organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,1′,3,3′,5,5′-Hexa­methyl­spiro­[furo[2,3-d]pyrimidine-6(5H),5′-pyrimidine]-2,2′,4,4′,6′(1H,3H,1′H,3′H,5′H)-penta­one

aDepartment of Chemistry, Faculty of Science, Urmia University, 57159 Urmia, Iran
*Correspondence e-mail: pesyan@gmail.com

(Received 21 April 2009; accepted 23 May 2009; online 29 May 2009)

In the title mol­ecule, C15H18N4O6, the fused 2,3-dihydro­furan ring has an envelope conformation and the spiro pyrimidine ring has a half-chair conformation. In the crystal, short inter­molecular O⋯C contacts of 2.835 (4) and 2.868 (4) Å between the carbonyl groups indicate the existence of electrostatic inter­actions, which link the mol­ecules into corrugated sheets parallel to the ab plane.

Related literature

For applications of furo[2,3-d]pyrimidine derivatives, see Cody et al. (1997[Cody, V., Galitsky, N., Luft, J. R., Pangborn, W., Gangjee, A., Devraj, R., Queener, S. F. & Blakley, R. L. (1997). Acta Cryst. D53, 638-649.]). For a related crystal structure, see Malathy Sony et al. (2002[Malathy Sony, S. M., Kuppayee, M., Ponnuswamy, M. N., Bhasker Reddy, D., Padmavathi, V. & Fun, H.-K. (2002). Acta Cryst. C58, o678-o680.]).

[Scheme 1]

Experimental

Crystal data
  • C15H18N4O6

  • Mr = 350.33

  • Orthorhombic, P 21 21 21

  • a = 8.0122 (9) Å

  • b = 11.9181 (14) Å

  • c = 16.4037 (19) Å

  • V = 1566.4 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 120 K

  • 0.21 × 0.14 × 0.12 mm

Data collection
  • Bruker SMART 1000 CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.980, Tmax = 0.989

  • 15042 measured reflections

  • 1964 independent reflections

  • 1589 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.089

  • S = 1.01

  • 1964 reflections

  • 232 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Selected interatomic distances (Å)

C8⋯O2i 2.835 (4)
C3⋯O5ii 2.868 (4)
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) x+1, y, z.

Data collection: SMART (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 1998[Bruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Fused pyrimidine compounds are valued in view of their well-known biological properties. As example, the furo[2,3-d]pyrimidine antifolate derivative introduced as novel classical antitumor agent (Cody et al., 1997). Herewith we present the title compound, (I).

In (I) (Fig. 1),the fused 2,3-dihydrofuran ring has an envelope conformation, and spiro pyrimidine ring has a half-chair conformation. Spiro pyrimidine ring is nearly perpendicular to 2,3-dihydro furan ring moiety, as was observed earlier in the related compound (Malathy Sony et al., 2002). Torsion angles C2–C1–O4–C7 and C2–C1–C5–C6 are -99.39 (3)° and 94.87 (3)°, respectively. In the crystal, short intermolecular O···C contacts (Table 1) between the carbonyl groups prove an existing of electrostatic interactions, which link the molecules into corrugated sheets parallel to ab plane.

Related literature top

For applications of furo[2,3-d]pyrimidine derivatives, see Cody et al. (1997). For a related crystal structure, see Malathy Sony et al. (2002).

Experimental top

In a 50 ml round bottom flask (in an ice-bath) equipped with magnetic stirrer was added 200 mg (1.89 mmol) cyanogen bromide in 10 ml acetone. Then a solution of 295 mg (1.89 mmol) 1,3-dimethylbarbituric acid and 202 mg (2.00 mmol) triethylamine in acetone was added drop wise by reparatory funnel during 1 h. The white solid precipitated after few minutes and the color of liquid turned red. Initially, the precipitate was dissolved in acetone. A white crystalline colorless solid was formed after allowing the solution to stand overnight (228 mg, 50% yield) as a white crystalline solid, m.p. 210–212 °C (decomps.); FT—IR (KBr), ν, cm-1: 2981.54, 2954.71, 1689.08, 1646.35; 1H NMR(CDCl3, 300 MHz) δ 3.434 (s, 3H); 3.355 (s, 6H), 3.283 (s, 3H), 1.402 (s,6H); 13C NMR (CDCl3, 75 MHz) δ 164.317, 160.207, 158.898, 151.033, 150.145, 93.220, 91.139, 53.872, 29.625, 29.081, 27.852, 23.318.

Refinement top

The C-bound H atoms were geometrically positioned (C–H 0.98 Å) and refined as riding, with Uiso(H) = 1.2-1.5 Ueq(C). In the absence of significant anomalous scatterers, 1855 Friedel pairs were merged before the final refinement.

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1998); data reduction: SAINT-Plus (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoids.
1,1',3,3',5,5'-Hexamethylspiro[furo[2,3-d]pyrimidine-6(5H),5'- pyrimidine]-2,2',4,4',6'(1H,3H,1'H,3'H,5'H)- pentaone top
Crystal data top
C15H18N4O6Dx = 1.486 Mg m3
Mr = 350.33Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 985 reflections
a = 8.0122 (9) Åθ = 3–25°
b = 11.9181 (14) ŵ = 0.12 mm1
c = 16.4037 (19) ÅT = 120 K
V = 1566.4 (3) Å3Prism, white
Z = 40.21 × 0.14 × 0.12 mm
F(000) = 736
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1964 independent reflections
Radiation source: fine-focus sealed tube1589 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 27.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
h = 1010
Tmin = 0.980, Tmax = 0.989k = 1515
15042 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.01P)2 + 2P]
where P = (Fo2 + 2Fc2)/3
1964 reflections(Δ/σ)max < 0.001
232 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C15H18N4O6V = 1566.4 (3) Å3
Mr = 350.33Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.0122 (9) ŵ = 0.12 mm1
b = 11.9181 (14) ÅT = 120 K
c = 16.4037 (19) Å0.21 × 0.14 × 0.12 mm
Data collection top
Bruker SMART 1000 CCD area-detector
diffractometer
1964 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
1589 reflections with I > 2σ(I)
Tmin = 0.980, Tmax = 0.989Rint = 0.041
15042 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 0.20 e Å3
1964 reflectionsΔρmin = 0.22 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5464 (3)0.52840 (19)0.75372 (15)0.0307 (6)
O20.8328 (3)0.8456 (2)0.69785 (15)0.0358 (6)
O30.6235 (3)0.7991 (2)0.94992 (14)0.0352 (6)
O40.4987 (3)0.59548 (19)0.90811 (15)0.0262 (5)
O50.0582 (3)0.6474 (2)0.83863 (15)0.0333 (6)
O60.0962 (3)0.3545 (2)1.00229 (15)0.0306 (6)
N10.6700 (4)0.6929 (2)0.71936 (16)0.0247 (6)
N20.6981 (4)0.8365 (2)0.81937 (16)0.0251 (6)
N40.0212 (3)0.5008 (2)0.92003 (17)0.0242 (6)
N50.3017 (3)0.4687 (2)0.95490 (17)0.0242 (6)
C10.5068 (4)0.6811 (3)0.84600 (19)0.0229 (7)
C20.5782 (4)0.6254 (3)0.7708 (2)0.0250 (7)
C30.7394 (4)0.7956 (3)0.7427 (2)0.0254 (7)
C40.6170 (4)0.7750 (3)0.8785 (2)0.0252 (7)
C50.3186 (4)0.7229 (3)0.8311 (2)0.0276 (8)
C60.2301 (4)0.6208 (3)0.8654 (2)0.0242 (7)
C70.3382 (4)0.5599 (3)0.9086 (2)0.0236 (7)
C80.1355 (4)0.4355 (3)0.9614 (2)0.0237 (7)
C90.0562 (4)0.5958 (3)0.8712 (2)0.0258 (8)
C100.7301 (5)0.6431 (3)0.6434 (2)0.0334 (8)
H10A0.63640.60840.61430.050*
H10B0.81420.58580.65570.050*
H10C0.77990.70160.60920.050*
C110.7816 (5)0.9384 (3)0.8465 (2)0.0321 (8)
H11A0.70270.98510.87710.048*
H11B0.82230.98020.79900.048*
H11C0.87600.91860.88170.048*
C120.2810 (5)0.7474 (3)0.7410 (2)0.0337 (9)
H12A0.16200.76450.73460.051*
H12B0.30950.68170.70790.051*
H12C0.34740.81190.72290.051*
C130.2770 (5)0.8270 (3)0.8822 (2)0.0358 (9)
H13A0.15720.84280.87840.054*
H13B0.34000.89150.86150.054*
H13C0.30720.81340.93920.054*
C140.1530 (4)0.4664 (3)0.9244 (2)0.0326 (8)
H14A0.15960.38890.94420.049*
H14B0.20340.47120.87010.049*
H14C0.21330.51590.96190.049*
C150.4309 (4)0.3990 (3)0.9914 (2)0.0303 (8)
H15A0.52060.44691.01230.045*
H15B0.47600.34790.95010.045*
H15C0.38300.35531.03630.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0313 (14)0.0252 (12)0.0355 (13)0.0023 (11)0.0011 (12)0.0009 (11)
O20.0412 (15)0.0304 (13)0.0357 (14)0.0072 (13)0.0071 (12)0.0047 (11)
O30.0416 (16)0.0377 (14)0.0262 (12)0.0048 (13)0.0006 (12)0.0017 (11)
O40.0207 (12)0.0275 (12)0.0304 (12)0.0015 (10)0.0002 (10)0.0055 (11)
O50.0240 (12)0.0359 (14)0.0399 (14)0.0027 (12)0.0043 (12)0.0057 (12)
O60.0257 (13)0.0307 (13)0.0353 (13)0.0014 (11)0.0014 (12)0.0063 (12)
N10.0264 (15)0.0257 (14)0.0221 (13)0.0007 (13)0.0016 (12)0.0010 (11)
N20.0262 (15)0.0225 (14)0.0267 (14)0.0013 (12)0.0014 (13)0.0002 (12)
N40.0215 (14)0.0243 (14)0.0269 (14)0.0011 (12)0.0009 (12)0.0002 (12)
N50.0228 (15)0.0228 (14)0.0268 (14)0.0009 (12)0.0004 (13)0.0025 (12)
C10.0207 (15)0.0247 (16)0.0234 (16)0.0003 (14)0.0014 (14)0.0014 (14)
C20.0215 (16)0.0264 (17)0.0272 (17)0.0033 (15)0.0023 (15)0.0004 (15)
C30.0258 (18)0.0242 (16)0.0262 (16)0.0007 (15)0.0021 (15)0.0017 (14)
C40.0227 (17)0.0257 (17)0.0274 (17)0.0034 (14)0.0007 (14)0.0008 (14)
C50.0196 (16)0.0285 (18)0.0346 (18)0.0030 (15)0.0035 (15)0.0044 (15)
C60.0218 (16)0.0252 (17)0.0255 (16)0.0005 (14)0.0028 (14)0.0021 (14)
C70.0224 (17)0.0210 (16)0.0275 (17)0.0015 (15)0.0016 (15)0.0016 (14)
C80.0225 (17)0.0243 (17)0.0244 (16)0.0015 (15)0.0015 (14)0.0005 (15)
C90.0267 (18)0.0261 (18)0.0248 (17)0.0020 (15)0.0005 (15)0.0016 (15)
C100.039 (2)0.0317 (19)0.0296 (18)0.0008 (18)0.0025 (17)0.0012 (16)
C110.0331 (19)0.0269 (18)0.0363 (19)0.0054 (16)0.0001 (17)0.0015 (16)
C120.0284 (19)0.0342 (19)0.038 (2)0.0031 (17)0.0037 (17)0.0085 (17)
C130.0293 (19)0.0268 (18)0.051 (2)0.0024 (16)0.0097 (19)0.0012 (18)
C140.0195 (17)0.038 (2)0.040 (2)0.0035 (17)0.0002 (16)0.0034 (17)
C150.0242 (17)0.0302 (19)0.0364 (19)0.0043 (16)0.0023 (17)0.0091 (16)
Geometric parameters (Å, º) top
O1—C21.216 (4)C5—C131.534 (5)
O2—C31.206 (4)C5—C121.537 (5)
O3—C41.208 (4)C6—C71.334 (5)
O4—C71.354 (4)C6—C91.428 (5)
O4—C11.443 (4)C10—H10A0.9800
O5—C91.226 (4)C10—H10B0.9800
O6—C81.217 (4)C10—H10C0.9800
N1—C21.378 (4)C11—H11A0.9800
N1—C31.399 (4)C11—H11B0.9800
N1—C101.462 (4)C11—H11C0.9800
N2—C41.378 (4)C12—H12A0.9800
N2—C31.389 (4)C12—H12B0.9800
N2—C111.457 (4)C12—H12C0.9800
N4—C81.380 (4)C13—H13A0.9800
N4—C91.416 (4)C13—H13B0.9800
N4—C141.457 (4)C13—H13C0.9800
N5—C71.358 (4)C14—H14A0.9800
N5—C81.393 (4)C14—H14B0.9800
N5—C151.456 (4)C14—H14C0.9800
C1—C21.513 (4)C15—H15A0.9800
C1—C41.522 (5)C15—H15B0.9800
C1—C51.607 (5)C15—H15C0.9800
C5—C61.516 (5)
C8···O2i2.835 (4)C3···O5ii2.868 (4)
C7—O4—C1105.6 (3)O6—C8—N5121.0 (3)
C2—N1—C3123.8 (3)N4—C8—N5115.8 (3)
C2—N1—C10117.4 (3)O5—C9—N4120.0 (3)
C3—N1—C10117.2 (3)O5—C9—C6126.6 (3)
C4—N2—C3124.3 (3)N4—C9—C6113.4 (3)
C4—N2—C11116.4 (3)N1—C10—H10A109.5
C3—N2—C11117.3 (3)N1—C10—H10B109.5
C8—N4—C9126.8 (3)H10A—C10—H10B109.5
C8—N4—C14116.9 (3)N1—C10—H10C109.5
C9—N4—C14116.3 (3)H10A—C10—H10C109.5
C7—N5—C8118.5 (3)H10B—C10—H10C109.5
C7—N5—C15122.2 (3)N2—C11—H11A109.5
C8—N5—C15119.1 (3)N2—C11—H11B109.5
O4—C1—C2106.4 (3)H11A—C11—H11B109.5
O4—C1—C4107.4 (3)N2—C11—H11C109.5
C2—C1—C4112.9 (3)H11A—C11—H11C109.5
O4—C1—C5106.5 (3)H11B—C11—H11C109.5
C2—C1—C5111.5 (3)C5—C12—H12A109.5
C4—C1—C5111.7 (3)C5—C12—H12B109.5
O1—C2—N1121.7 (3)H12A—C12—H12B109.5
O1—C2—C1121.7 (3)C5—C12—H12C109.5
N1—C2—C1116.4 (3)H12A—C12—H12C109.5
O2—C3—N2121.8 (3)H12B—C12—H12C109.5
O2—C3—N1120.8 (3)C5—C13—H13A109.5
N2—C3—N1117.3 (3)C5—C13—H13B109.5
O3—C4—N2122.4 (3)H13A—C13—H13B109.5
O3—C4—C1122.6 (3)C5—C13—H13C109.5
N2—C4—C1114.7 (3)H13A—C13—H13C109.5
C6—C5—C13110.2 (3)H13B—C13—H13C109.5
C6—C5—C12114.7 (3)N4—C14—H14A109.5
C13—C5—C12109.2 (3)N4—C14—H14B109.5
C6—C5—C197.7 (3)H14A—C14—H14B109.5
C13—C5—C1111.8 (3)N4—C14—H14C109.5
C12—C5—C1112.9 (3)H14A—C14—H14C109.5
C7—C6—C9119.0 (3)H14B—C14—H14C109.5
C7—C6—C5109.3 (3)N5—C15—H15A109.5
C9—C6—C5130.4 (3)N5—C15—H15B109.5
C6—C7—O4116.3 (3)H15A—C15—H15B109.5
C6—C7—N5126.4 (3)N5—C15—H15C109.5
O4—C7—N5117.3 (3)H15A—C15—H15C109.5
O6—C8—N4123.1 (3)H15B—C15—H15C109.5
C7—O4—C1—C299.4 (3)C4—C1—C5—C1322.4 (4)
C7—O4—C1—C4139.5 (3)O4—C1—C5—C12141.8 (3)
C7—O4—C1—C519.7 (3)C2—C1—C5—C1226.1 (4)
C3—N1—C2—O1166.1 (3)C4—C1—C5—C12101.2 (3)
C10—N1—C2—O10.8 (5)C13—C5—C6—C7101.6 (3)
C3—N1—C2—C119.0 (5)C12—C5—C6—C7134.8 (3)
C10—N1—C2—C1175.7 (3)C1—C5—C6—C715.1 (4)
O4—C1—C2—O135.2 (4)C13—C5—C6—C964.9 (5)
C4—C1—C2—O1152.8 (3)C12—C5—C6—C958.7 (5)
C5—C1—C2—O180.6 (4)C1—C5—C6—C9178.4 (4)
O4—C1—C2—N1149.9 (3)C9—C6—C7—O4172.6 (3)
C4—C1—C2—N132.3 (4)C5—C6—C7—O44.3 (4)
C5—C1—C2—N194.4 (3)C9—C6—C7—N54.8 (5)
C4—N2—C3—O2168.0 (3)C5—C6—C7—N5173.1 (3)
C11—N2—C3—O24.5 (5)C1—O4—C7—C610.5 (4)
C4—N2—C3—N111.2 (5)C1—O4—C7—N5171.8 (3)
C11—N2—C3—N1174.8 (3)C8—N5—C7—C62.2 (5)
C2—N1—C3—O2172.2 (3)C15—N5—C7—C6171.9 (3)
C10—N1—C3—O26.9 (5)C8—N5—C7—O4175.2 (3)
C2—N1—C3—N27.0 (5)C15—N5—C7—O410.7 (5)
C10—N1—C3—N2172.3 (3)C9—N4—C8—O6179.9 (3)
C3—N2—C4—O3158.8 (3)C14—N4—C8—O62.3 (5)
C11—N2—C4—O34.9 (5)C9—N4—C8—N51.2 (5)
C3—N2—C4—C126.5 (5)C14—N4—C8—N5178.7 (3)
C11—N2—C4—C1169.9 (3)C7—N5—C8—O6179.8 (3)
O4—C1—C4—O332.7 (4)C15—N5—C8—O65.9 (5)
C2—C1—C4—O3149.7 (3)C7—N5—C8—N40.9 (5)
C5—C1—C4—O383.7 (4)C15—N5—C8—N4175.1 (3)
O4—C1—C4—N2152.5 (3)C8—N4—C9—O5179.0 (3)
C2—C1—C4—N235.5 (4)C14—N4—C9—O53.5 (5)
C5—C1—C4—N291.1 (3)C8—N4—C9—C61.3 (5)
O4—C1—C5—C620.8 (3)C14—N4—C9—C6176.3 (3)
C2—C1—C5—C694.9 (3)C7—C6—C9—O5176.2 (3)
C4—C1—C5—C6137.8 (3)C5—C6—C9—O510.8 (6)
O4—C1—C5—C1394.6 (3)C7—C6—C9—N44.1 (5)
C2—C1—C5—C13149.7 (3)C5—C6—C9—N4169.5 (3)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC15H18N4O6
Mr350.33
Crystal system, space groupOrthorhombic, P212121
Temperature (K)120
a, b, c (Å)8.0122 (9), 11.9181 (14), 16.4037 (19)
V3)1566.4 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.21 × 0.14 × 0.12
Data collection
DiffractometerBruker SMART 1000 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.980, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
15042, 1964, 1589
Rint0.041
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.089, 1.01
No. of reflections1964
No. of parameters232
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.22

Computer programs: SMART (Bruker, 1998), SAINT-Plus (Bruker, 1998), SHELXTL (Sheldrick, 2008).

Selected interatomic distances (Å) top
C8···O2i2.835 (4)C3···O5ii2.868 (4)
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+1, y, z.
 

Acknowledgements

This work was supported by the Urmia University Research Council. We also thank Professor M. Yu. Antipin and Dr Z. Starikova for the X-ray data collection at the X-ray Structural Centre (XRSC), Moscow, Russia.

References

First citationBruker (1998). SAINT-Plus and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCody, V., Galitsky, N., Luft, J. R., Pangborn, W., Gangjee, A., Devraj, R., Queener, S. F. & Blakley, R. L. (1997). Acta Cryst. D53, 638–649.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMalathy Sony, S. M., Kuppayee, M., Ponnuswamy, M. N., Bhasker Reddy, D., Padmavathi, V. & Fun, H.-K. (2002). Acta Cryst. C58, o678–o680.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds