organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(2H-Tetra­zol-5-yl)pyridinium perchlorate

aOrdered Matter Science Research Center, College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China
*Correspondence e-mail: fudavid88@yahoo.com.cn

(Received 3 April 2009; accepted 14 May 2009; online 20 May 2009)

In the cation of the title compound, C6H6N5+·ClO4, the pyridinium and tetra­zole rings form a dihedral angle of 23.6 (1)°. In the crystal structure, weak inter­molecular N—H⋯O and N—H⋯N hydrogen bonds link cations and anions into chains extending along the b axis.

Related literature

For applications of tetra­zole derivatives in coordination chemistry, see: Xiong et al. (2002[Xiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800-3803.]); Wang et al. (2005[Wang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278-5285.]). For related structures, see: Dai & Fu (2008[Dai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.]); Wen (2008[Wen, X.-C. (2008). Acta Cryst. E64, m768.]).

[Scheme 1]

Experimental

Crystal data
  • C6H6N5+·ClO4

  • Mr = 247.61

  • Monoclinic, P 21 /n

  • a = 5.2033 (10) Å

  • b = 14.764 (3) Å

  • c = 12.244 (2) Å

  • β = 101.78 (3)°

  • V = 920.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.43 mm−1

  • T = 298 K

  • 0.30 × 0.25 × 0.20 mm

Data collection
  • Rigaku Mercury2 diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.872, Tmax = 1.000 (expected range = 0.801–0.919)

  • 9546 measured reflections

  • 2108 independent reflections

  • 1849 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.093

  • S = 1.09

  • 2108 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N5—H5A⋯O3i 0.86 2.28 2.964 (2) 136
N5—H5A⋯N2ii 0.86 2.38 3.059 (2) 136
N3—H3A⋯O4iii 0.86 2.21 2.884 (2) 135
Symmetry codes: (i) -x, -y+1, -z+1; (ii) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z+{\script{1\over 2}}].

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In the past few years, more and more people have focused their attention on the chemistry of tetrazole derivatives because of their multiple coordination modes as ligands to metal ions and for the construction of novel metal-organic frameworks (Wang et al. 2005; Xiong et al. 2002; Wen, 2008). We report here the crystal structure of the title compound, 4-(2H-tetrazol-5-yl)pyridinium perchlorate).

In the title compound (Fig.1), the pyridine N atom is protonated. The pyridine ring makes a dihedral angle of 23.62 (1)° with the tetrazole ring. The geometric parameters of the tetrazole rings are comparable to those in related molecules (Wang et al. 2005; Dai & Fu, 2008).

The crystal packing is stabilized by N—H···O and N—H···N hydrogen bonds (Table 1) with the formation of zig-zag chains parallel to b axis.

Related literature top

For applications of tetrazole derivatives in coordination chemistry, see: Xiong et al. (2002); Wang et al. (2005). For the crystal structures of related compounds, see: Dai & Fu (2008); Wen (2008).

Experimental top

Isonicotinonitrile (30 mmol), NaN 3 (45 mmol), NH4Cl (33 mmol) and DMF (50 ml) were added in a flask under nitrogen atmosphere and the mixture stirred at 110°C for 20 h. The resulting solution was then poured into ice-water (100 ml), and a white solid was obtained after adding HCl (6 M) till pH=6. The precipitate was filtered and washed with distilled water. Colourless block-shaped crystals suitable for X-ray analysis were obtained from the crude product by slow evaporation of an ethanol/HClO4 (50:1 v/v) solution.

Refinement top

All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C–H = 0.93 Å (aromatic) and N–H = 0.86 Å with Uiso(H) =1.2Ueq(C or N).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level.
4-(2H-Tetrazol-5-yl)pyridinium perchlorate top
Crystal data top
C6H6N5+·ClO4F(000) = 504
Mr = 247.61Dx = 1.786 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2108 reflections
a = 5.2033 (10) Åθ = 3.2–27.5°
b = 14.764 (3) ŵ = 0.43 mm1
c = 12.244 (2) ÅT = 298 K
β = 101.78 (3)°Block, colourless
V = 920.8 (3) Å30.30 × 0.25 × 0.20 mm
Z = 4
Data collection top
Rigaku Mercury2
diffractometer
2108 independent reflections
Radiation source: fine-focus sealed tube1849 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.2°
CCD profile fitting scansh = 66
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1919
Tmin = 0.872, Tmax = 1.000l = 1515
9546 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0391P)2 + 0.4636P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
2108 reflectionsΔρmax = 0.29 e Å3
146 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.032 (3)
Crystal data top
C6H6N5+·ClO4V = 920.8 (3) Å3
Mr = 247.61Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.2033 (10) ŵ = 0.43 mm1
b = 14.764 (3) ÅT = 298 K
c = 12.244 (2) Å0.30 × 0.25 × 0.20 mm
β = 101.78 (3)°
Data collection top
Rigaku Mercury2
diffractometer
2108 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1849 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 1.000Rint = 0.036
9546 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.093H-atom parameters constrained
S = 1.09Δρmax = 0.29 e Å3
2108 reflectionsΔρmin = 0.37 e Å3
146 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.54774 (8)0.68556 (3)0.60933 (3)0.02861 (15)
O40.6154 (3)0.76134 (10)0.54624 (12)0.0425 (4)
O30.2704 (3)0.68626 (10)0.60633 (13)0.0433 (4)
O20.6150 (3)0.60331 (10)0.55912 (15)0.0524 (4)
N10.3679 (3)0.59831 (10)0.88383 (13)0.0307 (3)
N50.0708 (3)0.33991 (11)0.61681 (12)0.0317 (3)
H5A0.01010.30290.56730.038*
N40.7318 (3)0.51759 (10)0.89177 (13)0.0325 (4)
C30.3301 (3)0.45759 (11)0.77061 (13)0.0247 (3)
C60.4761 (3)0.52315 (11)0.85006 (13)0.0246 (3)
N20.5614 (3)0.64262 (10)0.94760 (13)0.0327 (4)
C50.2877 (4)0.31159 (12)0.68590 (16)0.0337 (4)
H50.34710.25260.68100.040*
N30.7722 (3)0.59329 (10)0.95023 (13)0.0325 (4)
H3A0.92460.60900.98710.039*
O10.6915 (3)0.69193 (12)0.72169 (12)0.0516 (4)
C20.0996 (3)0.48426 (12)0.69840 (15)0.0298 (4)
H20.03270.54230.70260.036*
C40.4234 (4)0.37000 (12)0.76447 (15)0.0308 (4)
H40.57560.35110.81290.037*
C10.0268 (4)0.42336 (13)0.62097 (15)0.0334 (4)
H10.17990.44010.57160.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0264 (2)0.0283 (2)0.0283 (2)0.00122 (15)0.00104 (16)0.00377 (16)
O40.0439 (8)0.0389 (8)0.0435 (8)0.0015 (6)0.0060 (6)0.0151 (6)
O30.0268 (7)0.0536 (9)0.0482 (8)0.0018 (6)0.0044 (6)0.0002 (7)
O20.0510 (9)0.0366 (8)0.0687 (11)0.0080 (7)0.0098 (8)0.0074 (7)
N10.0302 (8)0.0249 (8)0.0349 (8)0.0011 (6)0.0013 (6)0.0052 (6)
N50.0349 (8)0.0290 (8)0.0287 (8)0.0066 (6)0.0006 (6)0.0077 (6)
N40.0284 (8)0.0285 (8)0.0371 (8)0.0002 (6)0.0016 (6)0.0049 (6)
C30.0260 (8)0.0227 (8)0.0247 (8)0.0023 (6)0.0036 (6)0.0002 (6)
C60.0262 (8)0.0215 (8)0.0244 (8)0.0000 (6)0.0012 (6)0.0007 (6)
N20.0346 (8)0.0266 (8)0.0344 (8)0.0041 (6)0.0014 (6)0.0049 (6)
C50.0423 (11)0.0224 (9)0.0348 (10)0.0007 (7)0.0037 (8)0.0026 (7)
N30.0289 (8)0.0293 (8)0.0348 (8)0.0038 (6)0.0038 (6)0.0047 (6)
O10.0471 (9)0.0699 (11)0.0306 (8)0.0147 (7)0.0092 (6)0.0103 (7)
C20.0291 (9)0.0249 (9)0.0328 (9)0.0015 (7)0.0003 (7)0.0014 (7)
C40.0331 (9)0.0247 (9)0.0304 (9)0.0024 (7)0.0030 (7)0.0009 (7)
C10.0294 (9)0.0345 (10)0.0325 (9)0.0008 (7)0.0027 (7)0.0011 (8)
Geometric parameters (Å, º) top
Cl1—O11.4285 (15)C3—C41.389 (2)
Cl1—O21.4363 (15)C3—C21.394 (2)
Cl1—O31.4363 (15)C3—C61.469 (2)
Cl1—O41.4433 (14)N2—N31.312 (2)
N1—N21.315 (2)C5—C41.375 (2)
N1—C61.347 (2)C5—H50.9300
N5—C51.332 (2)N3—H3A0.8600
N5—C11.338 (2)C2—C11.373 (2)
N5—H5A0.8600C2—H20.9300
N4—N31.321 (2)C4—H40.9300
N4—C61.327 (2)C1—H10.9300
O1—Cl1—O2110.02 (11)N3—N2—N1105.86 (15)
O1—Cl1—O3110.48 (10)N5—C5—C4119.66 (17)
O2—Cl1—O3109.06 (9)N5—C5—H5120.2
O1—Cl1—O4109.12 (9)C4—C5—H5120.2
O2—Cl1—O4108.60 (10)N2—N3—N4114.64 (14)
O3—Cl1—O4109.53 (9)N2—N3—H3A122.7
N2—N1—C6105.96 (15)N4—N3—H3A122.7
C5—N5—C1122.96 (15)C1—C2—C3118.82 (16)
C5—N5—H5A118.5C1—C2—H2120.6
C1—N5—H5A118.5C3—C2—H2120.6
N3—N4—C6101.09 (14)C5—C4—C3119.14 (16)
C4—C3—C2119.59 (15)C5—C4—H4120.4
C4—C3—C6120.69 (15)C3—C4—H4120.4
C2—C3—C6119.70 (15)N5—C1—C2119.82 (16)
N4—C6—N1112.45 (15)N5—C1—H1120.1
N4—C6—C3123.79 (15)C2—C1—H1120.1
N1—C6—C3123.66 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O3i0.862.282.964 (2)136
N5—H5A···N2ii0.862.383.059 (2)136
N3—H3A···O4iii0.862.212.884 (2)135
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H6N5+·ClO4
Mr247.61
Crystal system, space groupMonoclinic, P21/n
Temperature (K)298
a, b, c (Å)5.2033 (10), 14.764 (3), 12.244 (2)
β (°) 101.78 (3)
V3)920.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.43
Crystal size (mm)0.30 × 0.25 × 0.20
Data collection
DiffractometerRigaku Mercury2
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.872, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
9546, 2108, 1849
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.093, 1.09
No. of reflections2108
No. of parameters146
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.37

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N5—H5A···O3i0.862.282.964 (2)136.4
N5—H5A···N2ii0.862.383.059 (2)135.7
N3—H3A···O4iii0.862.212.884 (2)135.2
Symmetry codes: (i) x, y+1, z+1; (ii) x+1/2, y1/2, z+3/2; (iii) x+1/2, y+3/2, z+1/2.
 

Acknowledgements

This work was supported by a start-up grant from Southeast University to Professor Ren-Gen Xiong.

References

First citationDai, W. & Fu, D.-W. (2008). Acta Cryst. E64, o1444.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, X.-S., Tang, Y.-Z., Huang, X.-F., Qu, Z.-R., Che, C.-M., Chan, C. W. H. & Xiong, R.-G. (2005). Inorg. Chem. 44, 5278–5285.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationWen, X.-C. (2008). Acta Cryst. E64, m768.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationXiong, R.-G., Xue, X., Zhao, H., You, X.-Z., Abrahams, B. F. & Xue, Z.-L. (2002). Angew. Chem. Int. Ed. 41, 3800–3803.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds