metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis[μ-1,1′-(ferrocene-1,1′-di­yl)bis­(butane-1,3-dionato)]di-μ-methanol-diiron(II)

aKey Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Nangang District, Harbin 150080, People's Republic of China
*Correspondence e-mail: gmli@hlju.edu.cn

(Received 31 March 2009; accepted 30 April 2009; online 7 May 2009)

The asymmetric unit of the title compound, [Fe4(C9H8O2)4(CH3OH)2], contains one half-mol­ecule located on a twofold rotational axis. In the mol­ecule, the two FeII ions bridged by two coordinating methanol mol­ecules are separated by 3.1286 (7) Å. Two crystallographically independent methanol mol­ecules are situated on a twofold rotational axis; all attached H atoms are rotationally disordered between two equal orientations.

Related literature

For the similar cobalt and manganese complexes of the same beta-diketone, see: Yan et al. (2007[Yan, C.-G., Zhu, M.-J., Sun, J., Liu, W.-L. & Shi, Y.-C. (2007). J. Coord. Chem. 60, 1083-1091.]).

[Scheme 1]

Experimental

Crystal data
  • [Fe4(C9H8O2)4(CH4O)2]

  • Mr = 880.10

  • Orthorhombic, A b a 2

  • a = 14.599 (3) Å

  • b = 19.290 (4) Å

  • c = 12.955 (3) Å

  • V = 3648.5 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.62 mm−1

  • T = 291 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.685, Tmax = 0.737

  • 16837 measured reflections

  • 4079 independent reflections

  • 3473 reflections with I > 2σ(I)

  • Rint = 0.042

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.069

  • S = 1.05

  • 4079 reflections

  • 242 parameters

  • 13 restraints

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1899 Friedel pairs

  • Flack parameter: −0.001 (16)

Data collection: RAPID-AUTO (Rigaku, 1998[Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Recently, the cobalt and manganese complexes of the specific beta-diketone were published by Yan et al. (2007). Herewith we present the crystal structure of the title FeII complex with the same ligand, (I),

In (I) (Fig. 1), the tetradentate ferrocene-containing bis-beta-diketones ligand links Fe atoms into a complex through four O atoms of the two beta-diketone from two ligands. The two FeII ions and two 1,1'-bis(acetoacetyl)ferrocenes are bridged by two methanols molecules, dividing this macrocyclic framework into two small cyclic subunits.The four atoms - C19, C20, O5 and O6 - of the two methanol molecules lie on a twofold axis.

Related literature top

For the similar cobalt and manganese complexes of the same beta-diketone, see: Yan et al. (2007).

Experimental top

The title complex was obtained by the treatment of iron(II) chloride tetrahydrate (0.5 mmol, 0.099 g) with 1,1'-bis(acetoacetyl)ferrocene (0.5 mmol, 0.177 g) in methanol. The first two reactants were stirred for 12 h. The resulting precipitates were filtered, washed with methanol several times and dried; The deep red crystals were grown by slow evaporation of methanol. Single crystals were obtained after several weeks. Analysis calculated for C38H38Fe4O10: C, 51.98; H, 4.36; found: C, 50.83; H, 4.02%.

Refinement top

All H atoms were placed in calculated positions (C—H = 0.93-0.97 Å, O—H = 0.82 Å) and treated as riding on their parent atoms, with Uiso(H) = 1.2-1.5Ueq(C, O).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO (Rigaku, 1998); data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic numbering and 66% probability displacement ellipsoids. Unlabelled atoms are related to labelled atoms by the symmetry code (-x, 2 - y, z). H atoms omitted for clarity.
Bis[µ-1,1'-(Ferrocene-1,1'-diyl)bis(butane-1,3-dionato)]di-µ-methanol- diiron(II) top
Crystal data top
[Fe4(C9H8O2)4(CH4O)2]F(000) = 1808
Mr = 880.10Dx = 1.602 Mg m3
Orthorhombic, Aba2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: A 2 -2acCell parameters from 13899 reflections
a = 14.599 (3) Åθ = 3.2–27.5°
b = 19.290 (4) ŵ = 1.62 mm1
c = 12.955 (3) ÅT = 291 K
V = 3648.5 (13) Å3Block, colourless
Z = 40.25 × 0.22 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4079 independent reflections
Radiation source: fine-focus sealed tube3473 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1818
Tmin = 0.685, Tmax = 0.737k = 2424
16837 measured reflectionsl = 1616
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.031 w = 1/[σ2(Fo2) + (0.0338P)2 + 0.1021P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max = 0.002
S = 1.05Δρmax = 0.24 e Å3
4079 reflectionsΔρmin = 0.28 e Å3
242 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
13 restraintsExtinction coefficient: 0.00077 (11)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983), 1899 Friedel pairs
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.001 (16)
Crystal data top
[Fe4(C9H8O2)4(CH4O)2]V = 3648.5 (13) Å3
Mr = 880.10Z = 4
Orthorhombic, Aba2Mo Kα radiation
a = 14.599 (3) ŵ = 1.62 mm1
b = 19.290 (4) ÅT = 291 K
c = 12.955 (3) Å0.25 × 0.22 × 0.20 mm
Data collection top
Rigaku R-AXIS RAPID
diffractometer
4079 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3473 reflections with I > 2σ(I)
Tmin = 0.685, Tmax = 0.737Rint = 0.042
16837 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.069Δρmax = 0.24 e Å3
S = 1.05Δρmin = 0.28 e Å3
4079 reflectionsAbsolute structure: Flack (1983), 1899 Friedel pairs
242 parametersAbsolute structure parameter: 0.001 (16)
13 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.19291 (19)0.81289 (13)0.8190 (2)0.0354 (7)
C20.26358 (18)0.76630 (12)0.7841 (4)0.0447 (7)
H20.26130.73800.72130.054*
C30.3373 (2)0.76887 (17)0.8546 (3)0.0512 (9)
H30.39450.74250.84980.061*
C40.3135 (2)0.81604 (17)0.9337 (3)0.0506 (8)
H40.35180.82820.99310.061*
C50.2264 (2)0.84401 (15)0.9114 (2)0.0407 (7)
H50.19380.87840.95330.049*
C60.3017 (2)0.93295 (15)0.6728 (2)0.0423 (7)
H60.24940.93630.62570.051*
C70.3795 (2)0.88989 (17)0.6594 (3)0.0504 (8)
H70.39050.85840.60130.060*
C80.4386 (2)0.90046 (18)0.7442 (3)0.0534 (9)
H80.49740.87720.75530.064*
C90.39808 (19)0.94907 (15)0.8111 (3)0.0445 (8)
H90.42410.96580.87630.053*
C100.31223 (18)0.96990 (14)0.7674 (2)0.0345 (7)
C110.10328 (17)0.83008 (12)0.7745 (2)0.0330 (7)
C120.0715 (2)0.79896 (15)0.6841 (2)0.0374 (7)
H120.10850.76630.65180.045*
C130.0128 (2)0.81460 (14)0.6404 (2)0.0360 (6)
C140.0418 (2)0.77915 (17)0.5423 (3)0.0506 (8)
H14A0.10280.76130.55030.076*
H14B0.00050.74170.52760.076*
H14C0.04060.81180.48640.076*
C150.24318 (18)1.01769 (12)0.8099 (2)0.0318 (7)
C160.2553 (2)1.04853 (15)0.9063 (3)0.0444 (7)
H160.30701.03680.94450.053*
C170.1943 (2)1.09561 (14)0.9477 (2)0.0387 (7)
C180.2130 (3)1.12866 (18)1.0513 (3)0.0588 (10)
H18A0.21711.17801.04320.088*
H18B0.26961.11121.07850.088*
H18C0.16401.11781.09800.088*
C190.00001.00000.5883 (5)0.087 (2)
H19A0.02251.04370.56360.130*0.50
H19B0.03880.96340.56360.130*0.50
H19C0.06130.99290.56360.130*0.50
C200.00001.00000.9899 (4)0.078 (2)
H20A0.01370.95421.01460.117*0.50
H20B0.04551.03191.01460.117*0.50
H20C0.05921.01391.01460.117*0.50
Fe10.05321 (2)0.929603 (15)0.78857 (4)0.02974 (10)
Fe20.31370 (2)0.865393 (17)0.79403 (4)0.03331 (10)
O10.05773 (13)0.87374 (10)0.82598 (15)0.0409 (5)
O20.06968 (14)0.85889 (10)0.67618 (17)0.0406 (5)
O30.17416 (13)1.02878 (10)0.75155 (16)0.0367 (5)
O40.11978 (14)1.11480 (9)0.90521 (16)0.0382 (5)
O50.00001.00000.6928 (2)0.0346 (7)
H200.01001.03970.71260.052*0.50
O60.00001.00000.8820 (2)0.0319 (7)
H210.05301.00260.86230.048*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0409 (16)0.0301 (12)0.0351 (19)0.0054 (11)0.0030 (11)0.0041 (12)
C20.0463 (15)0.0309 (12)0.0568 (18)0.0085 (10)0.004 (2)0.0019 (19)
C30.0468 (19)0.0421 (17)0.065 (2)0.0151 (15)0.0060 (17)0.0099 (17)
C40.055 (2)0.059 (2)0.0379 (18)0.0072 (16)0.0096 (15)0.0118 (16)
C50.0437 (18)0.0459 (17)0.0327 (15)0.0087 (13)0.0019 (13)0.0055 (14)
C60.0486 (19)0.0465 (17)0.0320 (16)0.0059 (13)0.0039 (14)0.0056 (14)
C70.056 (2)0.0577 (19)0.0376 (17)0.0114 (16)0.0106 (15)0.0005 (16)
C80.0356 (17)0.058 (2)0.066 (2)0.0113 (15)0.0113 (16)0.0046 (18)
C90.0336 (14)0.0454 (15)0.055 (3)0.0009 (12)0.0060 (14)0.0036 (16)
C100.0340 (14)0.0336 (13)0.036 (2)0.0000 (10)0.0001 (12)0.0033 (12)
C110.0377 (14)0.0269 (11)0.0345 (18)0.0003 (10)0.0080 (13)0.0012 (13)
C120.0381 (16)0.0370 (15)0.0371 (16)0.0054 (12)0.0066 (13)0.0091 (13)
C130.0421 (17)0.0307 (13)0.0352 (15)0.0099 (12)0.0066 (13)0.0059 (12)
C140.049 (2)0.055 (2)0.0480 (19)0.0067 (15)0.0030 (15)0.0194 (17)
C150.0344 (14)0.0265 (11)0.0347 (19)0.0048 (9)0.0053 (12)0.0027 (12)
C160.0420 (17)0.0434 (15)0.0479 (19)0.0061 (13)0.0190 (15)0.0071 (16)
C170.0453 (18)0.0296 (14)0.0412 (17)0.0037 (12)0.0112 (14)0.0044 (13)
C180.066 (2)0.061 (2)0.0492 (19)0.0117 (16)0.023 (2)0.0177 (18)
C190.146 (7)0.085 (4)0.030 (3)0.044 (4)0.0000.000
C200.103 (5)0.102 (5)0.028 (3)0.047 (4)0.0000.000
Fe10.03050 (18)0.02938 (16)0.02933 (18)0.00004 (12)0.0040 (2)0.0034 (2)
Fe20.03464 (19)0.03372 (17)0.03157 (19)0.00768 (13)0.0017 (3)0.0015 (2)
O10.0402 (11)0.0450 (11)0.0374 (11)0.0151 (9)0.0024 (8)0.0119 (9)
O20.0365 (12)0.0411 (11)0.0442 (12)0.0003 (9)0.0024 (10)0.0119 (10)
O30.0345 (11)0.0389 (10)0.0366 (10)0.0042 (8)0.0050 (8)0.0024 (9)
O40.0397 (12)0.0296 (10)0.0452 (12)0.0028 (9)0.0111 (10)0.0053 (9)
O50.038 (2)0.0422 (18)0.0235 (15)0.0045 (14)0.0000.000
O60.042 (2)0.0326 (16)0.0215 (14)0.0051 (13)0.0000.000
Geometric parameters (Å, º) top
C1—C51.426 (4)C13—O21.279 (3)
C1—C21.441 (4)C13—C141.503 (4)
C1—C111.468 (4)C14—H14A0.9600
C1—Fe22.059 (3)C14—H14B0.9600
C2—C31.412 (5)C14—H14C0.9600
C2—Fe22.051 (3)C15—O31.278 (3)
C2—H20.9800C15—C161.394 (4)
C3—C41.413 (5)C16—C171.381 (4)
C3—Fe22.050 (3)C16—H160.9300
C3—H30.9800C17—O41.274 (3)
C4—C51.412 (4)C17—C181.511 (4)
C4—Fe22.044 (3)C18—H18A0.9600
C4—H40.9800C18—H18B0.9600
C5—Fe22.027 (3)C18—H18C0.9600
C5—H50.9800C19—O51.355 (7)
C6—C71.418 (4)C19—H19A0.9600
C6—C101.426 (4)C19—H19B0.9600
C6—Fe22.048 (3)C19—H19C0.9600
C6—H60.9800C20—O61.398 (6)
C7—C81.412 (5)C20—H20A0.9600
C7—Fe22.047 (3)C20—H20B0.9600
C7—H70.9800C20—H20C0.9600
C8—C91.407 (4)Fe1—O61.9783 (17)
C8—Fe22.049 (3)Fe1—O4i1.991 (2)
C8—H80.9800Fe1—O51.9964 (18)
C9—C101.433 (4)Fe1—O3i1.9982 (19)
C9—Fe22.043 (3)Fe1—O12.0048 (19)
C9—H90.9800Fe1—O22.010 (2)
C10—C151.473 (4)O3—Fe1i1.9982 (19)
C10—Fe22.045 (3)O4—Fe1i1.991 (2)
C11—O11.263 (3)O5—Fe1i1.9964 (18)
C11—C121.395 (4)O5—H200.8211
C12—C131.389 (4)O6—Fe1i1.9783 (17)
C12—H120.9300O6—H210.8158
C5—C1—C2106.3 (3)H18B—C18—H18C109.5
C5—C1—C11122.7 (2)O5—C19—H19A109.5
C2—C1—C11131.0 (3)O5—C19—H19B109.5
C5—C1—Fe268.37 (17)H19A—C19—H19B109.5
C2—C1—Fe269.16 (15)O5—C19—H19C109.5
C11—C1—Fe2126.20 (18)H19A—C19—H19C109.5
C3—C2—C1108.7 (3)H19B—C19—H19C109.5
C3—C2—Fe269.82 (18)O6—C20—H20A109.5
C1—C2—Fe269.79 (15)O6—C20—H20B109.5
C3—C2—H2125.6H20A—C20—H20B109.5
C1—C2—H2125.6O6—C20—H20C109.5
Fe2—C2—H2125.6H20A—C20—H20C109.5
C2—C3—C4107.7 (3)H20B—C20—H20C109.5
C2—C3—Fe269.89 (16)O6—Fe1—O4i91.29 (9)
C4—C3—Fe269.60 (18)O6—Fe1—O576.14 (7)
C2—C3—H3126.1O4i—Fe1—O5162.62 (7)
C4—C3—H3126.1O6—Fe1—O3i102.60 (6)
Fe2—C3—H3126.1O4i—Fe1—O3i85.61 (8)
C5—C4—C3108.6 (3)O5—Fe1—O3i85.50 (6)
C5—C4—Fe269.05 (18)O6—Fe1—O184.48 (6)
C3—C4—Fe270.0 (2)O4i—Fe1—O188.83 (9)
C5—C4—H4125.7O5—Fe1—O1101.62 (6)
C3—C4—H4125.7O3i—Fe1—O1171.08 (8)
Fe2—C4—H4125.7O6—Fe1—O2163.02 (7)
C4—C5—C1108.6 (3)O4i—Fe1—O2101.51 (8)
C4—C5—Fe270.37 (19)O5—Fe1—O293.34 (9)
C1—C5—Fe270.80 (17)O3i—Fe1—O289.60 (8)
C4—C5—H5125.7O1—Fe1—O284.66 (8)
C1—C5—H5125.7C5—Fe2—C9117.30 (13)
Fe2—C5—H5125.7C5—Fe2—C440.58 (12)
C7—C6—C10108.2 (3)C9—Fe2—C4105.82 (14)
C7—C6—Fe269.68 (18)C5—Fe2—C10108.69 (11)
C10—C6—Fe269.52 (17)C9—Fe2—C1041.04 (11)
C7—C6—H6125.9C4—Fe2—C10127.46 (13)
C10—C6—H6125.9C5—Fe2—C7169.03 (13)
Fe2—C6—H6125.9C9—Fe2—C768.09 (14)
C8—C7—C6108.0 (3)C4—Fe2—C7149.56 (14)
C8—C7—Fe269.91 (19)C10—Fe2—C768.51 (12)
C6—C7—Fe269.78 (18)C5—Fe2—C6130.60 (12)
C8—C7—H7126.0C9—Fe2—C668.41 (14)
C6—C7—H7126.0C4—Fe2—C6167.07 (13)
Fe2—C7—H7126.0C10—Fe2—C640.77 (12)
C9—C8—C7108.6 (3)C7—Fe2—C640.54 (12)
C9—C8—Fe269.65 (17)C5—Fe2—C8149.67 (14)
C7—C8—Fe269.76 (19)C9—Fe2—C840.23 (13)
C9—C8—H8125.7C4—Fe2—C8115.68 (15)
C7—C8—H8125.7C10—Fe2—C868.34 (12)
Fe2—C8—H8125.7C7—Fe2—C840.33 (14)
C8—C9—C10108.1 (3)C6—Fe2—C867.97 (14)
C8—C9—Fe270.11 (18)C5—Fe2—C368.49 (13)
C10—C9—Fe269.58 (15)C9—Fe2—C3125.10 (14)
C8—C9—H9125.9C4—Fe2—C340.38 (14)
C10—C9—H9125.9C10—Fe2—C3164.08 (13)
Fe2—C9—H9125.9C7—Fe2—C3117.22 (14)
C6—C10—C9107.1 (3)C6—Fe2—C3152.39 (14)
C6—C10—C15124.1 (3)C8—Fe2—C3105.73 (14)
C9—C10—C15128.8 (3)C5—Fe2—C268.45 (15)
C6—C10—Fe269.71 (16)C9—Fe2—C2163.45 (11)
C9—C10—Fe269.37 (16)C4—Fe2—C267.72 (17)
C15—C10—Fe2124.13 (18)C10—Fe2—C2154.74 (12)
O1—C11—C12123.7 (2)C7—Fe2—C2109.24 (16)
O1—C11—C1114.4 (2)C6—Fe2—C2120.98 (16)
C12—C11—C1121.9 (2)C8—Fe2—C2127.27 (13)
C13—C12—C11123.0 (2)C3—Fe2—C240.29 (14)
C13—C12—H12118.5C5—Fe2—C140.83 (11)
C11—C12—H12118.5C9—Fe2—C1152.63 (12)
O2—C13—C12124.9 (3)C4—Fe2—C168.34 (12)
O2—C13—C14115.3 (3)C10—Fe2—C1120.15 (10)
C12—C13—C14119.7 (3)C7—Fe2—C1130.52 (13)
C13—C14—H14A109.5C6—Fe2—C1111.11 (12)
C13—C14—H14B109.5C8—Fe2—C1166.90 (13)
H14A—C14—H14B109.5C3—Fe2—C168.70 (12)
C13—C14—H14C109.5C2—Fe2—C141.05 (10)
H14A—C14—H14C109.5C11—O1—Fe1131.01 (19)
H14B—C14—H14C109.5C13—O2—Fe1129.69 (19)
O3—C15—C16124.0 (3)C15—O3—Fe1i128.48 (19)
O3—C15—C10115.0 (2)C17—O4—Fe1i128.29 (18)
C16—C15—C10121.0 (3)C19—O5—Fe1i128.41 (7)
C17—C16—C15123.1 (3)C19—O5—Fe1128.41 (7)
C17—C16—H16118.4Fe1i—O5—Fe1103.19 (13)
C15—C16—H16118.4C19—O5—H20108.2
O4—C17—C16125.1 (3)Fe1i—O5—H2040.6
O4—C17—C18114.5 (3)Fe1—O5—H20111.8
C16—C17—C18120.4 (3)C20—O6—Fe1127.74 (6)
C17—C18—H18A109.5C20—O6—Fe1i127.74 (6)
C17—C18—H18B109.5Fe1—O6—Fe1i104.52 (13)
H18A—C18—H18B109.5C20—O6—H21108.2
C17—C18—H18C109.5Fe1—O6—H21102.9
H18A—C18—H18C109.5Fe1i—O6—H2152.7
Symmetry code: (i) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C20—H20A···O4i0.962.493.028 (3)116
C20—H20C···O40.962.573.028 (3)110
C19—H19B···O20.962.533.121 (3)120
C3—H3···O4ii0.982.573.107 (4)114
O6—H21···O40.822.442.8377 (19)111
O6—H21···O30.822.333.103 (3)158
O5—H20···O1i0.822.333.101 (3)157
O5—H20···O2i0.822.322.914 (2)129
Symmetry codes: (i) x, y+2, z; (ii) x+1/2, y1/2, z.

Experimental details

Crystal data
Chemical formula[Fe4(C9H8O2)4(CH4O)2]
Mr880.10
Crystal system, space groupOrthorhombic, Aba2
Temperature (K)291
a, b, c (Å)14.599 (3), 19.290 (4), 12.955 (3)
V3)3648.5 (13)
Z4
Radiation typeMo Kα
µ (mm1)1.62
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerRigaku R-AXIS RAPID
diffractometer
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.685, 0.737
No. of measured, independent and
observed [I > 2σ(I)] reflections
16837, 4079, 3473
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.069, 1.05
No. of reflections4079
No. of parameters242
No. of restraints13
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.28
Absolute structureFlack (1983), 1899 Friedel pairs
Absolute structure parameter0.001 (16)

Computer programs: RAPID-AUTO (Rigaku, 1998), CrystalStructure (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (grant Nos. 20572018 and 20672032), Heilongjiang Province (grant Nos. 1055HZ001, ZJG0504 and JC200605) and Heilongjiang University.

References

First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationRigaku/MSC (2002). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, C.-G., Zhu, M.-J., Sun, J., Liu, W.-L. & Shi, Y.-C. (2007). J. Coord. Chem. 60, 1083–1091.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds