organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acetonyl-2-hy­droxy­indan-1,3-dione

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Chemistry, Aligarh Muslim University, Aligarh 202 002, Uttar Pradesh, India
*Correspondence e-mail: hkfun@usm.my

(Received 23 April 2009; accepted 29 April 2009; online 7 May 2009)

In the title compound, C12H10O4, the five-membered ring adopts an envelope conformation, with the Csp3 atom at the flap [deviation = 0.145 (2) Å]. In the crystal structure, mol­ecules are linked by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature

For the activities and applications of ninhydrin derivatives, see: Ruhemann (1910[Ruhemann, S. (1910). J. Chem. Soc. 97, 1440, 2025-2031.]); Kaiser et al. (1970[Kaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. (1970). Anal. Biochem. 34, 595-598.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C12H10O4

  • Mr = 218.20

  • Orthorhombic, P n a 21

  • a = 18.1190 (2) Å

  • b = 8.8135 (1) Å

  • c = 6.2585 (1) Å

  • V = 999.43 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.29 × 0.19 × 0.08 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.969, Tmax = 0.992

  • 14417 measured reflections

  • 1818 independent reflections

  • 1720 reflections with I > 2σ(I)

  • Rint = 0.034

Refinement
  • R[F2 > 2σ(F2)] = 0.033

  • wR(F2) = 0.106

  • S = 1.18

  • 1818 reflections

  • 150 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.24 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H1O3⋯O2i 0.86 (3) 1.93 (3) 2.7907 (16) 174 (3)
C3—H3A⋯O4ii 0.93 2.51 3.401 (2) 159
C12—H12A⋯O4iii 0.96 2.54 3.408 (2) 150
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) x, y, z-1; (iii) [-x, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Ninhydrin is used to detect α-amino acids, proteins and dipeptides. When it reacts with free amines, a deep blue or purple colour known as Ruhemann's purple (RP) is evolved (Ruhemann, 1910). Ninhydrin is also used to monitor deprotection in solid phase peptide synthesis (Kaiser Test) (Kaiser et al., 1970). It is one of the most widely used reagents for chemical development of fingerprints on porous surfaces. We herein present the crystal structure of the title compound, a derivative of ninhydrin.

Bond lengths (Allen et al., 1987) and angles in the title molecule (Fig. 1) are within normal ranges. The indan ring system (C1-C9) is almost planar, with a maximum deviation of 0.072 (1) Å for atom C9 while the dihedral angle formed by the benzene ring and the five-membered ring is 1.87 (8)°. The keto atom O1 lies 0.075 (2) Å from the indan plane whereas the keto atom O2 is displaced from the C1-C9 plane by 0.184 (2) Å. The five-membered ring adopts an envelope conformation, with atom C9 at the flap [deviation 0.145 (2) Å]. The C2—C1—C9—O3 torsion angle is 103.16 (14) Å.

In the crystal structure (Fig. 2), the molecules are linked by intermolecular O3—H1O3···O2 and C3—H3A···O4 hydrogen bonds (Table 1) into a two-dimensional network parallel to the (100). The adjacent networks are linked via C12—H12A···O4 hydrogen bonds to form a three-dimensional network.

Related literature top

For the activities and applications of ninhydrin derivatives, see: Ruhemann (1910); Kaiser et al. (1970). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

The title compound was synthesized by the reaction of ninhydrin (1.78 g), trichloroacetic acid (1.64 g) and catalytic amount of magnesium in presence of acetone. Ninhydrin and tricholoro acetic acid in molar ratio 1:1 were allowed to reflux with acetone in presence of Mg turnings for 1 h. The reaction mixture was dried under reduced pressure and was purified by chromatography over silica gel column. Elution of the column with petroleum ether-diethyl ether (4:1) followed by crystallization with petroleum ether-chloroform (1:1) afforded fine crystals of the title compound (120 mg, m.p. 399 K).

Refinement top

Atom H1O3 was located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93–0.97 Å and Uiso(H) = 1.2 and 1.5 Ueq(C). A rotating-group model was applied for the methyl group. In the absence of significant anomalous dispersion, 1513 Friedel pairs were merged for the final refinement.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed along the c axis. Intermolecular hydrogen bonds are shown as dashed lines.
2-Acetonyl-2-hydroxyindan-1,3-dione top
Crystal data top
C12H10O4F(000) = 456
Mr = 218.20Dx = 1.450 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 5199 reflections
a = 18.1190 (2) Åθ = 3.2–31.5°
b = 8.8135 (1) ŵ = 0.11 mm1
c = 6.2585 (1) ÅT = 100 K
V = 999.43 (2) Å3Plate, yellow
Z = 40.29 × 0.19 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1818 independent reflections
Radiation source: fine-focus sealed tube1720 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.034
ϕ and ω scansθmax = 31.7°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2626
Tmin = 0.969, Tmax = 0.992k = 1213
14417 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.18 w = 1/[σ2(Fo2) + (0.0696P)2 + 0.0468P]
where P = (Fo2 + 2Fc2)/3
1818 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.42 e Å3
1 restraintΔρmin = 0.24 e Å3
Crystal data top
C12H10O4V = 999.43 (2) Å3
Mr = 218.20Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.1190 (2) ŵ = 0.11 mm1
b = 8.8135 (1) ÅT = 100 K
c = 6.2585 (1) Å0.29 × 0.19 × 0.08 mm
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
1818 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1720 reflections with I > 2σ(I)
Tmin = 0.969, Tmax = 0.992Rint = 0.034
14417 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0331 restraint
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 1.18Δρmax = 0.42 e Å3
1818 reflectionsΔρmin = 0.24 e Å3
150 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13189 (7)0.07160 (14)0.5143 (2)0.0217 (3)
O20.21514 (6)0.36656 (13)1.0967 (2)0.0158 (2)
O30.27231 (6)0.16183 (13)0.7536 (2)0.0153 (2)
O40.06202 (6)0.15803 (14)1.0224 (2)0.0165 (3)
C10.14680 (8)0.17868 (17)0.6278 (3)0.0130 (3)
C20.12208 (8)0.33840 (16)0.6024 (3)0.0121 (3)
C30.07836 (8)0.40053 (18)0.4425 (3)0.0145 (3)
H3A0.06090.34150.33010.017*
C40.06148 (8)0.55486 (19)0.4566 (3)0.0161 (3)
H4A0.03140.59910.35350.019*
C50.08914 (9)0.64417 (18)0.6239 (3)0.0163 (3)
H5A0.07840.74730.62730.020*
C60.13236 (8)0.58104 (17)0.7850 (3)0.0144 (3)
H6A0.15020.64010.89670.017*
C70.14801 (8)0.42619 (16)0.7731 (3)0.0115 (3)
C80.18969 (8)0.32969 (16)0.9244 (3)0.0115 (3)
C90.19764 (8)0.17061 (16)0.8252 (3)0.0107 (3)
C100.17882 (8)0.04091 (17)0.9758 (3)0.0125 (3)
H10A0.18890.05470.90490.015*
H10B0.21030.04701.10080.015*
C110.09891 (8)0.04343 (17)1.0464 (3)0.0121 (3)
C120.06798 (9)0.10028 (18)1.1373 (3)0.0173 (3)
H12A0.02950.07631.23710.026*
H12B0.10640.15521.20920.026*
H12C0.04820.16141.02400.026*
H1O30.2777 (12)0.069 (3)0.713 (5)0.029 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0303 (6)0.0148 (5)0.0200 (6)0.0013 (4)0.0085 (5)0.0058 (5)
O20.0176 (5)0.0137 (5)0.0161 (6)0.0002 (4)0.0044 (5)0.0035 (4)
O30.0116 (5)0.0132 (5)0.0211 (6)0.0002 (4)0.0044 (5)0.0038 (4)
O40.0150 (5)0.0170 (5)0.0174 (6)0.0032 (4)0.0002 (5)0.0008 (5)
C10.0142 (6)0.0114 (6)0.0133 (7)0.0005 (5)0.0010 (6)0.0014 (5)
C20.0127 (6)0.0113 (6)0.0124 (7)0.0001 (4)0.0006 (5)0.0010 (5)
C30.0153 (6)0.0160 (7)0.0123 (7)0.0008 (5)0.0012 (6)0.0003 (6)
C40.0159 (6)0.0167 (7)0.0156 (7)0.0019 (5)0.0010 (6)0.0044 (6)
C50.0182 (6)0.0127 (6)0.0181 (8)0.0030 (5)0.0002 (6)0.0011 (6)
C60.0156 (6)0.0111 (6)0.0165 (7)0.0012 (5)0.0008 (6)0.0022 (6)
C70.0119 (6)0.0105 (6)0.0122 (7)0.0004 (4)0.0004 (5)0.0000 (5)
C80.0095 (5)0.0114 (6)0.0135 (7)0.0011 (5)0.0002 (5)0.0017 (5)
C90.0097 (5)0.0099 (6)0.0125 (6)0.0008 (4)0.0002 (5)0.0016 (5)
C100.0117 (6)0.0106 (6)0.0152 (7)0.0008 (4)0.0009 (5)0.0006 (5)
C110.0125 (6)0.0142 (6)0.0097 (6)0.0006 (5)0.0007 (5)0.0019 (5)
C120.0177 (7)0.0147 (7)0.0195 (8)0.0027 (5)0.0039 (6)0.0004 (6)
Geometric parameters (Å, º) top
O1—C11.212 (2)C5—H5A0.93
O2—C81.217 (2)C6—C71.396 (2)
O3—C91.4273 (17)C6—H6A0.93
O3—H1O30.86 (3)C7—C81.480 (2)
O4—C111.2205 (19)C8—C91.540 (2)
C1—C21.486 (2)C9—C101.521 (2)
C1—C91.542 (2)C10—C111.514 (2)
C2—C31.389 (2)C10—H10A0.97
C2—C71.400 (2)C10—H10B0.97
C3—C41.397 (2)C11—C121.498 (2)
C3—H3A0.93C12—H12A0.96
C4—C51.402 (2)C12—H12B0.96
C4—H4A0.93C12—H12C0.96
C5—C61.393 (2)
C9—O3—H1O3104.5 (16)O2—C8—C9124.39 (14)
O1—C1—C2127.44 (16)C7—C8—C9108.24 (14)
O1—C1—C9124.53 (14)O3—C9—C10111.50 (12)
C2—C1—C9108.02 (12)O3—C9—C8105.33 (11)
C3—C2—C7121.55 (13)C10—C9—C8114.42 (14)
C3—C2—C1128.51 (15)O3—C9—C1108.50 (13)
C7—C2—C1109.92 (14)C10—C9—C1113.41 (12)
C2—C3—C4117.60 (15)C8—C9—C1103.00 (12)
C2—C3—H3A121.2C11—C10—C9112.60 (12)
C4—C3—H3A121.2C11—C10—H10A109.1
C3—C4—C5121.03 (15)C9—C10—H10A109.1
C3—C4—H4A119.5C11—C10—H10B109.1
C5—C4—H4A119.5C9—C10—H10B109.1
C6—C5—C4121.14 (14)H10A—C10—H10B107.8
C6—C5—H5A119.4O4—C11—C12122.79 (14)
C4—C5—H5A119.4O4—C11—C10120.01 (14)
C5—C6—C7117.80 (15)C12—C11—C10117.16 (13)
C5—C6—H6A121.1C11—C12—H12A109.5
C7—C6—H6A121.1C11—C12—H12B109.5
C6—C7—C2120.84 (15)H12A—C12—H12B109.5
C6—C7—C8129.16 (15)C11—C12—H12C109.5
C2—C7—C8109.98 (13)H12A—C12—H12C109.5
O2—C8—C7127.35 (14)H12B—C12—H12C109.5
O1—C1—C2—C31.6 (3)C2—C7—C8—C96.84 (16)
C9—C1—C2—C3177.10 (15)O2—C8—C9—O374.26 (18)
O1—C1—C2—C7176.83 (17)C7—C8—C9—O3104.64 (14)
C9—C1—C2—C74.49 (17)O2—C8—C9—C1048.55 (19)
C7—C2—C3—C40.5 (2)C7—C8—C9—C10132.56 (13)
C1—C2—C3—C4178.78 (15)O2—C8—C9—C1172.10 (14)
C2—C3—C4—C51.4 (2)C7—C8—C9—C19.00 (15)
C3—C4—C5—C62.1 (3)O1—C1—C9—O375.56 (19)
C4—C5—C6—C70.8 (2)C2—C1—C9—O3103.16 (14)
C5—C6—C7—C21.1 (2)O1—C1—C9—C1048.9 (2)
C5—C6—C7—C8177.55 (15)C2—C1—C9—C10132.37 (13)
C3—C2—C7—C61.8 (2)O1—C1—C9—C8173.13 (16)
C1—C2—C7—C6179.63 (14)C2—C1—C9—C88.15 (16)
C3—C2—C7—C8177.09 (14)O3—C9—C10—C11177.41 (13)
C1—C2—C7—C81.45 (17)C8—C9—C10—C1163.19 (17)
C6—C7—C8—O24.5 (3)C1—C9—C10—C1154.58 (17)
C2—C7—C8—O2174.31 (15)C9—C10—C11—O416.2 (2)
C6—C7—C8—C9174.36 (15)C9—C10—C11—C12161.75 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.86 (3)1.93 (3)2.7907 (16)174 (3)
C3—H3A···O4ii0.932.513.401 (2)159
C12—H12A···O4iii0.962.543.408 (2)150
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y, z1; (iii) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC12H10O4
Mr218.20
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)100
a, b, c (Å)18.1190 (2), 8.8135 (1), 6.2585 (1)
V3)999.43 (2)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.29 × 0.19 × 0.08
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.969, 0.992
No. of measured, independent and
observed [I > 2σ(I)] reflections
14417, 1818, 1720
Rint0.034
(sin θ/λ)max1)0.738
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.106, 1.18
No. of reflections1818
No. of parameters150
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.42, 0.24

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H1O3···O2i0.86 (3)1.93 (3)2.7907 (16)174 (3)
C3—H3A···O4ii0.932.513.401 (2)159
C12—H12A···O4iii0.962.543.408 (2)150
Symmetry codes: (i) x+1/2, y1/2, z1/2; (ii) x, y, z1; (iii) x, y, z+1/2.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5525-2009.

Additional correspondence author, e-mail: mehtab_organic@rediffmail.com.

Acknowledgements

HKF and CKQ acknowledge funding from the Malaysian Government and Universiti Sains Malaysia (USM) under the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CKQ thanks USM for a Research Fellowship.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKaiser, E., Colescott, R. L., Bossinger, C. D. & Cook, P. I. (1970). Anal. Biochem. 34, 595–598.  CrossRef CAS PubMed Web of Science Google Scholar
First citationRuhemann, S. (1910). J. Chem. Soc. 97, 1440, 2025–2031.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds