organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3,3′-[(tert-But­oxy­carbon­yl)aza­nedi­yl]di­propanoic acid

aDepartment of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, People's Republic of China, bFaculty of Biotechnology Industry, Chengdu University, Chengdu 610106, People's Republic of China, and cThe Center for Testing and Analysis, Sichuan University, Chengdu 610064, People's Republic of China
*Correspondence e-mail: qiqingronghh@yahoo.com.cn

(Received 7 May 2009; accepted 19 May 2009; online 29 May 2009)

The title compound, C11H19NO6, is an important inter­mediate for the synthesis of cephalosporin derivatives. The N atom is in a planar configuration. In the crystal, mol­ecules are linked into zigzag layers parallel to (100) by O—H⋯O hydrogen bonds.

Related literature

The condensation of the title compound with cephalosporin may improve the pharmacokinetics, see: Sakagami et al. (1990[Sakagami, K., Atsumi, K. & Tamura, A. (1990). J. Antibiot. 8, 1047-1050.], 1991[Sakagami, K., Atsumi, K. & Yamamoto, Y. (1991). Chem. Pharm. Bull. 39, 2433-2436.]); Uhrich & Frechet (1992[Uhrich, K. E. & Frechet, J. M. J. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1623-1630.]).

[Scheme 1]

Experimental

Crystal data
  • C11H19NO6

  • Mr = 261.27

  • Orthorhombic, P b c a

  • a = 10.632 (2) Å

  • b = 14.559 (3) Å

  • c = 18.257 (4) Å

  • V = 2826.1 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 292 K

  • 0.60 × 0.50 × 0.44 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: none

  • 2979 measured reflections

  • 2601 independent reflections

  • 1050 reflections with I > 2σ(I)

  • Rint = 0.008

  • 3 standard reflections every 200 reflections intensity decay: 1.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.171

  • S = 1.09

  • 2601 reflections

  • 175 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.25 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯O4i 0.98 (5) 1.68 (5) 2.653 (4) 174 (4)
O5—H5O⋯O2ii 0.94 (5) 1.70 (5) 2.628 (3) 168 (4)
Symmetry codes: (i) -x, -y, -z; (ii) [-x, y+{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: DIFRAC (Gabe & White, 1993[Gabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.]); cell refinement: DIFRAC; data reduction: NRCVAX (Gabe et al., 1989[Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384-387.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is an important intermediate for the synthesis of a new type of cephalosporin. The condensation of the title compound with cephalosporin may improve the pharmacokinetics of the cephalosporin (Sakagami et al., 1990). It has two carboxylic acid functionalities that are available for the condensation with the amino group of cephalosporin, while the protected amine can be easily activated by deprotection, so that it can be condensed with the carboxyl of cephalosporin. The condensation with cephalosporin may increase the drug concentration, control the release of drug and reduce the drug toxicity (Uhrich & Frechet, 1992; Sakagami et al., 1991).

The N atom has a trigonal planar configuration, with sum of bond angles around N1 being 359.8 °. The molecules are linked into zigzag layers parallel to the (100) by O—H···O hydrogen bonds.

Related literature top

The condensation of the title compound with cephalosporin may

improve the pharmacokinetics, see: Sakagami et al. (1990, 1991); Uhrich & Frechet (1992).

Experimental top

Dimethyl 3,3'-azanediyldipropanoate (5.67g, 30 mol) was treated with NaOH solution (4.0g NaOH in 20 ml H2O) and stirred at room temperature for 2 h. Then a solution of (Boc)2O (7.0g, 32mmol) (Boc is tert-butoxycarbonyl) in tertiary butyl alcohol (10 ml) was added dropwise at 283 K. The contents were stirred for 30 min at room temperature. The reaction mixture was washed with n-pentane (10 ml × 3) and the aqueous layer was adjusted to a pH of 1.0 with hydrochloric acid and extracted with ethyl acetate. The organic layer was dried (MgSO4) and evaporated in vacuo and recrystallized in cyclohexane-ethyl acetate to get colourless crystals.

Refinement top

Hydroxyl H atoms were located in a difference map and refined freely. The remaining H atoms were positioned geometrically (C-H = 0.96–0.97 Å) and refined using a riding model, with Uiso(H) = 1.2–1.5Ueq(C).

Computing details top

Data collection: DIFRAC (Gabe & White, 1993); cell refinement: DIFRAC (Gabe & White, 1993); data reduction: NRCVAX (Gabe et al., 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
3,3'-[(tert-Butoxycarbonyl)azanediyl]dipropanoic acid top
Crystal data top
C11H19NO6F(000) = 1120
Mr = 261.27Dx = 1.228 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 20 reflections
a = 10.632 (2) Åθ = 5.7–6.8°
b = 14.559 (3) ŵ = 0.10 mm1
c = 18.257 (4) ÅT = 292 K
V = 2826.1 (11) Å3Block, colourless
Z = 80.60 × 0.50 × 0.44 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
Radiation source: fine-focus sealed tubeθmax = 25.5°, θmin = 2.2°
Graphite monochromatorh = 112
ω/2–θ scansk = 317
2979 measured reflectionsl = 1022
2601 independent reflections3 standard reflections every 200 reflections
1050 reflections with I > 2σ(I) intensity decay: 1.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.171 w = 1/[σ2(Fo2) + (0.0701P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2601 reflectionsΔρmax = 0.22 e Å3
175 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0127 (17)
Crystal data top
C11H19NO6V = 2826.1 (11) Å3
Mr = 261.27Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.632 (2) ŵ = 0.10 mm1
b = 14.559 (3) ÅT = 292 K
c = 18.257 (4) Å0.60 × 0.50 × 0.44 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.008
2979 measured reflections3 standard reflections every 200 reflections
2601 independent reflections intensity decay: 1.3%
1050 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.171H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.22 e Å3
2601 reflectionsΔρmin = 0.25 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1690 (2)0.18631 (13)0.36711 (10)0.0709 (7)
O20.0153 (3)0.10681 (16)0.31021 (11)0.0841 (8)
O30.0720 (3)0.04162 (19)0.08342 (15)0.0995 (10)
H3O0.031 (4)0.058 (3)0.037 (3)0.129 (16)*
O40.0484 (3)0.09467 (16)0.03663 (14)0.1078 (11)
O50.1228 (3)0.49187 (18)0.26626 (13)0.0833 (8)
H5O0.066 (5)0.526 (3)0.238 (2)0.137 (18)*
O60.1031 (3)0.39281 (16)0.17583 (15)0.1142 (11)
N10.1433 (3)0.20065 (16)0.24663 (13)0.0669 (8)
C10.2392 (4)0.1974 (2)0.48679 (17)0.0898 (12)
H1A0.32230.18490.46870.135*
H1B0.23280.17720.53670.135*
H1C0.22330.26220.48430.135*
C20.1697 (4)0.0451 (2)0.4391 (2)0.0981 (14)
H2A0.10550.01460.41120.147*
H2B0.17000.02170.48820.147*
H2C0.25010.03420.41690.147*
C30.0128 (4)0.1701 (3)0.4649 (2)0.1067 (14)
H3A0.00260.23430.45710.160*
H3B0.00380.15600.51600.160*
H3C0.04670.13470.43710.160*
C40.1436 (4)0.1469 (2)0.44047 (16)0.0686 (10)
C50.1046 (4)0.1604 (2)0.30812 (18)0.0623 (9)
C60.0904 (4)0.1711 (2)0.17744 (16)0.0688 (10)
H6A0.10420.21850.14090.083*
H6B0.00030.16290.18290.083*
C70.1484 (3)0.0821 (2)0.15127 (17)0.0747 (11)
H7A0.23650.09220.14000.090*
H7B0.14370.03680.19020.090*
C80.0838 (4)0.0459 (3)0.08533 (19)0.0719 (10)
C90.2554 (4)0.2605 (2)0.24626 (18)0.0762 (10)
H9A0.28440.26750.19620.091*
H9B0.32200.23080.27380.091*
C100.2318 (4)0.3548 (2)0.27853 (18)0.0762 (11)
H10A0.19700.34750.32730.091*
H10B0.31160.38650.28330.091*
C110.1451 (4)0.4125 (2)0.2344 (2)0.0732 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0897 (19)0.0642 (13)0.0588 (12)0.0127 (13)0.0146 (12)0.0004 (10)
O20.097 (2)0.0806 (16)0.0750 (16)0.0276 (16)0.0109 (14)0.0061 (12)
O30.152 (3)0.0724 (19)0.0737 (17)0.0156 (18)0.0244 (17)0.0096 (14)
O40.164 (3)0.0759 (17)0.0831 (17)0.0102 (17)0.0439 (18)0.0010 (15)
O50.094 (2)0.0750 (17)0.0803 (16)0.0181 (15)0.0104 (14)0.0071 (14)
O60.153 (3)0.0836 (18)0.106 (2)0.0274 (18)0.053 (2)0.0026 (16)
N10.078 (2)0.0626 (15)0.0595 (16)0.0032 (16)0.0056 (15)0.0027 (14)
C10.094 (3)0.103 (3)0.073 (2)0.004 (2)0.017 (2)0.012 (2)
C20.132 (4)0.072 (3)0.090 (3)0.002 (3)0.012 (3)0.015 (2)
C30.091 (4)0.132 (3)0.097 (3)0.009 (3)0.013 (3)0.017 (3)
C40.080 (3)0.069 (2)0.0572 (18)0.002 (2)0.0009 (18)0.0036 (17)
C50.066 (3)0.054 (2)0.067 (2)0.0066 (19)0.0100 (19)0.0035 (17)
C60.080 (3)0.065 (2)0.060 (2)0.011 (2)0.0078 (17)0.0011 (16)
C70.073 (3)0.082 (2)0.069 (2)0.014 (2)0.0123 (18)0.0100 (18)
C80.081 (3)0.071 (3)0.064 (2)0.025 (2)0.0029 (19)0.009 (2)
C90.069 (3)0.075 (2)0.084 (2)0.005 (2)0.0019 (19)0.014 (2)
C100.078 (3)0.064 (2)0.087 (2)0.010 (2)0.023 (2)0.0155 (17)
C110.087 (3)0.062 (2)0.071 (2)0.006 (2)0.011 (2)0.0116 (19)
Geometric parameters (Å, º) top
O1—C51.331 (4)C2—H2B0.96
O1—C41.482 (3)C2—H2C0.96
O2—C51.229 (4)C3—C41.499 (5)
O3—C81.281 (4)C3—H3A0.96
O3—H3O0.98 (5)C3—H3B0.96
O4—C81.199 (4)C3—H3C0.96
O5—C111.315 (4)C6—C71.513 (4)
O5—H5O0.94 (5)C6—H6A0.97
O6—C111.193 (4)C6—H6B0.97
N1—C51.331 (4)C7—C81.482 (5)
N1—C61.448 (4)C7—H7A0.97
N1—C91.477 (4)C7—H7B0.97
C1—C41.514 (5)C9—C101.515 (4)
C1—H1A0.96C9—H9A0.97
C1—H1B0.96C9—H9B0.97
C1—H1C0.96C10—C111.486 (5)
C2—C41.508 (4)C10—H10A0.97
C2—H2A0.96C10—H10B0.97
C5—O1—C4121.8 (3)O1—C5—N1113.5 (3)
C8—O3—H3O108 (2)N1—C6—C7111.8 (3)
C11—O5—H5O110 (3)N1—C6—H6A109.3
C5—N1—C6119.0 (3)C7—C6—H6A109.3
C5—N1—C9120.9 (3)N1—C6—H6B109.3
C6—N1—C9119.0 (3)C7—C6—H6B109.3
C4—C1—H1A109.5H6A—C6—H6B107.9
C4—C1—H1B109.5C8—C7—C6111.8 (3)
H1A—C1—H1B109.5C8—C7—H7A109.2
C4—C1—H1C109.5C6—C7—H7A109.2
H1A—C1—H1C109.5C8—C7—H7B109.2
H1B—C1—H1C109.5C6—C7—H7B109.2
C4—C2—H2A109.5H7A—C7—H7B107.9
C4—C2—H2B109.5O4—C8—O3122.6 (3)
H2A—C2—H2B109.5O4—C8—C7122.5 (4)
C4—C2—H2C109.5O3—C8—C7114.9 (3)
H2A—C2—H2C109.5N1—C9—C10113.5 (3)
H2B—C2—H2C109.5N1—C9—H9A108.9
C4—C3—H3A109.5C10—C9—H9A108.9
C4—C3—H3B109.5N1—C9—H9B108.9
H3A—C3—H3B109.5C10—C9—H9B108.9
C4—C3—H3C109.5H9A—C9—H9B107.7
H3A—C3—H3C109.5C11—C10—C9113.9 (3)
H3B—C3—H3C109.5C11—C10—H10A108.8
O1—C4—C3110.5 (3)C9—C10—H10A108.8
O1—C4—C2109.4 (3)C11—C10—H10B108.8
C3—C4—C2113.4 (3)C9—C10—H10B108.8
O1—C4—C1101.2 (3)H10A—C10—H10B107.7
C3—C4—C1110.4 (3)O6—C11—O5122.7 (3)
C2—C4—C1111.3 (3)O6—C11—C10125.6 (3)
O2—C5—O1123.5 (3)O5—C11—C10111.6 (3)
O2—C5—N1123.0 (3)
C5—O1—C4—C363.2 (4)C9—N1—C6—C789.6 (3)
C5—O1—C4—C262.3 (4)N1—C6—C7—C8173.1 (3)
C5—O1—C4—C1179.9 (3)C6—C7—C8—O439.8 (5)
C4—O1—C5—O24.4 (5)C6—C7—C8—O3142.1 (3)
C4—O1—C5—N1177.7 (3)C5—N1—C9—C1076.4 (4)
C6—N1—C5—O28.8 (5)C6—N1—C9—C10115.9 (3)
C9—N1—C5—O2176.5 (3)N1—C9—C10—C1167.1 (4)
C6—N1—C5—O1173.3 (3)C9—C10—C11—O65.7 (6)
C9—N1—C5—O15.6 (4)C9—C10—C11—O5177.0 (3)
C5—N1—C6—C778.3 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.98 (5)1.68 (5)2.653 (4)174 (4)
O5—H5O···O2ii0.94 (5)1.70 (5)2.628 (3)168 (4)
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC11H19NO6
Mr261.27
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)10.632 (2), 14.559 (3), 18.257 (4)
V3)2826.1 (11)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.60 × 0.50 × 0.44
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2979, 2601, 1050
Rint0.008
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.171, 1.09
No. of reflections2601
No. of parameters175
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.25

Computer programs: DIFRAC (Gabe & White, 1993), NRCVAX (Gabe et al., 1989), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O4i0.98 (5)1.68 (5)2.653 (4)174 (4)
O5—H5O···O2ii0.94 (5)1.70 (5)2.628 (3)168 (4)
Symmetry codes: (i) x, y, z; (ii) x, y+1/2, z+1/2.
 

Acknowledgements

This work was supported by the National 973 Project under grant No. 2004CB518800.

References

First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst. 22, 384–387.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGabe, E. J. & White, P. S. (1993). DIFRAC. American Crystallographic Association Meeting, Pittsburgh, Abstract PA 104.  Google Scholar
First citationSakagami, K., Atsumi, K. & Tamura, A. (1990). J. Antibiot. 8, 1047–1050.  CrossRef Google Scholar
First citationSakagami, K., Atsumi, K. & Yamamoto, Y. (1991). Chem. Pharm. Bull. 39, 2433–2436.  CrossRef PubMed CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationUhrich, K. E. & Frechet, J. M. J. (1992). J. Chem. Soc. Perkin Trans. 1, pp. 1623–1630.  CrossRef Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds