12ACg2i 0.93 2.66 3.482 (2) 148
C12B—H12BCg1ii 0.93 2.79 3.680 (2) 160
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]. Cg1 and Cg2 are the centroids of the C1A–C6A and C1B–C6B benzene rings, respectively.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Hydrazones have been found to possess antimicrobial, anticonvulsant, analgesic, antiinflammatory, antiplatelet, antitubercular, anticancer and antitumoral activities (Bedia et al., 2006; Rollas et al., 2002; Terzioglu & Gürsoy, 2003). Aryl hydrazones are important building blocks for the synthesis of a variety of heterocyclic compounds such as pyrazolines and pyrazoles (Sridhar et al., 2003). Aryl hydrazones have been most conveniently synthesized by the reaction of aryl hydrazines with carbonyl compounds. Similarly ibuprofen is also known for their pharmaceutical activities and belongs to the class of Non-Steroidal Anti-Inflammatory Drugs (Amir & Kumar, 2007). We are interested in the synthesis and crystal structure of ibuprofen containing hydrazone derivatives (Fun et al., 2008). Prompted by these observations, it was contemplated to synthesize and report the crystal structure of the title compound.

The asymmetric unit contains two independent molecules (Fig. 1), A and B, in which the orientations of the 4-isobutylphenyl units are different (Table 1). The bond lengths (Allen et al., 1987) and angles in the molecule (Fig. 1) are within normal ranges and are comparable to a closely related structure (Fun et al., 2008). The molecule A is linked to the molecule B by C20B—H20F···N1A hydrogen bond (Fig. 1). The dihedral angle formed by the C1A-C6A and C10A-C15A benzene rings is 89.87 (8)° and that between the C1B-C6B and C10B-C15B planes is 88.45 (8)°, indicating that they are almost perpendicular to each other.

The crystal packing is consolidated by intermolecular N—H···O and C—H···O hydrogen bonds (Fig. 2) which link the independent molecules into chains parallel to the [100]. The crystal structure is further stabilized by C—H···π interactions (Table 1) involving the C1A-C6A (centroid Cg1) and C1B–C6B (centroid Cg2) benzene rings.

Related literature top

For the biological activities of hydrazone derivatives, see: Bedia et al. (2006); Rollas et al. (2002); Terzioglu & Gürsoy (2003); Sridhar et al. (2003); Amir & Kumar (2007). For a related structure, see: Fun et al. (2008). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986). Cg1 and Cg2 are the centroids of the C1A--C6A and C1B–C6B benzene rings, respectively.

Experimental top

The title compound was obtained by refluxing a mixture of 2-[4-(2-methylpropyl)phenyl]propanehydrazide (0.01 mol), 4-bromobenzaldehyde (0.01 mol) in ethanol (30 ml) and 3 drops of concentrated sulfuric acid for 1 h. Excess ethanol was removed from the reaction mixture under reduced pressure. The solid product obtained was filtered, washed with ethanol and dried. Single crystals suitable for X-ray analysis were obtained by slow evaporation of an ethanol-N,N-dimethylformamide (DMF) (3:1) solution.

Refinement top

Atoms H1NA and H1NB were located in a difference difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating-group model was applied for the methyl groups. The presence of pseudo-symmetry in the structure suggests a higher symmetry space group Pbca. But attempts to refine the structure in the space group Pbca resulted in a disorder model with high R (0.097) and wR (0.257) values. Because of the presence of a pseudo-centre of symmetry, the absolute structure could not be determined. The reported Flack parameter was obtained by TWIN/BASF procedure in SHELXL (Sheldrick, 2008).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The dashed line indicates a hydrogen bond.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the a axis. Intermolecular interactions are shown as dashed lines.
N'-[(E)-4-Bromobenzylidene]-2-(4-isobutylphenyl)propanohydrazide top
Crystal data top
C20H23BrN2OF(000) = 1600
Mr = 387.31Dx = 1.396 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 9400 reflections
a = 9.1440 (1) Åθ = 2.5–31.7°
b = 12.0110 (1) ŵ = 2.24 mm1
c = 33.5670 (4) ÅT = 100 K
V = 3686.62 (7) Å3Block, colourless
Z = 80.49 × 0.38 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
20557 independent reflections
Radiation source: fine-focus sealed tube13317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.045
ϕ and ω scansθmax = 38.6°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1616
Tmin = 0.407, Tmax = 0.682k = 2120
120355 measured reflectionsl = 5856
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0498P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
20557 reflectionsΔρmax = 0.72 e Å3
448 parametersΔρmin = 0.62 e Å3
0 restraintsAbsolute structure: Flack (1983), 9205 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.595 (4)
Crystal data top
C20H23BrN2OV = 3686.62 (7) Å3
Mr = 387.31Z = 8
Orthorhombic, P212121Mo Kα radiation
a = 9.1440 (1) ŵ = 2.24 mm1
b = 12.0110 (1) ÅT = 100 K
c = 33.5670 (4) Å0.49 × 0.38 × 0.19 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
20557 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
13317 reflections with I > 2σ(I)
Tmin = 0.407, Tmax = 0.682Rint = 0.045
120355 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.103Δρmax = 0.72 e Å3
S = 1.04Δρmin = 0.62 e Å3
20557 reflectionsAbsolute structure: Flack (1983), 9205 Friedel pairs
448 parametersAbsolute structure parameter: 0.595 (4)
0 restraints
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br1A0.849271 (19)0.479672 (14)0.078235 (6)0.02563 (4)
O1A0.88325 (12)1.00346 (11)0.27706 (3)0.0213 (2)
N1A0.73139 (15)0.87330 (12)0.22421 (4)0.0173 (3)
N2A0.66653 (15)0.94990 (12)0.24939 (4)0.0164 (3)
C1A0.81210 (19)0.67440 (14)0.17959 (5)0.0184 (3)
H1AA0.86010.68130.20390.022*
C2A0.85669 (18)0.59430 (13)0.15259 (5)0.0187 (3)
H2AA0.93280.54600.15890.022*
C3A0.78674 (19)0.58675 (14)0.11603 (5)0.0189 (3)
C4A0.6703 (2)0.65496 (14)0.10623 (5)0.0211 (3)
H4AA0.62430.64870.08160.025*
C5A0.62366 (19)0.73315 (14)0.13401 (5)0.0192 (3)
H5AA0.54370.77810.12810.023*
C6A0.6946 (2)0.74535 (13)0.17050 (5)0.0165 (3)
C7A0.64467 (19)0.83222 (13)0.19787 (5)0.0176 (3)
H7AA0.54900.85810.19620.021*
C8A0.74894 (16)1.00775 (15)0.27548 (5)0.0170 (3)
C9A0.65950 (18)1.07453 (13)0.30584 (5)0.0172 (3)
H9AA0.56241.08880.29460.021*
C10A0.64245 (16)0.99942 (13)0.34220 (4)0.0155 (3)
C11A0.51587 (18)0.93583 (14)0.34705 (5)0.0185 (3)
H11A0.43970.94280.32890.022*
C12A0.50265 (19)0.86228 (13)0.37874 (5)0.0182 (3)
H12A0.41670.82170.38170.022*
C13A0.61539 (18)0.84797 (13)0.40622 (4)0.0172 (3)
C14A0.74046 (17)0.91272 (14)0.40148 (5)0.0204 (3)
H14A0.81670.90560.41960.025*
C15A0.75390 (17)0.98781 (15)0.37016 (5)0.0200 (3)
H15A0.83821.03070.36790.024*
C16A0.60190 (19)0.76581 (13)0.43996 (5)0.0194 (3)
H16A0.69910.75080.45020.023*
H16B0.56400.69650.42930.023*
C17A0.50438 (19)0.80147 (14)0.47485 (5)0.0219 (3)
H17A0.40350.80640.46520.026*
C18A0.5468 (3)0.91335 (16)0.49144 (6)0.0442 (6)
H18A0.53410.96930.47130.066*
H18B0.64730.91160.49970.066*
H18C0.48590.93050.51390.066*
C19A0.5104 (2)0.71186 (15)0.50728 (5)0.0274 (4)
H19A0.44770.73280.52900.041*
H19B0.60900.70460.51680.041*
H19C0.47840.64200.49640.041*
C20A0.73368 (19)1.18646 (15)0.31432 (6)0.0229 (4)
H20A0.68761.22120.33680.034*
H20B0.72461.23390.29140.034*
H20C0.83531.17440.32000.034*
Br1B0.63994 (2)0.015149 (14)0.077318 (5)0.02449 (4)
O1B0.61864 (12)0.49983 (11)0.27805 (3)0.0206 (2)
N1B0.77028 (15)0.36554 (11)0.22662 (4)0.0161 (3)
N2B0.83490 (16)0.44565 (12)0.25061 (4)0.0165 (3)
C1B0.68109 (19)0.17270 (13)0.18046 (5)0.0175 (3)
H1BA0.63140.18090.20450.021*
C2B0.63144 (18)0.09615 (13)0.15256 (5)0.0183 (3)
H2BA0.54920.05290.15770.022*
C3B0.7075 (2)0.08541 (13)0.11670 (5)0.0190 (3)
C4B0.83235 (19)0.14694 (13)0.10867 (5)0.0190 (3)
H4BA0.88240.13790.08480.023*
C5B0.88101 (19)0.22226 (13)0.13705 (5)0.0180 (3)
H5BA0.96540.26330.13230.022*
C6B0.8045 (2)0.23731 (13)0.17286 (5)0.0164 (3)
C7B0.85619 (19)0.32373 (13)0.20041 (5)0.0175 (3)
H7BA0.95240.34840.19880.021*
C8B0.75320 (16)0.50621 (14)0.27594 (4)0.0153 (3)
C9B0.84083 (18)0.58372 (12)0.30309 (4)0.0144 (3)
H9BA0.93710.59570.29100.017*
C10B0.86268 (16)0.52286 (12)0.34255 (4)0.0146 (3)
C11B0.96862 (18)0.43906 (13)0.34546 (5)0.0165 (3)
H11B1.02610.42190.32340.020*
C12B0.98872 (19)0.38154 (13)0.38080 (5)0.0188 (3)
H12B1.06010.32650.38210.023*
C13B0.90454 (18)0.40422 (13)0.41439 (5)0.0182 (3)
C14B0.80027 (18)0.48834 (14)0.41132 (5)0.0205 (3)
H14B0.74330.50560.43340.025*
C15B0.77918 (18)0.54699 (13)0.37620 (5)0.0182 (3)
H15B0.70880.60280.37510.022*
C16B0.9216 (2)0.33528 (14)0.45152 (5)0.0215 (3)
H16C0.87400.37330.47350.026*
H16D1.02480.32930.45790.026*
C17B0.85697 (19)0.21766 (13)0.44763 (5)0.0195 (3)
H17B0.90580.18060.42530.023*
C18B0.8867 (2)0.14987 (15)0.48509 (5)0.0313 (4)
H18D0.84880.07590.48170.047*
H18E0.83990.18470.50750.047*
H18F0.99020.14630.48970.047*
C19B0.6939 (2)0.22087 (16)0.43873 (6)0.0285 (4)
H19D0.65840.14640.43500.043*
H19E0.67710.26340.41490.043*
H19F0.64320.25490.46060.043*
C20B0.76379 (18)0.69647 (14)0.30640 (5)0.0190 (3)
H20D0.81300.74160.32580.029*
H20E0.66410.68530.31440.029*
H20F0.76590.73320.28100.029*
H1NA0.568 (2)0.9602 (19)0.2475 (6)0.034 (6)*
H1NB0.918 (2)0.4564 (18)0.2501 (6)0.022 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.02409 (8)0.02207 (8)0.03074 (9)0.00076 (7)0.00373 (8)0.00849 (8)
O1A0.0144 (5)0.0287 (6)0.0207 (5)0.0038 (5)0.0014 (5)0.0010 (5)
N1A0.0173 (7)0.0183 (6)0.0162 (7)0.0044 (6)0.0033 (5)0.0026 (5)
N2A0.0131 (6)0.0205 (6)0.0155 (6)0.0042 (6)0.0016 (5)0.0004 (5)
C1A0.0171 (8)0.0192 (7)0.0188 (8)0.0012 (7)0.0003 (7)0.0027 (6)
C2A0.0161 (8)0.0172 (7)0.0228 (8)0.0033 (7)0.0031 (7)0.0018 (6)
C3A0.0178 (8)0.0179 (7)0.0209 (8)0.0027 (7)0.0042 (7)0.0021 (6)
C4A0.0196 (8)0.0222 (8)0.0216 (8)0.0005 (7)0.0010 (7)0.0018 (6)
C5A0.0159 (8)0.0193 (7)0.0225 (8)0.0028 (7)0.0008 (7)0.0008 (6)
C6A0.0152 (9)0.0174 (7)0.0169 (8)0.0003 (6)0.0018 (6)0.0015 (6)
C7A0.0162 (8)0.0176 (7)0.0190 (7)0.0044 (7)0.0014 (7)0.0004 (6)
C8A0.0170 (7)0.0194 (8)0.0146 (7)0.0024 (7)0.0025 (6)0.0047 (6)
C9A0.0137 (7)0.0185 (7)0.0194 (7)0.0033 (7)0.0019 (6)0.0010 (6)
C10A0.0143 (7)0.0179 (6)0.0144 (6)0.0015 (6)0.0024 (5)0.0011 (5)
C11A0.0153 (7)0.0213 (8)0.0188 (8)0.0011 (6)0.0001 (6)0.0003 (6)
C12A0.0180 (8)0.0182 (7)0.0185 (8)0.0042 (6)0.0003 (6)0.0019 (6)
C13A0.0183 (7)0.0173 (6)0.0160 (7)0.0005 (6)0.0027 (6)0.0021 (5)
C14A0.0160 (7)0.0293 (8)0.0160 (7)0.0025 (7)0.0004 (6)0.0036 (6)
C15A0.0133 (7)0.0284 (8)0.0184 (7)0.0060 (7)0.0002 (5)0.0019 (6)
C16A0.0206 (8)0.0173 (7)0.0203 (7)0.0020 (6)0.0031 (6)0.0025 (6)
C17A0.0228 (8)0.0232 (8)0.0197 (8)0.0028 (7)0.0051 (6)0.0041 (6)
C18A0.0875 (18)0.0250 (9)0.0202 (9)0.0014 (11)0.0156 (11)0.0014 (7)
C19A0.0312 (10)0.0280 (9)0.0231 (8)0.0014 (8)0.0046 (7)0.0094 (7)
C20A0.0222 (9)0.0197 (8)0.0269 (9)0.0020 (7)0.0041 (7)0.0033 (7)
Br1B0.03377 (10)0.01815 (7)0.02155 (8)0.00059 (7)0.00595 (8)0.00540 (7)
O1B0.0119 (5)0.0290 (6)0.0210 (5)0.0029 (5)0.0010 (4)0.0038 (5)
N1B0.0165 (6)0.0165 (6)0.0153 (6)0.0018 (6)0.0010 (5)0.0015 (5)
N2B0.0129 (7)0.0206 (7)0.0160 (6)0.0039 (6)0.0007 (5)0.0023 (5)
C1B0.0196 (9)0.0174 (7)0.0154 (7)0.0001 (7)0.0008 (7)0.0005 (6)
C2B0.0186 (8)0.0163 (6)0.0200 (7)0.0002 (7)0.0004 (7)0.0016 (6)
C3B0.0249 (8)0.0126 (6)0.0194 (8)0.0011 (7)0.0037 (7)0.0018 (6)
C4B0.0222 (8)0.0185 (7)0.0161 (7)0.0041 (7)0.0001 (7)0.0011 (6)
C5B0.0189 (8)0.0185 (7)0.0167 (7)0.0014 (7)0.0005 (6)0.0007 (6)
C6B0.0171 (9)0.0157 (7)0.0166 (8)0.0021 (6)0.0024 (6)0.0007 (6)
C7B0.0171 (8)0.0192 (7)0.0163 (7)0.0002 (7)0.0012 (6)0.0005 (6)
C8B0.0167 (7)0.0160 (7)0.0132 (7)0.0022 (6)0.0009 (5)0.0009 (6)
C9B0.0145 (7)0.0150 (6)0.0135 (6)0.0022 (6)0.0000 (6)0.0007 (5)
C10B0.0143 (7)0.0139 (6)0.0157 (6)0.0014 (6)0.0014 (5)0.0005 (5)
C11B0.0162 (7)0.0173 (7)0.0160 (7)0.0007 (6)0.0015 (6)0.0022 (6)
C12B0.0172 (8)0.0146 (6)0.0245 (8)0.0023 (6)0.0027 (6)0.0005 (6)
C13B0.0213 (7)0.0173 (6)0.0160 (7)0.0021 (6)0.0030 (6)0.0005 (5)
C14B0.0255 (8)0.0221 (7)0.0139 (6)0.0036 (7)0.0012 (6)0.0000 (6)
C15B0.0180 (7)0.0184 (7)0.0182 (7)0.0038 (6)0.0007 (6)0.0006 (6)
C16B0.0285 (9)0.0212 (7)0.0148 (7)0.0026 (7)0.0066 (6)0.0023 (6)
C17B0.0236 (8)0.0190 (7)0.0159 (7)0.0002 (7)0.0014 (6)0.0021 (5)
C18B0.0449 (12)0.0244 (8)0.0246 (9)0.0040 (8)0.0040 (8)0.0067 (7)
C19B0.0244 (9)0.0293 (9)0.0318 (9)0.0033 (7)0.0007 (8)0.0004 (8)
C20B0.0224 (8)0.0166 (7)0.0180 (7)0.0015 (6)0.0013 (6)0.0018 (6)
Geometric parameters (Å, º) top
Br1A—C3A1.8948 (17)Br1B—C3B1.8944 (16)
O1A—C8A1.2304 (19)O1B—C8B1.2349 (18)
N1A—C7A1.286 (2)N1B—C7B1.282 (2)
N1A—N2A1.3830 (18)N1B—N2B1.3868 (18)
N2A—C8A1.348 (2)N2B—C8B1.345 (2)
N2A—H1NA0.91 (2)N2B—H1NB0.770 (19)
C1A—C2A1.383 (2)C1B—C2B1.389 (2)
C1A—C6A1.405 (3)C1B—C6B1.393 (3)
C1A—H1AA0.93C1B—H1BA0.93
C2A—C3A1.387 (2)C2B—C3B1.396 (2)
C2A—H2AA0.93C2B—H2BA0.93
C3A—C4A1.383 (2)C3B—C4B1.386 (2)
C4A—C5A1.390 (2)C4B—C5B1.387 (2)
C4A—H4AA0.93C4B—H4BA0.93
C5A—C6A1.394 (2)C5B—C6B1.403 (2)
C5A—H5AA0.93C5B—H5BA0.93
C6A—C7A1.463 (2)C6B—C7B1.468 (2)
C7A—H7AA0.93C7B—H7BA0.93
C8A—C9A1.533 (2)C8B—C9B1.530 (2)
C9A—C10A1.526 (2)C9B—C10B1.526 (2)
C9A—C20A1.532 (2)C9B—C20B1.531 (2)
C9A—H9AA0.98C9B—H9BA0.98
C10A—C15A1.393 (2)C10B—C15B1.394 (2)
C10A—C11A1.396 (2)C10B—C11B1.400 (2)
C11A—C12A1.388 (2)C11B—C12B1.385 (2)
C11A—H11A0.93C11B—H11B0.93
C12A—C13A1.394 (2)C12B—C13B1.392 (2)
C12A—H12A0.93C12B—H12B0.93
C13A—C14A1.392 (2)C13B—C14B1.393 (2)
C13A—C16A1.507 (2)C13B—C16B1.505 (2)
C14A—C15A1.390 (2)C14B—C15B1.387 (2)
C14A—H14A0.93C14B—H14B0.93
C15A—H15A0.93C15B—H15B0.93
C16A—C17A1.533 (2)C16B—C17B1.537 (2)
C16A—H16A0.97C16B—H16C0.97
C16A—H16B0.97C16B—H16D0.97
C17A—C18A1.505 (3)C17B—C19B1.522 (3)
C17A—C19A1.532 (2)C17B—C18B1.523 (2)
C17A—H17A0.98C17B—H17B0.98
C18A—H18A0.96C18B—H18D0.96
C18A—H18B0.96C18B—H18E0.96
C18A—H18C0.96C18B—H18F0.96
C19A—H19A0.96C19B—H19D0.96
C19A—H19B0.96C19B—H19E0.96
C19A—H19C0.96C19B—H19F0.96
C20A—H20A0.96C20B—H20D0.96
C20A—H20B0.96C20B—H20E0.96
C20A—H20C0.96C20B—H20F0.96
C7A—N1A—N2A114.27 (13)C7B—N1B—N2B114.15 (13)
C8A—N2A—N1A120.01 (13)C8B—N2B—N1B120.36 (13)
C8A—N2A—H1NA121.9 (14)C8B—N2B—H1NB118.0 (16)
N1A—N2A—H1NA118.1 (14)N1B—N2B—H1NB121.7 (16)
C2A—C1A—C6A120.33 (16)C2B—C1B—C6B120.66 (15)
C2A—C1A—H1AA119.8C2B—C1B—H1BA119.7
C6A—C1A—H1AA119.8C6B—C1B—H1BA119.7
C1A—C2A—C3A119.30 (15)C1B—C2B—C3B118.66 (16)
C1A—C2A—H2AA120.3C1B—C2B—H2BA120.7
C3A—C2A—H2AA120.3C3B—C2B—H2BA120.7
C4A—C3A—C2A121.77 (15)C4B—C3B—C2B121.92 (15)
C4A—C3A—Br1A118.38 (13)C4B—C3B—Br1B118.22 (12)
C2A—C3A—Br1A119.85 (13)C2B—C3B—Br1B119.86 (13)
C3A—C4A—C5A118.49 (16)C3B—C4B—C5B118.57 (15)
C3A—C4A—H4AA120.8C3B—C4B—H4BA120.7
C5A—C4A—H4AA120.8C5B—C4B—H4BA120.7
C4A—C5A—C6A121.17 (16)C4B—C5B—C6B120.84 (16)
C4A—C5A—H5AA119.4C4B—C5B—H5BA119.6
C6A—C5A—H5AA119.4C6B—C5B—H5BA119.6
C5A—C6A—C1A118.87 (15)C1B—C6B—C5B119.29 (15)
C5A—C6A—C7A118.81 (16)C1B—C6B—C7B122.62 (15)
C1A—C6A—C7A122.32 (15)C5B—C6B—C7B118.06 (16)
N1A—C7A—C6A120.87 (16)N1B—C7B—C6B120.80 (16)
N1A—C7A—H7AA119.6N1B—C7B—H7BA119.6
C6A—C7A—H7AA119.6C6B—C7B—H7BA119.6
O1A—C8A—N2A124.37 (16)O1B—C8B—N2B123.79 (15)
O1A—C8A—C9A121.71 (15)O1B—C8B—C9B121.70 (15)
N2A—C8A—C9A113.78 (13)N2B—C8B—C9B114.50 (13)
C10A—C9A—C20A114.55 (13)C10B—C9B—C8B107.11 (12)
C10A—C9A—C8A106.07 (12)C10B—C9B—C20B114.91 (13)
C20A—C9A—C8A110.26 (14)C8B—C9B—C20B109.92 (13)
C10A—C9A—H9AA108.6C10B—C9B—H9BA108.2
C20A—C9A—H9AA108.6C8B—C9B—H9BA108.2
C8A—C9A—H9AA108.6C20B—C9B—H9BA108.2
C15A—C10A—C11A118.25 (14)C15B—C10B—C11B118.15 (14)
C15A—C10A—C9A121.57 (14)C15B—C10B—C9B122.14 (13)
C11A—C10A—C9A120.10 (14)C11B—C10B—C9B119.70 (13)
C12A—C11A—C10A120.65 (15)C12B—C11B—C10B120.68 (15)
C12A—C11A—H11A119.7C12B—C11B—H11B119.7
C10A—C11A—H11A119.7C10B—C11B—H11B119.7
C11A—C12A—C13A121.41 (15)C11B—C12B—C13B121.51 (15)
C11A—C12A—H12A119.3C11B—C12B—H12B119.2
C13A—C12A—H12A119.3C13B—C12B—H12B119.2
C14A—C13A—C12A117.58 (14)C12B—C13B—C14B117.42 (14)
C14A—C13A—C16A121.26 (15)C12B—C13B—C16B120.39 (15)
C12A—C13A—C16A121.16 (15)C14B—C13B—C16B122.10 (15)
C15A—C14A—C13A121.43 (15)C15B—C14B—C13B121.77 (15)
C15A—C14A—H14A119.3C15B—C14B—H14B119.1
C13A—C14A—H14A119.3C13B—C14B—H14B119.1
C14A—C15A—C10A120.65 (15)C14B—C15B—C10B120.47 (15)
C14A—C15A—H15A119.7C14B—C15B—H15B119.8
C10A—C15A—H15A119.7C10B—C15B—H15B119.8
C13A—C16A—C17A116.02 (13)C13B—C16B—C17B113.29 (13)
C13A—C16A—H16A108.3C13B—C16B—H16C108.9
C17A—C16A—H16A108.3C17B—C16B—H16C108.9
C13A—C16A—H16B108.3C13B—C16B—H16D108.9
C17A—C16A—H16B108.3C17B—C16B—H16D108.9
H16A—C16A—H16B107.4H16C—C16B—H16D107.7
C18A—C17A—C19A110.80 (15)C19B—C17B—C18B110.54 (15)
C18A—C17A—C16A112.47 (16)C19B—C17B—C16B111.74 (15)
C19A—C17A—C16A109.00 (14)C18B—C17B—C16B110.65 (13)
C18A—C17A—H17A108.1C19B—C17B—H17B107.9
C19A—C17A—H17A108.1C18B—C17B—H17B107.9
C16A—C17A—H17A108.1C16B—C17B—H17B107.9
C17A—C18A—H18A109.5C17B—C18B—H18D109.5
C17A—C18A—H18B109.5C17B—C18B—H18E109.5
H18A—C18A—H18B109.5H18D—C18B—H18E109.5
C17A—C18A—H18C109.5C17B—C18B—H18F109.5
H18A—C18A—H18C109.5H18D—C18B—H18F109.5
H18B—C18A—H18C109.5H18E—C18B—H18F109.5
C17A—C19A—H19A109.5C17B—C19B—H19D109.5
C17A—C19A—H19B109.5C17B—C19B—H19E109.5
H19A—C19A—H19B109.5H19D—C19B—H19E109.5
C17A—C19A—H19C109.5C17B—C19B—H19F109.5
H19A—C19A—H19C109.5H19D—C19B—H19F109.5
H19B—C19A—H19C109.5H19E—C19B—H19F109.5
C9A—C20A—H20A109.5C9B—C20B—H20D109.5
C9A—C20A—H20B109.5C9B—C20B—H20E109.5
H20A—C20A—H20B109.5H20D—C20B—H20E109.5
C9A—C20A—H20C109.5C9B—C20B—H20F109.5
H20A—C20A—H20C109.5H20D—C20B—H20F109.5
H20B—C20A—H20C109.5H20E—C20B—H20F109.5
C7A—N1A—N2A—C8A172.90 (15)C7B—N1B—N2B—C8B171.64 (15)
C6A—C1A—C2A—C3A1.7 (3)C6B—C1B—C2B—C3B0.1 (2)
C1A—C2A—C3A—C4A2.0 (3)C1B—C2B—C3B—C4B1.5 (2)
C1A—C2A—C3A—Br1A178.62 (12)C1B—C2B—C3B—Br1B178.25 (12)
C2A—C3A—C4A—C5A0.3 (3)C2B—C3B—C4B—C5B0.9 (2)
Br1A—C3A—C4A—C5A179.62 (13)Br1B—C3B—C4B—C5B178.82 (12)
C3A—C4A—C5A—C6A1.8 (3)C3B—C4B—C5B—C6B1.0 (2)
C4A—C5A—C6A—C1A2.1 (3)C2B—C1B—C6B—C5B1.7 (2)
C4A—C5A—C6A—C7A177.39 (16)C2B—C1B—C6B—C7B176.39 (15)
C2A—C1A—C6A—C5A0.3 (3)C4B—C5B—C6B—C1B2.3 (2)
C2A—C1A—C6A—C7A179.19 (15)C4B—C5B—C6B—C7B175.90 (14)
N2A—N1A—C7A—C6A176.44 (13)N2B—N1B—C7B—C6B179.61 (13)
C5A—C6A—C7A—N1A155.46 (16)C1B—C6B—C7B—N1B20.0 (2)
C1A—C6A—C7A—N1A24.0 (2)C5B—C6B—C7B—N1B158.13 (15)
N1A—N2A—C8A—O1A5.2 (3)N1B—N2B—C8B—O1B4.2 (3)
N1A—N2A—C8A—C9A170.40 (13)N1B—N2B—C8B—C9B174.74 (13)
O1A—C8A—C9A—C10A82.77 (19)O1B—C8B—C9B—C10B82.66 (19)
N2A—C8A—C9A—C10A93.00 (16)N2B—C8B—C9B—C10B96.26 (16)
O1A—C8A—C9A—C20A41.8 (2)O1B—C8B—C9B—C20B42.8 (2)
N2A—C8A—C9A—C20A142.45 (15)N2B—C8B—C9B—C20B138.28 (14)
C8A—C9A—C10A—C11A96.54 (17)C8B—C9B—C10B—C11B77.53 (17)
C8A—C9A—C10A—C15A80.18 (18)C8B—C9B—C10B—C15B101.83 (16)
C20A—C9A—C10A—C11A141.61 (15)C20B—C9B—C10B—C11B160.06 (14)
C20A—C9A—C10A—C15A41.7 (2)C20B—C9B—C10B—C15B20.6 (2)
C15A—C10A—C11A—C12A0.6 (2)C15B—C10B—C11B—C12B0.4 (2)
C9A—C10A—C11A—C12A176.19 (15)C9B—C10B—C11B—C12B178.97 (15)
C10A—C11A—C12A—C13A1.1 (2)C10B—C11B—C12B—C13B0.4 (2)
C11A—C12A—C13A—C14A1.9 (2)C11B—C12B—C13B—C14B0.9 (2)
C11A—C12A—C13A—C16A178.41 (14)C11B—C12B—C13B—C16B175.84 (15)
C12A—C13A—C14A—C15A1.0 (2)C12B—C13B—C14B—C15B0.6 (2)
C16A—C13A—C14A—C15A179.36 (15)C16B—C13B—C14B—C15B176.03 (15)
C13A—C14A—C15A—C10A0.8 (3)C13B—C14B—C15B—C10B0.1 (3)
C11A—C10A—C15A—C14A1.6 (2)C11B—C10B—C15B—C14B0.7 (2)
C9A—C10A—C15A—C14A175.20 (15)C9B—C10B—C15B—C14B178.71 (15)
C14A—C13A—C16A—C17A103.66 (19)C12B—C13B—C16B—C17B72.7 (2)
C12A—C13A—C16A—C17A76.0 (2)C14B—C13B—C16B—C17B103.90 (18)
C13A—C16A—C17A—C18A53.4 (2)C13B—C16B—C17B—C19B60.1 (2)
C13A—C16A—C17A—C19A176.68 (15)C13B—C16B—C17B—C18B176.24 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1NA···O1Bi0.91 (2)1.97 (2)2.830 (2)157 (2)
N2B—H1NB···O1Aii0.77 (2)2.11 (2)2.826 (2)155 (2)
C7A—H7AA···O1Bi0.932.453.241 (2)143
C7B—H7BA···O1Aii0.932.533.307 (3)141
C20B—H20F···N1A0.962.563.494 (2)164
C12A—H12A···Cg2i0.932.663.482 (2)148
C12B—H12B···Cg1ii0.932.793.680 (2)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC20H23BrN2O
Mr387.31
Crystal system, space groupOrthorhombic, P212121
Temperature (K)100
a, b, c (Å)9.1440 (1), 12.0110 (1), 33.5670 (4)
V3)3686.62 (7)
Z8
Radiation typeMo Kα
µ (mm1)2.24
Crystal size (mm)0.49 × 0.38 × 0.19
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.407, 0.682
No. of measured, independent and
observed [I > 2σ(I)] reflections
120355, 20557, 13317
Rint0.045
(sin θ/λ)max1)0.877
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.103, 1.04
No. of reflections20557
No. of parameters448
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.62
Absolute structureFlack (1983), 9205 Friedel pairs
Absolute structure parameter0.595 (4)

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected torsion angles (º) top
C8A—C9A—C10A—C11A96.54 (17)C8B—C9B—C10B—C11B77.53 (17)
C8A—C9A—C10A—C15A80.18 (18)C8B—C9B—C10B—C15B101.83 (16)
C20A—C9A—C10A—C11A141.61 (15)C20B—C9B—C10B—C11B160.06 (14)
C20A—C9A—C10A—C15A41.7 (2)C20B—C9B—C10B—C15B20.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2A—H1NA···O1Bi0.91 (2)1.97 (2)2.830 (2)157 (2)
N2B—H1NB···O1Aii0.77 (2)2.11 (2)2.826 (2)155 (2)
C7A—H7AA···O1Bi0.932.453.241 (2)143
C7B—H7BA···O1Aii0.932.533.307 (3)141
C20B—H20F···N1A0.962.563.494 (2)164
C12A—H12A···Cg2i0.932.663.482 (2)148
C12B—H12B···Cg1ii0.932.793.680 (2)160
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+2, y1/2, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Acknowledgements

HKF and CKQ acknowledge funding from the Malaysian Government and Universiti Sains Malaysia (USM) under the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ thanks Universiti Sains Malaysia for a fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAmir, M. & Kumar, S. (2007). Acta Pharm. 57, 31–45.  CrossRef PubMed CAS Google Scholar
First citationBedia, K.-K., Elçin, O., Seda, U., Fatma, K., Nathaly, S., Sevim, R. & Dimoglo, A. (2006). Eur. J. Med. Chem. 41, 1253–1261.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFun, H.-K., Jebas, S. R., Sujith, K. V., Patil, P. S., Kalluraya, B. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1001–o1002.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRollas, S., Gülerman, N. & Erdeniz, H. (2002). Farmaco, 57, 171–174.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSridhar, R. & Perumal, P. T. (2003). Synth. Commun. 33, 1483–1488.  Web of Science CrossRef CAS Google Scholar
First citationTerzioglu, N. & Gürsoy, A. (2003). Eur. J. Med. Chem. 38, 781–786.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1184-o1185
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds