organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1188-o1189

Ethyl 4-(2,4-di­fluoro­phen­yl)-6-methyl-2-oxo-1,2,3,4-tetra­hydro­pyrimidine-5-carboxyl­ate

aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India
*Correspondence e-mail: hkfun@usm.my

(Received 24 April 2009; accepted 28 April 2009; online 7 May 2009)

In the title compound, C14H14F2N2O3, the dihydro­pyrimidin­one ring adopts a flattened boat conformation. The difluoro­phenyl group is disordered over two orientations with occupancies of 0.544 (3) and 0.456 (3). The methoxy­carbonyl group is disordered over two positions with occupancies of 0.580 (8) and 0.420 (8). In the crystal, mol­ecules are linked into centrosymmetric dimers by paired N—H⋯O hydrogen bonds and the dimers are linked into a ribbon-like structure along [100] by further N—H⋯O hydrogen bonds.

Related literature

For general background and pharmaceutical applications of pyrimidinones, see: Kalluraya & Rai (2003[Kalluraya, B. & Rai, G. (2003). Synth. Commun. 33, 3589-3595.]); Atwal (1990[Atwal, K. S. (1990). J. Med. Chem. 33, 1510-1515.]); Sadanandam et al. (1992[Sadanandam, Y. S., Shetty, M. M. & Diwan, P. V. (1992). Eur. J. Med. Chem. 27, 87-92.]); Steele et al. (1998[Steele, T. G., Coburn, C. A., Patane, M. A. & Bock, M. G. (1998). Tetrahedron Lett. 39, 9315-9318.]); Manjula et al. (2004[Manjula, A., Rao, B. V. & Neelakantan, P. (2004). Synth. Commun. 34, 2665-2671.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C14H14F2N2O3

  • Mr = 296.27

  • Triclinic, [P \overline 1]

  • a = 7.5176 (1) Å

  • b = 8.0483 (1) Å

  • c = 11.9323 (2) Å

  • α = 90.147 (1)°

  • β = 100.839 (1)°

  • γ = 108.421 (1)°

  • V = 671.25 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 100 K

  • 0.43 × 0.32 × 0.13 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.949, Tmax = 0.985

  • 17515 measured reflections

  • 3075 independent reflections

  • 2703 reflections with I > 2σ(I)

  • Rint = 0.028

Refinement
  • R[F2 > 2σ(F2)] = 0.068

  • wR(F2) = 0.173

  • S = 1.08

  • 3075 reflections

  • 266 parameters

  • 45 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.66 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N1⋯O2i 0.89 (3) 2.14 (3) 3.007 (2) 165 (2)
N2—H1N2⋯O1ii 0.86 (3) 1.99 (3) 2.840 (2) 177 (3)
Symmetry codes: (i) x-1, y, z; (ii) -x+1, -y, -z.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Michael addition followed by aldol condensation known as the Robinson's annulation is synthetically a very useful reaction for the construction of six-membered cyclic compounds (Kalluraya and Rai, 2003). 3,4-Dihydro-pyrimidinones are compounds that have drawn wide-spread attention, due to their pharmaceutical applications (Atwal, 1990; Sadanandam et al., 1992). The common synthetic routes to these compounds generally involve multi-step transformation, which are essentially based on the Biginelli condensation methodology (Steele et al., 1998). These pyrimidinones are also associated with activities like calcium channel blocking (Manjula et al., 2004). We synthesized the title compound by means of Robinson's annulation employing the microwave technique, and its crystal structure is reported here.

Bond lengths (Allen et al., 1987) and angles in the title molecule (Fig. 1) are within normal ranges. The dihydropyrimidinone ring adopts a flattened boat conformation, with puckering parameters Q = 0.170 (2) Å, Θ = 97.4 (7)° and ϕ = 254.4 (7)°.

The difluorophenyl group is disordered over two positions with occupancies of 0.544 (3) and 0.456 (3). The caboxylate methyl group is also disordered over two positions with occupancies of 0.580 (8) and 0.420 (8).

In the crystal structure, the molecules are linked into centrosymmetric dimers by means of paired N—H···O hydrogen bonds (Table 1). The dimers are linked into a chain along the [100] again by N—H···O hydrogen bonds (Fig. 2).

Related literature top

For general background and pharmaceutical applications of pyrimidinones, see: Kalluraya & Rai (2003); Atwal (1990); Sadanandam et al. (1992); Steele et al. (1998); Manjula et al. (2004). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986).

Experimental top

A mixture of 2,4-difluoro benzaldehyde (0.01 mol), ethyl acetoacetate (0.015 mol), thiourea (0.01 mol) and conc. H2SO4 (2 drops) in absolute alcohol (10 ml) taken in a beaker (100 ml) was zapped inside a microwave oven for 3 min at 160 Watt (i.e. 25% MW power). The reaction mixture was then allowed to stand at room temperature and the product formed was filtered, washed with ethanol followed by water and dried. Further purification was done by recrystallisation from ethanol. Single crystals suitable for X-ray analysis were obtained from ethanol by slow evaporation.

Refinement top

Atoms H1N1 and H1N2 were located in a difference Fourier map and refined freely. The remaining H atoms were positioned geometrically and refined using a riding model, with C-H = 0.93–0.98 Å and Uiso(H) = 1.2-1.5 Ueq(C). A rotating-group model was applied for the methyl group. The difluorophenyl group is disordered over two positions with occupancies of 0.544 (3) and 0.456 (3). The caboxylate methyl group is also disordered over two positions with occupancies of 0.580 (8) and 0.420 (8). For the disordered difluorophenyl group, the same Uij parameters were used for atom pairs F1A/F1B, C1A/C1B, and C5A/C5B, and all disordered atoms were subjected to a rigid bond restraint.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 50% probability displacement ellipsoids for non-H atoms. All disorder components are shown.
[Figure 2] Fig. 2. The crystal packing of the title compound, viewed down the b axis, showing chains along the [100]. Hydrogen bonds are shown as dashed lines. Only major disorder components are shown.
Ethyl 4-(2,4-difluorophenyl)-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5-carboxylate top
Crystal data top
C14H14F2N2O3Z = 2
Mr = 296.27F(000) = 308
Triclinic, P1Dx = 1.466 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.5176 (1) ÅCell parameters from 7927 reflections
b = 8.0483 (1) Åθ = 2.7–34.4°
c = 11.9323 (2) ŵ = 0.12 mm1
α = 90.147 (1)°T = 100 K
β = 100.839 (1)°Plate, colourless
γ = 108.421 (1)°0.43 × 0.32 × 0.13 mm
V = 671.25 (2) Å3
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3075 independent reflections
Radiation source: fine-focus sealed tube2703 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
ϕ and ω scansθmax = 27.5°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 99
Tmin = 0.949, Tmax = 0.985k = 1010
17515 measured reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0607P)2 + 0.8775P]
where P = (Fo2 + 2Fc2)/3
3075 reflections(Δ/σ)max = 0.001
266 parametersΔρmax = 0.66 e Å3
45 restraintsΔρmin = 0.84 e Å3
Crystal data top
C14H14F2N2O3γ = 108.421 (1)°
Mr = 296.27V = 671.25 (2) Å3
Triclinic, P1Z = 2
a = 7.5176 (1) ÅMo Kα radiation
b = 8.0483 (1) ŵ = 0.12 mm1
c = 11.9323 (2) ÅT = 100 K
α = 90.147 (1)°0.43 × 0.32 × 0.13 mm
β = 100.839 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
3075 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
2703 reflections with I > 2σ(I)
Tmin = 0.949, Tmax = 0.985Rint = 0.028
17515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.06845 restraints
wR(F2) = 0.173H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.66 e Å3
3075 reflectionsΔρmin = 0.84 e Å3
266 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1)K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
F1A0.7550 (6)0.3028 (5)0.3410 (3)0.0598 (8)0.544 (3)
F1B0.8268 (7)0.8571 (6)0.2813 (4)0.0598 (8)0.456 (3)
O10.3876 (2)0.1588 (2)0.01956 (16)0.0352 (4)
O21.2723 (2)0.5461 (2)0.14780 (15)0.0298 (4)
O31.1456 (2)0.7375 (2)0.20789 (18)0.0428 (5)
N10.5906 (2)0.4172 (2)0.10712 (14)0.0207 (4)
N20.7014 (2)0.1862 (2)0.07956 (16)0.0234 (4)
F2A0.7967 (7)0.7696 (9)0.6102 (3)0.0959 (19)0.544 (3)
C1A0.7750 (7)0.4770 (8)0.3704 (4)0.0279 (8)0.544 (3)
C2A0.7792 (9)0.5355 (13)0.4811 (5)0.0557 (19)0.544 (3)
H2AA0.77190.45860.53940.067*0.544 (3)
C3A0.7941 (12)0.7054 (15)0.5035 (6)0.061 (2)0.544 (3)
C4A0.8048 (8)0.8278 (10)0.4216 (5)0.0520 (16)0.544 (3)
H4AA0.81310.94330.43810.062*0.544 (3)
C5A0.8022 (7)0.7640 (8)0.3129 (5)0.0332 (10)0.544 (3)
H5AA0.81070.84230.25540.040*0.544 (3)
C6A0.788 (3)0.5949 (12)0.2835 (7)0.0180 (17)0.544 (3)
F2B0.7660 (6)0.6163 (6)0.6323 (2)0.0479 (11)0.456 (3)
C1B0.8051 (8)0.7153 (9)0.3476 (5)0.0279 (8)0.456 (3)
C2B0.8046 (11)0.7414 (8)0.4604 (6)0.0255 (14)0.456 (3)
H2BA0.82650.85190.49450.031*0.456 (3)
C3B0.7694 (10)0.5921 (9)0.5204 (5)0.0275 (13)0.456 (3)
C4B0.7384 (11)0.4271 (8)0.4734 (5)0.0345 (14)0.456 (3)
H4BA0.71250.33260.51930.041*0.456 (3)
C5B0.7443 (9)0.3954 (11)0.3573 (5)0.0332 (10)0.456 (3)
H5BA0.73010.28530.32560.040*0.456 (3)
C6B0.774 (3)0.5502 (15)0.2934 (11)0.025 (3)0.456 (3)
C70.7793 (3)0.5371 (3)0.16198 (16)0.0182 (4)
H7A0.79950.64330.11950.022*0.580 (8)
H7B0.79850.63850.11780.022*0.420 (8)
C80.5505 (3)0.2516 (3)0.06653 (18)0.0234 (4)
C90.8906 (3)0.2904 (3)0.11002 (16)0.0197 (4)
C100.9344 (3)0.4608 (3)0.14452 (15)0.0179 (4)
C111.1330 (3)0.5786 (3)0.16561 (16)0.0198 (4)
C121.3361 (4)0.8646 (4)0.2385 (3)0.0541 (9)
H12A1.37170.92510.17180.065*0.580 (8)
H12B1.42830.80570.26700.065*0.580 (8)
H12C1.42230.82590.20190.065*0.420 (8)
H12D1.33320.97630.20930.065*0.420 (8)
C13A1.3350 (6)0.9926 (6)0.3285 (4)0.0367 (13)0.580 (8)
H13A1.46291.07000.35590.055*0.580 (8)
H13B1.28660.93050.39080.055*0.580 (8)
H13C1.25461.05990.29700.055*0.580 (8)
C13B1.4024 (9)0.8870 (8)0.3480 (5)0.0355 (17)0.420 (8)
H13D1.43070.78410.37500.053*0.420 (8)
H13E1.30850.90700.38610.053*0.420 (8)
H13F1.51700.98660.36400.053*0.420 (8)
C141.0280 (3)0.1943 (3)0.09888 (19)0.0242 (4)
H14A1.13890.23650.15910.036*
H14B1.06570.21380.02620.036*
H14C0.96760.07100.10420.036*
H1N10.493 (4)0.458 (4)0.105 (2)0.034 (7)*
H1N20.674 (4)0.081 (4)0.052 (2)0.035 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.078 (2)0.0668 (19)0.0584 (16)0.0393 (16)0.0423 (15)0.0248 (14)
F1B0.078 (2)0.0668 (19)0.0584 (16)0.0393 (16)0.0423 (15)0.0248 (14)
O10.0139 (7)0.0315 (8)0.0586 (11)0.0057 (6)0.0059 (7)0.0174 (8)
O20.0166 (7)0.0307 (8)0.0447 (9)0.0085 (6)0.0107 (6)0.0018 (7)
O30.0160 (8)0.0346 (9)0.0721 (13)0.0006 (7)0.0104 (8)0.0262 (9)
N10.0141 (8)0.0243 (9)0.0253 (8)0.0088 (7)0.0032 (6)0.0036 (7)
N20.0160 (8)0.0206 (8)0.0350 (10)0.0063 (7)0.0081 (7)0.0045 (7)
F2A0.081 (3)0.165 (5)0.0359 (19)0.034 (3)0.0086 (18)0.043 (3)
C1A0.0253 (17)0.047 (2)0.0141 (15)0.0144 (16)0.0068 (12)0.0079 (16)
C2A0.039 (3)0.102 (6)0.023 (3)0.018 (4)0.008 (2)0.002 (4)
C3A0.039 (3)0.112 (7)0.026 (4)0.018 (5)0.003 (3)0.023 (4)
C4A0.030 (3)0.071 (4)0.049 (3)0.012 (3)0.002 (2)0.039 (3)
C5A0.0261 (18)0.051 (3)0.0162 (16)0.0024 (17)0.0063 (13)0.0106 (19)
C6A0.010 (3)0.031 (5)0.012 (2)0.004 (4)0.0039 (16)0.003 (2)
F2B0.079 (3)0.073 (3)0.0113 (13)0.051 (2)0.0125 (14)0.0029 (15)
C1B0.0253 (17)0.047 (2)0.0141 (15)0.0144 (16)0.0068 (12)0.0079 (16)
C2B0.040 (3)0.017 (2)0.025 (3)0.019 (2)0.002 (3)0.002 (2)
C3B0.041 (3)0.036 (3)0.015 (3)0.023 (3)0.008 (2)0.005 (2)
C4B0.058 (4)0.028 (3)0.028 (3)0.023 (3)0.016 (3)0.011 (2)
C5B0.0261 (18)0.051 (3)0.0162 (16)0.0024 (17)0.0063 (13)0.0106 (19)
C6B0.016 (4)0.025 (5)0.036 (5)0.008 (5)0.005 (3)0.005 (3)
C70.0150 (9)0.0218 (9)0.0189 (9)0.0073 (7)0.0039 (7)0.0009 (7)
C80.0159 (9)0.0252 (10)0.0304 (10)0.0067 (8)0.0080 (8)0.0038 (8)
C90.0156 (9)0.0262 (10)0.0196 (9)0.0084 (8)0.0062 (7)0.0020 (7)
C100.0144 (9)0.0250 (10)0.0159 (8)0.0081 (7)0.0043 (7)0.0012 (7)
C110.0173 (9)0.0269 (10)0.0162 (8)0.0082 (8)0.0041 (7)0.0013 (7)
C120.0205 (12)0.0508 (17)0.078 (2)0.0088 (11)0.0148 (13)0.0355 (15)
C13A0.033 (2)0.028 (2)0.042 (2)0.0054 (17)0.0014 (18)0.0057 (17)
C13B0.032 (3)0.035 (3)0.034 (3)0.007 (2)0.001 (2)0.006 (2)
C140.0198 (10)0.0261 (10)0.0308 (11)0.0112 (8)0.0085 (8)0.0002 (8)
Geometric parameters (Å, º) top
F1A—C1A1.398 (6)C3B—C4B1.373 (8)
F1B—C1B1.375 (7)C4B—C5B1.418 (8)
O1—C81.238 (3)C4B—H4BA0.93
O2—C111.211 (2)C5B—C6B1.441 (12)
O3—C111.342 (3)C5B—H5BA0.93
O3—C121.451 (3)C6B—C71.579 (12)
N1—C81.337 (3)C7—C101.524 (3)
N1—C71.468 (2)C7—H7A0.98
N1—H1N10.89 (3)C7—H7B0.96
N2—C81.379 (3)C9—C101.349 (3)
N2—C91.382 (3)C9—C141.496 (3)
N2—H1N20.86 (3)C10—C111.467 (3)
F2A—C3A1.367 (7)C12—C13B1.299 (7)
C1A—C2A1.392 (8)C12—C13A1.490 (5)
C1A—C6A1.404 (9)C12—H12A0.97
C2A—C3A1.358 (11)C12—H12B0.97
C2A—H2AA0.93C12—H12C0.97
C3A—C4A1.384 (11)C12—H12D0.97
C4A—C5A1.388 (7)C13A—H12D1.4259
C4A—H4AA0.93C13A—H13A0.96
C5A—C6A1.371 (11)C13A—H13B0.96
C5A—H5AA0.93C13A—H13C0.96
C6A—C71.505 (8)C13B—H13D0.96
F2B—C3B1.355 (6)C13B—H13E0.96
C1B—C2B1.362 (8)C13B—H13F0.96
C1B—C6B1.409 (12)C14—H14A0.96
C2B—C3B1.378 (7)C14—H14B0.96
C2B—H2BA0.93C14—H14C0.96
C11—O3—C12116.68 (18)C10—C7—H7B104.8
C8—N1—C7126.65 (17)C6B—C7—H7B121.4
C8—N1—H1N1117.3 (18)O1—C8—N1123.06 (19)
C7—N1—H1N1115.9 (18)O1—C8—N2120.41 (19)
C8—N2—C9123.28 (18)N1—C8—N2116.53 (18)
C8—N2—H1N2115 (2)C10—C9—N2119.93 (18)
C9—N2—H1N2120 (2)C10—C9—C14126.95 (18)
C2A—C1A—F1A122.6 (6)N2—C9—C14113.12 (17)
C2A—C1A—C6A119.6 (7)C9—C10—C11120.89 (17)
F1A—C1A—C6A117.9 (5)C9—C10—C7121.08 (17)
C3A—C2A—C1A119.6 (6)C11—C10—C7118.04 (17)
C3A—C2A—H2AA120.2O2—C11—O3121.61 (18)
C1A—C2A—H2AA120.2O2—C11—C10127.53 (19)
C2A—C3A—F2A122.2 (8)O3—C11—C10110.85 (16)
C2A—C3A—C4A123.8 (6)C13B—C12—O3113.2 (4)
F2A—C3A—C4A114.0 (8)C13B—C12—C13A46.9 (3)
C3A—C4A—C5A114.5 (6)O3—C12—C13A108.3 (3)
C3A—C4A—H4AA122.7C13B—C12—H12A135.7
C5A—C4A—H4AA122.7O3—C12—H12A110.0
C6A—C5A—C4A125.2 (7)C13A—C12—H12A110.0
C6A—C5A—H5AA117.4C13B—C12—H12B64.7
C4A—C5A—H5AA117.4O3—C12—H12B110.0
C5A—C6A—C1A117.2 (6)C13A—C12—H12B110.0
C5A—C6A—C7121.1 (7)H12A—C12—H12B108.4
C1A—C6A—C7121.6 (7)C13B—C12—H12C108.9
C2B—C1B—F1B118.1 (6)O3—C12—H12C108.9
C2B—C1B—C6B124.0 (7)C13A—C12—H12C141.9
F1B—C1B—C6B117.9 (6)H12A—C12—H12C63.9
C1B—C2B—C3B115.2 (5)H12B—C12—H12C48.0
C1B—C2B—H2BA122.4C13B—C12—H12D109.0
C3B—C2B—H2BA122.4O3—C12—H12D109.0
F2B—C3B—C4B120.2 (5)C13A—C12—H12D67.0
F2B—C3B—C2B115.7 (6)H12A—C12—H12D46.1
C4B—C3B—C2B124.1 (5)H12B—C12—H12D139.4
C3B—C4B—C5B122.4 (6)H12C—C12—H12D107.8
C3B—C4B—H4BA118.8C12—C13A—H13A109.5
C5B—C4B—H4BA118.8H12D—C13A—H13A100.8
C4B—C5B—C6B113.6 (8)C12—C13A—H13B109.5
C4B—C5B—H5BA123.2H12D—C13A—H13B143.5
C6B—C5B—H5BA123.2C12—C13A—H13C109.5
C1B—C6B—C5B120.6 (9)H12D—C13A—H13C77.8
C1B—C6B—C7119.2 (7)C12—C13B—H13D109.5
C5B—C6B—C7120.1 (8)C12—C13B—H13E109.5
N1—C7—C6A113.1 (6)H13D—C13B—H13E109.5
N1—C7—C10109.82 (15)C12—C13B—H13F109.5
C6A—C7—C10115.3 (7)H13D—C13B—H13F109.5
N1—C7—C6B105.6 (8)H13E—C13B—H13F109.5
C10—C7—C6B110.0 (8)C9—C14—H14A109.5
N1—C7—H7A105.9C9—C14—H14B109.5
C6A—C7—H7A105.9H14A—C14—H14B109.5
C10—C7—H7A105.9C9—C14—H14C109.5
C6B—C7—H7A119.3H14A—C14—H14C109.5
N1—C7—H7B104.8H14B—C14—H14C109.5
C6A—C7—H7B108.1
F1A—C1A—C2A—C3A178.4 (6)C5A—C6A—C7—C6B168 (8)
C6A—C1A—C2A—C3A0.7 (12)C1A—C6A—C7—C6B10 (5)
C1A—C2A—C3A—F2A179.2 (6)C1B—C6B—C7—N1120.8 (15)
C1A—C2A—C3A—C4A0.3 (12)C5B—C6B—C7—N160.9 (18)
C2A—C3A—C4A—C5A1.0 (11)C1B—C6B—C7—C6A5 (5)
F2A—C3A—C4A—C5A180.0 (5)C5B—C6B—C7—C6A173 (8)
C3A—C4A—C5A—C6A0.8 (12)C1B—C6B—C7—C10120.7 (15)
C4A—C5A—C6A—C1A0.1 (18)C5B—C6B—C7—C1057.6 (18)
C4A—C5A—C6A—C7177.7 (8)C7—N1—C8—O1178.9 (2)
C2A—C1A—C6A—C5A0.9 (17)C7—N1—C8—N21.3 (3)
F1A—C1A—C6A—C5A178.2 (9)C9—N2—C8—O1166.8 (2)
C2A—C1A—C6A—C7178.4 (9)C9—N2—C8—N113.3 (3)
F1A—C1A—C6A—C70.6 (17)C8—N2—C9—C109.5 (3)
F1B—C1B—C2B—C3B175.8 (6)C8—N2—C9—C14169.96 (19)
C6B—C1B—C2B—C3B0.7 (16)N2—C9—C10—C11173.48 (17)
C1B—C2B—C3B—F2B179.1 (5)C14—C9—C10—C116.0 (3)
C1B—C2B—C3B—C4B0.7 (12)N2—C9—C10—C76.1 (3)
F2B—C3B—C4B—C5B178.7 (6)C14—C9—C10—C7174.45 (18)
C2B—C3B—C4B—C5B1.5 (12)N1—C7—C10—C915.5 (2)
C3B—C4B—C5B—C6B3.4 (14)C6A—C7—C10—C9113.7 (5)
C2B—C1B—C6B—C5B1 (3)C6B—C7—C10—C9100.3 (6)
F1B—C1B—C6B—C5B178.0 (13)N1—C7—C10—C11164.14 (16)
C2B—C1B—C6B—C7179.8 (10)C6A—C7—C10—C1166.7 (5)
F1B—C1B—C6B—C74 (2)C6B—C7—C10—C1180.1 (6)
C4B—C5B—C6B—C1B3 (2)C12—O3—C11—O24.1 (3)
C4B—C5B—C6B—C7178.4 (12)C12—O3—C11—C10176.8 (2)
C8—N1—C7—C6A118.4 (5)C9—C10—C11—O26.0 (3)
C8—N1—C7—C1012.0 (3)C7—C10—C11—O2173.63 (19)
C8—N1—C7—C6B106.5 (7)C9—C10—C11—O3174.99 (18)
C5A—C6A—C7—N1109.7 (12)C7—C10—C11—O35.4 (2)
C1A—C6A—C7—N167.8 (15)C11—O3—C12—C13B104.0 (4)
C5A—C6A—C7—C10122.8 (12)C11—O3—C12—C13A154.2 (3)
C1A—C6A—C7—C1059.7 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.89 (3)2.14 (3)3.007 (2)165 (2)
N2—H1N2···O1ii0.86 (3)1.99 (3)2.840 (2)177 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC14H14F2N2O3
Mr296.27
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)7.5176 (1), 8.0483 (1), 11.9323 (2)
α, β, γ (°)90.147 (1), 100.839 (1), 108.421 (1)
V3)671.25 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.43 × 0.32 × 0.13
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.949, 0.985
No. of measured, independent and
observed [I > 2σ(I)] reflections
17515, 3075, 2703
Rint0.028
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.068, 0.173, 1.08
No. of reflections3075
No. of parameters266
No. of restraints45
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.66, 0.84

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N1···O2i0.89 (3)2.14 (3)3.007 (2)165 (2)
N2—H1N2···O1ii0.86 (3)1.99 (3)2.840 (2)177 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Footnotes

Thomson Reuters ResearcherID: A-3561-2009.

§Thomson Reuters ResearcherID: A-5523-2009.

Acknowledgements

HKF thanks Universiti Sains Malaysia for the Research University Golden Goose Grant (No. 1001/PFIZIK/811012). CSY thanks the Malaysian Government and Universiti Sains Malaysia for the award of a post of research officer under the Science Fund (grant No. 305/PFIZIK/613312).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationAtwal, K. S. (1990). J. Med. Chem. 33, 1510–1515.  CSD CrossRef CAS PubMed Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKalluraya, B. & Rai, G. (2003). Synth. Commun. 33, 3589–3595.  Web of Science CrossRef CAS Google Scholar
First citationManjula, A., Rao, B. V. & Neelakantan, P. (2004). Synth. Commun. 34, 2665–2671.  Web of Science CrossRef CAS Google Scholar
First citationSadanandam, Y. S., Shetty, M. M. & Diwan, P. V. (1992). Eur. J. Med. Chem. 27, 87–92.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSteele, T. G., Coburn, C. A., Patane, M. A. & Bock, M. G. (1998). Tetrahedron Lett. 39, 9315–9318.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1188-o1189
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds