metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[hemi(hexane-1,6-di­ammonium) [[aqua­di­bromido­manganese(II)]-μ-pyridine-2-carboxyl­ato]]

aSchool of Applied Chemical Engineering, The Research Institute of Catalysis, Chonnam National University, Gwangju 500-757, Republic of Korea, and bInstitute of Basic Sciences, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
*Correspondence e-mail: hakwang@chonnam.ac.kr

(Received 20 March 2009; accepted 30 April 2009; online 7 May 2009)

The asymmetric unit of the title compound, {(C6H18N2)0.5[MnBr2(C6H4NO2)(H2O)]}n, contains the repeat unit of the complex anion and one-half of a hexane-1,6-diammonium cation that is located on a twofold rotation axis. In the anionic polymer, the Mn2+ ions are bridged by the pyridine­carboxyl­ate (pic) anion ligand, forming a chain structure along the c axis. The Mn2+ ion is six-coordinated in a distorted octa­hedral environment by one N atom of the pyridine ring, two O atoms of the two carboxyl­ate groups, one O atom of the water mol­ecule and two Br atoms. The compound displays inter­molecular N—H⋯O, N—H⋯Br, O—H⋯Br and O—H⋯O hydrogen bonding. There may also be inter­molecular ππ inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.992 (4) Å.

Related literature

For the synthesis and structure of the Mn(III)–pic complex, [Mn(pic)3], see: Figgis et al. (1978[Figgis, B. N., Raston, C. L., Sharma, R. P. & White, A. H. (1978). Aust. J. Chem. 31, 2545-2548.]); Yamaguchi & Sawyer (1985[Yamaguchi, K. & Sawyer, D. T. (1985). Inorg. Chem. 24, 971-976.]); Li et al. (2000[Li, Y.-Z., Wang, M., Wang, L.-F. & Xia, C.-G. (2000). Acta Cryst. C56, e445-e446.]). For the synthesis and structure of the Mn(II)–pic complex, [Mn(pic)2(H2O)2], see: Okabe & Koizumi (1998[Okabe, N. & Koizumi, M. (1998). Acta Cryst. C54, 288-290.]); Barandika et al. (1999[Barandika, M. G., Serna, Z. E., Urtiaga, M. K., de Larramendi, J. I. R., Arriortua, M. I. & Cortés, R. (1999). Polyhedron, 18, 1311-1316.]). For details of mono-, di- and polynuclear Mn(II, III, IV)–pic complexes, see: Huang et al. (2004[Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454-1464.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H18N2)0.5[MnBr2(C6H4NO2)(H2O)]

  • Mr = 413.99

  • Monoclinic, C 2/c

  • a = 13.490 (3) Å

  • b = 21.510 (5) Å

  • c = 9.803 (2) Å

  • β = 91.125 (4)°

  • V = 2843.9 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 6.55 mm−1

  • T = 293 K

  • 0.10 × 0.10 × 0.10 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.394, Tmax = 0.520

  • 7815 measured reflections

  • 2705 independent reflections

  • 1846 reflections with I > 2σ(I)

  • Rint = 0.030

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.114

  • S = 0.94

  • 2705 reflections

  • 152 parameters

  • H-atom parameters constrained

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O1i 0.89 2.44 2.949 (6) 117
N2—H2A⋯O2i 0.89 2.47 3.300 (6) 155
N2—H2B⋯Br2i 0.89 2.61 3.339 (4) 139
N2—H2C⋯Br2ii 0.89 2.58 3.417 (5) 157
O3—H3A⋯Br1iii 0.99 2.28 3.245 (4) 165
O3—H3B⋯O1iv 0.83 2.18 2.961 (5) 157
Symmetry codes: (i) [x, -y, z+{\script{1\over 2}}]; (ii) x, y, z+1; (iii) [-x+1, y, -z+{\script{1\over 2}}]; (iv) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Complex polymers are attracting great attention because of their potential applications such as in catalysis, magnetism, molecular recognition and other fileds (Huang et al., 2004). The title compound, {(C6H18N2)0.5[MnBr2(C6H4NO2)(H2O)]}n, consists of an anionic complex chain polymer with counter-cations (Fig. 1). In the anionic polymer, symmetry related Mn2+ ions are bridged by pyridinecarboxylate (pic) anion ligands to form one-dimensional zigzag chain structures along the c axis (Fig. 2). The Mn ion is six-coordinated in a distorted octahedral structure by one N atom of the pyridine ring, two O atoms of two carboxylate groups, one O atom of the water molecule and two Br atoms. The three O atoms are disposed in the facial position. The asymmetric unit contains the repeat unit of the polymer, [MnBr2(C6H4NO2)(H2O)]-, and one half of a 1,6-diammoniohexane cation. Cations sit on a 2-fold symmetry axes at 0, y, 1/4 (Wyckoff letter e). The compound displays intermolecular hydrogen bonding (Table 1). There may be also intermolecular π-π interactions between adjacent pyridine rings, with a centroid-centroid distance of 3.992 (4) Å. The structure of the anionic complex polymer is very similar to the structure of the neutral compound [MnCl(pic)(H2O)2]n in which the Mn ions are linked to each other by pyridinecarboxylate bridges in a syn - anti mode (Huang et al., 2004).

Related literature top

For the synthesis and structure of the Mn(III)–pic complex, [Mn(pic)3], see: Figgis et al. (1978); Yamaguchi & Sawyer (1985); Li et al. (2000). For the synthesis and structure of the Mn(II)–pic complex, [Mn(pic)2(H2O)2], see: Okabe & Koizumi (1998); Barandika et al. (1999). For details of mono-, di- and polynuclear Mn(II, III, IV)–pic complexes, see: Huang et al. (2004).

Experimental top

A solution of MnBr2.4H2O (0.116 g, 0.404 mmol), pyridine-2-carboxylic acid (0.101 g, 0.734 mmol) and 1,6-diaminohexane (0.021 g, 0.184 mmol) in H2O (10 ml) was refluxed for 4 h. The solvent was removed under vacuum and the residue was dried at 70 °C, to give a pale yellow film. Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.93 Å (aromatic) or 0.97 Å (CH2) and N—H = 0.89 Å, and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(N)]. The H atoms of the water molecule were located from Fourier difference maps, but not refined.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A structure detail of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms [Symmetry codes: (a) x, -y, -1/2 + z, (b) x, -y, 1/2 + z, (c) -x, y, 3/2 - z].
[Figure 2] Fig. 2. View of the unit-cell contents and chain structure of the title compound. H atoms have been omitted for clarity.
catena-Poly[hemi(hexane-1,6-diammonium) [[aquadibromidomanganese(II)]-µ-pyridine-2-carboxylato]] top
Crystal data top
(C6H18N2)0.5[MnBr2(C6H4NO2)(H2O)]F(000) = 1616
Mr = 413.99Dx = 1.934 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 806 reflections
a = 13.490 (3) Åθ = 2.8–25.3°
b = 21.510 (5) ŵ = 6.55 mm1
c = 9.803 (2) ÅT = 293 K
β = 91.125 (4)°Stick, colorless
V = 2843.9 (11) Å30.10 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART 1000 CCD
diffractometer
2705 independent reflections
Radiation source: fine-focus sealed tube1846 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.7°, θmin = 1.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 1615
Tmin = 0.394, Tmax = 0.520k = 2626
7815 measured reflectionsl = 711
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0606P)2]
where P = (Fo2 + 2Fc2)/3
2705 reflections(Δ/σ)max < 0.001
152 parametersΔρmax = 0.68 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
(C6H18N2)0.5[MnBr2(C6H4NO2)(H2O)]V = 2843.9 (11) Å3
Mr = 413.99Z = 8
Monoclinic, C2/cMo Kα radiation
a = 13.490 (3) ŵ = 6.55 mm1
b = 21.510 (5) ÅT = 293 K
c = 9.803 (2) Å0.10 × 0.10 × 0.10 mm
β = 91.125 (4)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
2705 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
1846 reflections with I > 2σ(I)
Tmin = 0.394, Tmax = 0.520Rint = 0.030
7815 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.114H-atom parameters constrained
S = 0.94Δρmax = 0.68 e Å3
2705 reflectionsΔρmin = 0.56 e Å3
152 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.32935 (6)0.06982 (4)0.41356 (8)0.0340 (2)
Br10.34335 (4)0.15379 (3)0.21825 (6)0.0438 (2)
Br20.13026 (5)0.06928 (3)0.40001 (8)0.0585 (2)
O10.3336 (3)0.01771 (15)0.6076 (4)0.0406 (10)
O20.3331 (3)0.02393 (17)0.3343 (4)0.0491 (11)
O30.4928 (3)0.06506 (18)0.4217 (5)0.0549 (12)
H3A0.53580.09830.38650.082*
H3B0.53940.04080.43760.082*
N10.3431 (3)0.14114 (19)0.5834 (4)0.0349 (11)
C10.3514 (4)0.2031 (2)0.5714 (6)0.0442 (15)
H10.34880.22030.48440.053*
C20.3634 (5)0.2422 (3)0.6809 (7)0.0519 (16)
H20.36670.28500.66870.062*
C30.3702 (5)0.2168 (3)0.8077 (7)0.0558 (18)
H30.38000.24220.88360.067*
C40.3625 (5)0.1532 (3)0.8234 (6)0.0470 (15)
H40.36670.13510.90950.056*
C50.3488 (4)0.1175 (2)0.7091 (5)0.0318 (12)
C60.3378 (4)0.0470 (3)0.7180 (6)0.0343 (13)
N20.1654 (3)0.06720 (19)1.0558 (5)0.0717 (19)
H2A0.22320.06221.01510.107*
H2B0.12620.03501.03660.107*
H2C0.17540.06961.14570.107*
C70.1177 (3)0.12511 (19)1.0062 (5)0.0564 (18)
H7A0.16540.15881.01220.068*
H7B0.06300.13531.06500.068*
C80.0796 (5)0.1202 (3)0.8624 (7)0.0545 (17)
H8A0.03990.08280.85250.065*
H8B0.13510.11690.80130.065*
C90.0174 (5)0.1762 (3)0.8230 (7)0.065 (2)
H9A0.04000.17770.88100.078*
H9B0.05600.21360.84000.078*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0451 (5)0.0302 (4)0.0267 (5)0.0019 (4)0.0001 (4)0.0004 (4)
Br10.0526 (4)0.0416 (3)0.0371 (4)0.0026 (3)0.0016 (3)0.0072 (3)
Br20.0466 (4)0.0593 (4)0.0697 (5)0.0030 (3)0.0012 (3)0.0179 (4)
O10.068 (3)0.0250 (19)0.029 (2)0.0015 (18)0.001 (2)0.0003 (17)
O20.082 (3)0.036 (2)0.029 (2)0.003 (2)0.001 (2)0.0072 (18)
O30.042 (2)0.055 (3)0.068 (3)0.008 (2)0.005 (2)0.021 (2)
N10.045 (3)0.029 (3)0.031 (3)0.002 (2)0.000 (2)0.004 (2)
C10.062 (4)0.028 (3)0.043 (4)0.002 (3)0.001 (3)0.009 (3)
C20.066 (4)0.029 (3)0.061 (4)0.001 (3)0.003 (4)0.005 (3)
C30.082 (5)0.034 (3)0.051 (4)0.004 (3)0.001 (4)0.015 (3)
C40.069 (4)0.037 (3)0.035 (3)0.001 (3)0.000 (3)0.001 (3)
C50.038 (3)0.029 (3)0.028 (3)0.004 (2)0.004 (2)0.001 (2)
C60.036 (3)0.038 (3)0.030 (3)0.002 (2)0.001 (3)0.005 (3)
N20.092 (5)0.050 (3)0.072 (4)0.012 (3)0.031 (4)0.015 (3)
C70.051 (4)0.050 (4)0.067 (5)0.009 (3)0.016 (4)0.012 (4)
C80.050 (4)0.060 (4)0.053 (4)0.001 (3)0.005 (3)0.003 (3)
C90.079 (5)0.042 (4)0.073 (5)0.007 (4)0.019 (4)0.003 (4)
Geometric parameters (Å, º) top
Mn1—O22.162 (4)C4—C51.368 (7)
Mn1—O32.206 (4)C4—H40.93
Mn1—O12.208 (4)C5—C61.526 (7)
Mn1—N12.269 (4)C6—O2ii1.247 (6)
Mn1—Br12.6416 (11)N2—C71.4799
Mn1—Br22.6864 (12)N2—H2A0.89
O1—C61.253 (6)N2—H2B0.89
O2—C6i1.247 (6)N2—H2C0.89
O3—H3A0.99C7—C81.495 (7)
O3—H3B0.83C7—H7A0.97
N1—C51.334 (6)C7—H7B0.97
N1—C11.343 (6)C8—C91.514 (8)
C1—C21.371 (8)C8—H8A0.97
C1—H10.93C8—H8B0.97
C2—C31.359 (9)C9—C9iii1.497 (13)
C2—H20.93C9—H9A0.97
C3—C41.382 (8)C9—H9B0.97
C3—H30.93
O2—Mn1—O386.53 (16)C5—C4—H4120.9
O2—Mn1—O180.53 (14)C3—C4—H4120.9
O3—Mn1—O186.35 (15)N1—C5—C4123.2 (5)
O2—Mn1—N1153.14 (15)N1—C5—C6115.3 (5)
O3—Mn1—N186.42 (16)C4—C5—C6121.5 (5)
O1—Mn1—N173.17 (14)O2ii—C6—O1126.0 (5)
O2—Mn1—Br1112.02 (11)O2ii—C6—C5117.1 (5)
O3—Mn1—Br188.42 (11)O1—C6—C5117.0 (5)
O1—Mn1—Br1166.09 (10)C7—N2—H2A109.5
N1—Mn1—Br193.65 (11)C7—N2—H2B109.5
O2—Mn1—Br290.48 (12)H2A—N2—H2B109.5
O3—Mn1—Br2176.99 (12)C7—N2—H2C109.5
O1—Mn1—Br292.83 (11)H2A—N2—H2C109.5
N1—Mn1—Br296.13 (12)H2B—N2—H2C109.5
Br1—Mn1—Br293.02 (3)N2—C7—C8112.9 (3)
C6—O1—Mn1119.3 (3)N2—C7—H7A109.0
C6i—O2—Mn1134.6 (4)C8—C7—H7A109.0
Mn1—O3—H3A123.2N2—C7—H7B109.0
Mn1—O3—H3B142.1C8—C7—H7B109.0
H3A—O3—H3B94H7A—C7—H7B107.8
C5—N1—C1117.2 (5)C7—C8—C9111.3 (5)
C5—N1—Mn1115.0 (3)C7—C8—H8A109.4
C1—N1—Mn1127.7 (4)C9—C8—H8A109.4
N1—C1—C2123.3 (6)C7—C8—H8B109.4
N1—C1—H1118.4C9—C8—H8B109.4
C2—C1—H1118.4H8A—C8—H8B108.0
C3—C2—C1118.4 (6)C9iii—C9—C8113.9 (5)
C3—C2—H2120.8C9iii—C9—H9A108.8
C1—C2—H2120.8C8—C9—H9A108.8
C2—C3—C4119.7 (6)C9iii—C9—H9B108.8
C2—C3—H3120.2C8—C9—H9B108.8
C4—C3—H3120.2H9A—C9—H9B107.7
C5—C4—C3118.3 (6)
O2—Mn1—O1—C6176.8 (4)C5—N1—C1—C21.1 (9)
O3—Mn1—O1—C689.7 (4)Mn1—N1—C1—C2177.3 (4)
N1—Mn1—O1—C62.3 (4)N1—C1—C2—C32.0 (10)
Br1—Mn1—O1—C621.6 (8)C1—C2—C3—C41.6 (10)
Br2—Mn1—O1—C693.2 (4)C2—C3—C4—C50.4 (10)
O3—Mn1—O2—C6i89.0 (6)C1—N1—C5—C40.2 (8)
O1—Mn1—O2—C6i175.9 (6)Mn1—N1—C5—C4176.5 (4)
N1—Mn1—O2—C6i164.0 (5)C1—N1—C5—C6179.3 (5)
Br1—Mn1—O2—C6i2.1 (6)Mn1—N1—C5—C64.0 (6)
Br2—Mn1—O2—C6i91.3 (5)C3—C4—C5—N10.5 (9)
O2—Mn1—N1—C510.9 (6)C3—C4—C5—C6178.9 (5)
O3—Mn1—N1—C586.0 (4)Mn1—O1—C6—O2ii174.2 (4)
O1—Mn1—N1—C51.3 (4)Mn1—O1—C6—C55.2 (6)
Br1—Mn1—N1—C5174.2 (4)N1—C5—C6—O2ii173.3 (5)
Br2—Mn1—N1—C592.4 (4)C4—C5—C6—O2ii6.3 (8)
O2—Mn1—N1—C1165.3 (4)N1—C5—C6—O16.2 (7)
O3—Mn1—N1—C190.3 (5)C4—C5—C6—O1174.3 (5)
O1—Mn1—N1—C1177.5 (5)N2—C7—C8—C9171.0 (4)
Br1—Mn1—N1—C12.1 (5)C7—C8—C9—C9iii176.1 (7)
Br2—Mn1—N1—C191.4 (5)
Symmetry codes: (i) x, y, z1/2; (ii) x, y, z+1/2; (iii) x, y, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1ii0.892.442.949 (6)117
N2—H2A···O2ii0.892.473.300 (6)155
N2—H2B···Br2ii0.892.613.339 (4)139
N2—H2C···Br2iv0.892.583.417 (5)157
O3—H3A···Br1v0.992.283.245 (4)165
O3—H3B···O1vi0.832.182.961 (5)157
Symmetry codes: (ii) x, y, z+1/2; (iv) x, y, z+1; (v) x+1, y, z+1/2; (vi) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula(C6H18N2)0.5[MnBr2(C6H4NO2)(H2O)]
Mr413.99
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)13.490 (3), 21.510 (5), 9.803 (2)
β (°) 91.125 (4)
V3)2843.9 (11)
Z8
Radiation typeMo Kα
µ (mm1)6.55
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART 1000 CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.394, 0.520
No. of measured, independent and
observed [I > 2σ(I)] reflections
7815, 2705, 1846
Rint0.030
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.114, 0.94
No. of reflections2705
No. of parameters152
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.56

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.892.442.949 (6)117
N2—H2A···O2i0.892.473.300 (6)155
N2—H2B···Br2i0.892.613.339 (4)139
N2—H2C···Br2ii0.892.583.417 (5)157
O3—H3A···Br1iii0.992.283.245 (4)165
O3—H3B···O1iv0.832.182.961 (5)157
Symmetry codes: (i) x, y, z+1/2; (ii) x, y, z+1; (iii) x+1, y, z+1/2; (iv) x+1, y, z+1.
 

Acknowledgements

This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2007-412-J02001).

References

First citationBarandika, M. G., Serna, Z. E., Urtiaga, M. K., de Larramendi, J. I. R., Arriortua, M. I. & Cortés, R. (1999). Polyhedron, 18, 1311–1316.  Web of Science CSD CrossRef CAS Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFiggis, B. N., Raston, C. L., Sharma, R. P. & White, A. H. (1978). Aust. J. Chem. 31, 2545–2548.  CSD CrossRef CAS Google Scholar
First citationHuang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454–1464.  Web of Science CSD CrossRef Google Scholar
First citationLi, Y.-Z., Wang, M., Wang, L.-F. & Xia, C.-G. (2000). Acta Cryst. C56, e445–e446.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationOkabe, N. & Koizumi, M. (1998). Acta Cryst. C54, 288–290.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYamaguchi, K. & Sawyer, D. T. (1985). Inorg. Chem. 24, 971–976.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds