organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

9-O-Butyl­berberrubinium bromide

aCollege of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China, and cCollege of Life Sciences, Southwest University, Chongqing 400715, People's Republic of China
*Correspondence e-mail: yexiaoli@swu.edu.cn

(Received 14 April 2009; accepted 15 May 2009; online 23 May 2009)

In the title compound, C23H24NO4+·Br, the butyl chain is disordered between two conformations; the occupancies refined to 0.735 (7) and 0.265 (7). The dihedral angle between the naphthalene ring system and the phenyl ring is 11.6 (2)°. In the crystal structure, the cations are packed via ππ inter­actions into stacks propagating in the [010] direction. Weak inter­molecular C—H⋯O and C—H⋯Br hydrogen bonds contribute further to the crystal packing stability.

Related literature

For the bioactivity of berberine, see: Jiang et al. (1998[Jiang, J. Y., Geng, D. S., Tursonjan, T. & Liu, F. (1998). Chin. Pharmacol. Bull. 14, 434-437.]); Kupeli et al.. (2002[Kupeli, E., Kosar, M., Yesilada, E., Husnu, K. & Baser, C. (2002). Life Sci. 72, 645-657.]). For the bioactivity of 9-O-butyl-berberrubine bromide, see Ye & Li (2007[Ye, X. L. & Li, X. G. (2007). Chinese Patent No. 200710078505.X.]).

[Scheme 1]

Experimental

Crystal data
  • C23H24NO4+·Br

  • Mr = 458.34

  • Monoclinic, P 21 /n

  • a = 9.716 (4) Å

  • b = 7.623 (3) Å

  • c = 27.443 (11) Å

  • β = 92.983 (8)°

  • V = 2029.9 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 2.06 mm−1

  • T = 295 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.791, Tmax = 0.887

  • 10394 measured reflections

  • 3592 independent reflections

  • 1965 reflections with I > 2σ(I)

  • Rint = 0.069

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.161

  • S = 1.08

  • 3592 reflections

  • 276 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.55 e Å−3

Table 1
Centroid-to-centroid distances (Å)

Cg1⋯Cg3i 3.780 (4)
Cg2⋯Cg3ii 3.775 (4)
Symmetry codes: (i) -x+1, -y, -z+1; (ii) -x+1, -y+1, -z+1. Cg1, Cg2 and Cg3 are the centroids of the N1/C13/C12/C9/C10/C14, C5–C10 and C15/C19–C22/C16 rings, respectively.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12⋯Br1 0.93 2.77 3.658 (5) 161
C2—H2A⋯O2iii 0.97 2.64 3.404 (14) 136
Symmetry code: (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Berberine is a main compound presented in the rhizome of Coptis chinensis Franch. Berberine and its derivatives are used for treating diarrhoea (Kupeli et al., 2002) and anti-inflammatory (Jiang et al., 1998). Herewith we report the crystal structure of the title compound (I), which exhibits an excellent antibacterial activity (Ye & Li, 2007).

In (I) (Fig. 1), the dihedral angles formed by the benzene rings C5–C10 and C15/C19/C20/C21/C22/C16 with the pyridine ring are 2.2 (3) and 12.8 (3)°, respectively. The six-membered heterocyclic ring (C13/C15/C16/C17/C18/N1) adopts screw-boat conformation. In the crystal structure, weak intermolecular C—H···O and C—H···Br hydrogen bonds (Table 2) link the molecules. The aromatic rings in the cations are involved in ππ interactions (Table 1). The cations are packed via ππ interactions into stacks propagated in direction [010].

Related literature top

For the bioactivity of berberine, see: Jiang et al. (1998); Kupeli et al.. (2002). For the bioactivity of 9-O-butyl-berberrubine bromide, see Ye & Li (2007).

Experimental top

Berberrubine was obtained from berberine by pyrolysis at 180 °C for 1 h. Then dried berberrubine (10 mmol) was dissolved in DMF (200 ml) and incubated with n-butyl bromide (11 mmol) for 5 h at 100 °C to give the corresponding crude 9-O-butyl-berberrubine bromide. The product was purified by recrystallization from methanol at -18 °C. Crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the solid dissolved in methanol at room temperature for 15 d.

Refinement top

All H atoms were placed in calculated positions,with C—H = 0.93–0.97 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq(C) for aryl and methylene H atoms or 1.5Ueq(C) for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title compound showing the atom-labeling scheme and 30% probability displacement ellipsoids.
9-O-Butylberberrubinium bromide top
Crystal data top
C23H24NO4+·BrF(000) = 944
Mr = 458.34Dx = 1.500 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1163 reflections
a = 9.716 (4) Åθ = 2.8–19.6°
b = 7.623 (3) ŵ = 2.06 mm1
c = 27.443 (11) ÅT = 295 K
β = 92.983 (8)°Block, yellow
V = 2029.9 (14) Å30.12 × 0.10 × 0.06 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
3592 independent reflections
Radiation source: fine-focus sealed tube1965 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.069
ϕ and ω scansθmax = 25.1°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker 2005)
h = 1111
Tmin = 0.791, Tmax = 0.887k = 79
10394 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.060H-atom parameters constrained
wR(F2) = 0.161 w = 1/[σ2(Fo2) + (0.0623P)2 + 1.1441P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max < 0.001
3592 reflectionsΔρmax = 0.58 e Å3
276 parametersΔρmin = 0.55 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0020 (7)
Crystal data top
C23H24NO4+·BrV = 2029.9 (14) Å3
Mr = 458.34Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.716 (4) ŵ = 2.06 mm1
b = 7.623 (3) ÅT = 295 K
c = 27.443 (11) Å0.12 × 0.10 × 0.06 mm
β = 92.983 (8)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
3592 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 2005)
1965 reflections with I > 2σ(I)
Tmin = 0.791, Tmax = 0.887Rint = 0.069
10394 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.161H-atom parameters constrained
S = 1.08Δρmax = 0.58 e Å3
3592 reflectionsΔρmin = 0.55 e Å3
276 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.19113 (6)0.34507 (10)0.58534 (2)0.0683 (3)
O10.4605 (4)0.4269 (6)0.31978 (15)0.0691 (13)
O20.8340 (4)0.0249 (7)0.66220 (16)0.0802 (14)
O30.5968 (4)0.0055 (6)0.66073 (16)0.0708 (12)
O40.1935 (4)0.5291 (6)0.31514 (15)0.0741 (13)
N10.6413 (4)0.2391 (6)0.44906 (17)0.0469 (12)
C1'0.5253 (10)0.5997 (11)0.3125 (3)0.073 (2)0.735 (7)
H1'10.58140.63820.34070.088*0.735 (7)
H1'20.45890.68970.30270.088*0.735 (7)
C10.4509 (12)0.5865 (18)0.2933 (5)0.073 (2)0.265 (7)
H1A0.44970.68070.31700.088*0.265 (7)
H1B0.36170.58720.27570.088*0.265 (7)
C20.5550 (11)0.6342 (14)0.2577 (4)0.107 (3)0.735 (7)
H2A0.50420.67200.22820.128*0.735 (7)
H2B0.60330.73670.27080.128*0.735 (7)
C30.6599 (11)0.5126 (15)0.2427 (4)0.117 (3)0.735 (7)
H3A0.61960.39620.24100.140*0.735 (7)
H3B0.73350.51030.26790.140*0.735 (7)
C40.7234 (15)0.5492 (18)0.1943 (4)0.120 (4)0.735 (7)
H4A0.76200.44300.18220.180*0.735 (7)
H4B0.79480.63570.19900.180*0.735 (7)
H4C0.65370.59220.17130.180*0.735 (7)
C2'0.611 (3)0.540 (3)0.2709 (9)0.107 (3)0.265 (7)
H2'10.69050.47640.28430.128*0.265 (7)
H2'20.55620.45860.25060.128*0.265 (7)
C3'0.659 (3)0.687 (3)0.2392 (8)0.117 (3)0.265 (7)
H3'10.74350.73520.25430.140*0.265 (7)
H3'20.59040.77920.23820.140*0.265 (7)
C4'0.686 (5)0.633 (5)0.1874 (8)0.120 (4)0.265 (7)
H4'10.72400.73040.17050.180*0.265 (7)
H4'20.60090.59760.17090.180*0.265 (7)
H4'30.74980.53690.18800.180*0.265 (7)
C50.3838 (6)0.4217 (8)0.3608 (2)0.0544 (14)
C60.2479 (6)0.4712 (8)0.3590 (2)0.0570 (15)
C70.1715 (6)0.4554 (8)0.4011 (2)0.0592 (16)
H70.07920.48800.39950.071*
C80.2291 (6)0.3941 (8)0.4439 (2)0.0533 (15)
H80.17580.38350.47100.064*
C90.3696 (5)0.3464 (8)0.4475 (2)0.0482 (13)
C100.4459 (5)0.3590 (8)0.4044 (2)0.0479 (13)
C110.0506 (6)0.5753 (10)0.3118 (2)0.080 (2)
H11A0.00390.47440.31900.121*
H11B0.02600.61570.27940.121*
H11C0.03390.66680.33480.121*
C120.4368 (5)0.2854 (7)0.4901 (2)0.0482 (14)
H120.38830.28090.51840.058*
C130.5723 (5)0.2312 (7)0.4923 (2)0.0460 (13)
C140.5833 (5)0.3019 (7)0.4082 (2)0.0488 (14)
H140.63560.30860.38080.059*
C150.6459 (5)0.1642 (7)0.5359 (2)0.0476 (13)
C160.7894 (5)0.1470 (8)0.5374 (2)0.0507 (14)
C170.8631 (6)0.2081 (8)0.4940 (2)0.0573 (16)
H17A0.87810.33370.49640.069*
H17B0.95240.15140.49380.069*
C180.7835 (5)0.1681 (8)0.4478 (2)0.0567 (15)
H18A0.77970.04210.44290.068*
H18B0.82920.21950.42060.068*
C190.5729 (6)0.1186 (7)0.5774 (2)0.0508 (14)
H190.47750.12840.57720.061*
C200.6445 (6)0.0617 (8)0.6165 (2)0.0532 (15)
C210.7863 (6)0.0423 (8)0.6182 (2)0.0597 (15)
C220.8615 (6)0.0853 (8)0.5790 (2)0.0580 (15)
H220.95690.07380.58030.070*
C230.7160 (7)0.0309 (10)0.6915 (2)0.0759 (19)
H23A0.70820.14610.70610.091*
H23B0.72520.05540.71740.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0502 (4)0.0849 (6)0.0714 (5)0.0009 (4)0.0186 (3)0.0016 (4)
O10.066 (3)0.088 (3)0.055 (3)0.020 (2)0.017 (2)0.005 (2)
O20.069 (3)0.111 (4)0.060 (3)0.010 (3)0.007 (3)0.011 (3)
O30.067 (3)0.088 (3)0.058 (3)0.000 (3)0.006 (2)0.010 (2)
O40.051 (3)0.116 (4)0.056 (3)0.018 (3)0.003 (2)0.001 (3)
N10.039 (2)0.056 (3)0.047 (3)0.002 (2)0.010 (2)0.000 (2)
C1'0.077 (4)0.080 (4)0.064 (4)0.002 (4)0.020 (4)0.015 (4)
C10.077 (4)0.080 (4)0.064 (4)0.002 (4)0.020 (4)0.015 (4)
C20.117 (6)0.108 (6)0.098 (5)0.002 (5)0.034 (5)0.020 (5)
C30.133 (6)0.114 (6)0.107 (6)0.002 (6)0.039 (5)0.015 (5)
C40.140 (9)0.132 (10)0.092 (7)0.003 (8)0.061 (6)0.002 (7)
C2'0.117 (6)0.108 (6)0.098 (5)0.002 (5)0.034 (5)0.020 (5)
C3'0.133 (6)0.114 (6)0.107 (6)0.002 (6)0.039 (5)0.015 (5)
C4'0.140 (9)0.132 (10)0.092 (7)0.003 (8)0.061 (6)0.002 (7)
C50.052 (3)0.059 (3)0.054 (3)0.005 (3)0.016 (3)0.002 (3)
C60.051 (3)0.071 (4)0.049 (3)0.004 (3)0.004 (3)0.002 (3)
C70.044 (3)0.074 (4)0.060 (4)0.007 (3)0.005 (3)0.005 (3)
C80.041 (3)0.066 (4)0.054 (3)0.003 (3)0.010 (3)0.003 (3)
C90.044 (3)0.052 (3)0.049 (3)0.001 (3)0.011 (3)0.008 (3)
C100.043 (3)0.051 (3)0.050 (3)0.005 (3)0.008 (3)0.002 (3)
C110.061 (4)0.114 (6)0.065 (5)0.016 (4)0.003 (4)0.005 (4)
C120.044 (3)0.055 (3)0.047 (3)0.001 (3)0.012 (3)0.000 (3)
C130.040 (3)0.049 (3)0.049 (3)0.004 (2)0.010 (3)0.005 (3)
C140.043 (3)0.058 (3)0.047 (3)0.001 (3)0.014 (3)0.004 (3)
C150.043 (3)0.046 (3)0.055 (3)0.003 (3)0.006 (3)0.001 (3)
C160.044 (3)0.053 (3)0.056 (3)0.001 (3)0.007 (3)0.004 (3)
C170.041 (3)0.064 (4)0.068 (4)0.007 (3)0.011 (3)0.001 (3)
C180.043 (3)0.066 (4)0.062 (4)0.011 (3)0.014 (3)0.001 (3)
C190.041 (3)0.055 (3)0.057 (3)0.005 (3)0.007 (3)0.006 (3)
C200.048 (3)0.058 (4)0.053 (4)0.003 (3)0.004 (3)0.010 (3)
C210.053 (3)0.066 (4)0.059 (4)0.001 (3)0.006 (3)0.001 (3)
C220.044 (3)0.068 (4)0.063 (4)0.003 (3)0.003 (3)0.004 (3)
C230.074 (4)0.094 (5)0.060 (4)0.005 (4)0.005 (4)0.001 (4)
Geometric parameters (Å, º) top
O1—C51.382 (6)C4'—H4'30.9600
O1—C11.418 (12)C5—C61.372 (8)
O1—C1'1.477 (8)C5—C101.397 (8)
O2—C211.370 (7)C6—C71.412 (8)
O2—C231.434 (7)C7—C81.358 (8)
O3—C201.389 (7)C7—H70.9300
O3—C231.424 (7)C8—C91.412 (7)
O4—C61.361 (7)C8—H80.9300
O4—C111.430 (7)C9—C121.389 (7)
N1—C141.319 (7)C9—C101.431 (7)
N1—C131.393 (6)C10—C141.403 (7)
N1—C181.486 (6)C11—H11A0.9600
C1'—C2'1.517 (8)C11—H11B0.9600
C1'—H1'10.9700C11—H11C0.9600
C1'—H1'20.9700C12—C131.378 (7)
C1—C21.487 (7)C12—H120.9300
C1—H1A0.9700C13—C151.456 (8)
C1—H1B0.9700C14—H140.9300
C2—C31.454 (7)C15—C161.399 (7)
C2—H2A0.9700C15—C191.416 (7)
C2—H2B0.9700C16—C221.391 (8)
C3—C41.517 (7)C16—C171.497 (7)
C3—H3A0.9700C17—C181.483 (8)
C3—H3B0.9700C17—H17A0.9700
C4—H4A0.9600C17—H17B0.9700
C4—H4B0.9600C18—H18A0.9700
C4—H4C0.9600C18—H18B0.9700
C2'—C3'1.510 (8)C19—C201.321 (8)
C2'—H2'10.9700C19—H190.9300
C2'—H2'20.9700C20—C211.384 (8)
C3'—C4'1.516 (8)C21—C221.370 (8)
C3'—H3'10.9700C22—H220.9300
C3'—H3'20.9700C23—H23A0.9700
C4'—H4'10.9600C23—H23B0.9700
C4'—H4'20.9600
Cg1···Cg3i3.780 (4)Cg2···Cg3ii3.775 (4)
C5—O1—C1114.8 (6)C8—C7—H7119.0
C5—O1—C1'112.8 (5)C6—C7—H7119.0
C21—O2—C23105.2 (5)C7—C8—C9120.1 (5)
C20—O3—C23106.2 (5)C7—C8—H8119.9
C6—O4—C11117.9 (5)C9—C8—H8119.9
C14—N1—C13122.5 (5)C12—C9—C8123.7 (5)
C14—N1—C18117.9 (4)C12—C9—C10118.5 (5)
C13—N1—C18119.6 (5)C8—C9—C10117.8 (5)
O1—C1'—C2'95.0 (10)C5—C10—C14122.4 (5)
O1—C1'—H1'1112.7C5—C10—C9120.8 (5)
C2'—C1'—H1'1112.7C14—C10—C9116.7 (5)
O1—C1'—H1'2112.7O4—C11—H11A109.5
C2'—C1'—H1'2112.7O4—C11—H11B109.5
H1'1—C1'—H1'2110.2H11A—C11—H11B109.5
O1—C1—C2121.2 (9)O4—C11—H11C109.5
O1—C1—H1A107.0H11A—C11—H11C109.5
C2—C1—H1A107.0H11B—C11—H11C109.5
O1—C1—H1B107.0C13—C12—C9122.8 (5)
C2—C1—H1B107.0C13—C12—H12118.6
H1A—C1—H1B106.8C9—C12—H12118.6
C3—C2—C1122.8 (8)C12—C13—N1116.9 (5)
C3—C2—H2A106.6C12—C13—C15124.6 (5)
C1—C2—H2A106.6N1—C13—C15118.6 (5)
C3—C2—H2B106.6N1—C14—C10122.5 (5)
C1—C2—H2B106.6N1—C14—H14118.7
H2A—C2—H2B106.6C10—C14—H14118.7
C2—C3—C4117.0 (8)C16—C15—C19119.6 (5)
C2—C3—H3A108.0C16—C15—C13120.2 (5)
C4—C3—H3A108.0C19—C15—C13120.2 (5)
C2—C3—H3B108.0C22—C16—C15121.0 (5)
C4—C3—H3B108.0C22—C16—C17121.2 (5)
H3A—C3—H3B107.3C15—C16—C17117.7 (5)
C3—C4—H4A109.5C18—C17—C16111.6 (5)
C3—C4—H4B109.5C18—C17—H17A109.3
H4A—C4—H4B109.5C16—C17—H17A109.3
C3—C4—H4C109.5C18—C17—H17B109.3
H4A—C4—H4C109.5C16—C17—H17B109.3
H4B—C4—H4C109.5H17A—C17—H17B108.0
C3'—C2'—C1'114.1 (9)C17—C18—N1110.4 (5)
C3'—C2'—H2'1108.7C17—C18—H18A109.6
C1'—C2'—H2'1108.7N1—C18—H18A109.6
C3'—C2'—H2'2108.7C17—C18—H18B109.6
C1'—C2'—H2'2108.7N1—C18—H18B109.6
H2'1—C2'—H2'2107.6H18A—C18—H18B108.1
C2'—C3'—C4'114.3 (10)C20—C19—C15118.0 (5)
C2'—C3'—H3'1108.7C20—C19—H19121.0
C4'—C3'—H3'1108.7C15—C19—H19121.0
C2'—C3'—H3'2108.7C19—C20—C21123.0 (6)
C4'—C3'—H3'2108.7C19—C20—O3128.7 (5)
H3'1—C3'—H3'2107.6C21—C20—O3108.3 (6)
C3'—C4'—H4'1109.5O2—C21—C22127.7 (6)
C3'—C4'—H4'2109.5O2—C21—C20111.1 (6)
H4'1—C4'—H4'2109.5C22—C21—C20121.2 (6)
C3'—C4'—H4'3109.5C21—C22—C16117.3 (5)
H4'1—C4'—H4'3109.5C21—C22—H22121.3
H4'2—C4'—H4'3109.5C16—C22—H22121.3
C6—C5—O1121.4 (6)O3—C23—O2108.1 (5)
C6—C5—C10119.8 (5)O3—C23—H23A110.1
O1—C5—C10118.8 (5)O2—C23—H23A110.1
O4—C6—C5116.8 (5)O3—C23—H23B110.1
O4—C6—C7123.7 (5)O2—C23—H23B110.1
C5—C6—C7119.5 (6)H23A—C23—H23B108.4
C8—C7—C6121.9 (5)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Br10.932.773.658 (5)161
C2—H2A···O2iii0.972.643.404 (14)136
Symmetry code: (iii) x1/2, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC23H24NO4+·Br
Mr458.34
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)9.716 (4), 7.623 (3), 27.443 (11)
β (°) 92.983 (8)
V3)2029.9 (14)
Z4
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 2005)
Tmin, Tmax0.791, 0.887
No. of measured, independent and
observed [I > 2σ(I)] reflections
10394, 3592, 1965
Rint0.069
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.161, 1.08
No. of reflections3592
No. of parameters276
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.55

Computer programs: SMART (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL (Sheldrick, 2008).

Selected interatomic distances (Å) top
Cg1···Cg3i3.780 (4)Cg2···Cg3ii3.775 (4)
Symmetry codes: (i) x+1, y, z+1; (ii) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···Br10.932.773.658 (5)161.3
C2—H2A···O2iii0.972.643.404 (14)136.1
Symmetry code: (iii) x1/2, y+1/2, z1/2.
 

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant No. 20673084), the Natural Science Foundation Project of CQ CSTC (grant No. 2008BB5257) and the Major Technologies R & D Program of CQ CSTC (grant No. 2008AA5021).

References

First citationBruker (2005). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationJiang, J. Y., Geng, D. S., Tursonjan, T. & Liu, F. (1998). Chin. Pharmacol. Bull. 14, 434–437.  CAS Google Scholar
First citationKupeli, E., Kosar, M., Yesilada, E., Husnu, K. & Baser, C. (2002). Life Sci. 72, 645–657.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYe, X. L. & Li, X. G. (2007). Chinese Patent No. 200710078505.X.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds