metal-organic compounds
The ansa-bridged cyclopentadienyl titanium complex [{η5-C5Me4CH2-C(NMe2)=N}TiCl2]
aSchool of Life Science and Technology, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: mszhou@sxu.edu.cn
The title complex, dichlorido[N,N-dimethyl-2-(η5-tetramethylcyclopentadienyl)acetamidinido-κN′]titanium(IV), [Ti(C13H20N2)Cl2], exhibits an unusual ansa-bridged conformation. The cyclopentadienyl ring and the mean plane of the Ti—N=C—C—C fragment form a dihedral angle of 88.08 (11)°.
Related literature
For related crystal structures, see: Hughes et al. (1993); Zhang et al. (2004). For general background, see: Chen & Marks (1997); Mahanthappa et al. (2004).
Experimental
Crystal data
|
Data collection: SMART (Siemens, 1996); cell SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809015839/cv2554sup1.cif
contains datablocks I, global. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809015839/cv2554Isup2.hkl
(CH3)2NCN (0.36 ml, 4.52 mmol) was added to a solution of PhN(Li)SiMe3(0.386 g, 2.26 mmol) in THF (30 cm3) at -78 °C. The resulting mixture was warmed to ca.25°C and stirred for overnight. CpTiCl3 (0.99 g, 4.52 mmol) was added at -78°C. The resulting mixture was warmed to ca.25°C and stirred for 24 h. The volatiles were removed in vacuo, and there residue was extracted with dichloromethane and filtered. The filtrate was concentrated to give red crystals of (I)(0.14 g, 13%).
Anal. calcd. for C13H20Cl2N2Ti(%): C, 48.33; H, 6.24; N, 8.67. Found: C, 48.25; H, 6.25; N, 8.73. A l l manipulations were performed under argonusing standard Schlenk and vacuum line techniques. THF was dried and distilled over Na underargon prior to use. Elemental analysis and NMR spectra are completely in agreement with the structure of (I). Spectroscopic analysis, 1HNMR (CDCl3): d 2.11~2.18 (d, 12 H, Cp—CH3), d 2.80, 3.10 (d, 6 H, N(CH3)2), d 4.09 (s, 2 H, CH2). 13CNMR (CDCl3): d 10.0, 10.8 (Cp-CH3), d 28.9 (CH2), d 33.3, 35.9 (N(CH3)2), d 118.5, 123.2, 127.4,128.6, 129.0 (Cp), 171.6 (CH2-C(NMe2)-N).
The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å, and Uiso = 1.2-1.5 Ueq(parent atom).
Data collection: SMART (Siemens, 1996); cell
SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity. |
[Ti(C13H20N2)Cl2] | Dx = 1.411 Mg m−3 |
Mr = 323.11 | Mo Kα radiation, λ = 0.71073 Å |
Orthorhombic, Pbca | Cell parameters from 4409 reflections |
a = 12.600 (5) Å | θ = 2.5–27.0° |
b = 15.498 (6) Å | µ = 0.90 mm−1 |
c = 15.574 (5) Å | T = 213 K |
V = 3041.1 (19) Å3 | Block, orange |
Z = 8 | 0.30 × 0.20 × 0.20 mm |
F(000) = 1344 |
Siemens SMART diffractometer | 2677 independent reflections |
Radiation source: fine-focus sealed tube | 2554 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.037 |
ω scans | θmax = 25.0°, θmin = 2.5° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −14→14 |
Tmin = 0.774, Tmax = 0.841 | k = −18→12 |
11691 measured reflections | l = −18→18 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.056 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.27 | w = 1/[σ2(Fo2) + (0.036P)2 + 4.3005P] where P = (Fo2 + 2Fc2)/3 |
2677 reflections | (Δ/σ)max = 0.001 |
169 parameters | Δρmax = 0.38 e Å−3 |
0 restraints | Δρmin = −0.30 e Å−3 |
[Ti(C13H20N2)Cl2] | V = 3041.1 (19) Å3 |
Mr = 323.11 | Z = 8 |
Orthorhombic, Pbca | Mo Kα radiation |
a = 12.600 (5) Å | µ = 0.90 mm−1 |
b = 15.498 (6) Å | T = 213 K |
c = 15.574 (5) Å | 0.30 × 0.20 × 0.20 mm |
Siemens SMART diffractometer | 2677 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | 2554 reflections with I > 2σ(I) |
Tmin = 0.774, Tmax = 0.841 | Rint = 0.037 |
11691 measured reflections |
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.27 | Δρmax = 0.38 e Å−3 |
2677 reflections | Δρmin = −0.30 e Å−3 |
169 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ti | 0.21528 (5) | 0.56734 (4) | 0.10562 (4) | 0.02449 (19) | |
Cl1 | 0.10277 (7) | 0.66810 (6) | 0.04506 (6) | 0.0396 (3) | |
Cl2 | 0.11570 (8) | 0.49802 (7) | 0.20873 (6) | 0.0416 (3) | |
N1 | 0.3122 (2) | 0.63161 (19) | 0.16445 (18) | 0.0302 (7) | |
N2 | 0.4755 (2) | 0.69295 (19) | 0.19627 (19) | 0.0326 (7) | |
C1 | 0.3752 (3) | 0.5272 (2) | 0.0479 (2) | 0.0289 (8) | |
C2 | 0.3304 (3) | 0.4522 (2) | 0.0835 (2) | 0.0285 (8) | |
C3 | 0.2387 (3) | 0.4307 (2) | 0.0348 (2) | 0.0314 (8) | |
C4 | 0.2270 (3) | 0.4933 (2) | −0.0298 (2) | 0.0313 (8) | |
C5 | 0.3117 (3) | 0.5534 (2) | −0.0221 (2) | 0.0299 (8) | |
C6 | 0.4650 (3) | 0.5788 (2) | 0.0867 (2) | 0.0347 (9) | |
H6A | 0.5014 | 0.6123 | 0.0423 | 0.042* | |
H6B | 0.5166 | 0.5403 | 0.1141 | 0.042* | |
C7 | 0.4158 (3) | 0.6384 (2) | 0.1528 (2) | 0.0282 (8) | |
C8 | 0.4285 (3) | 0.7477 (3) | 0.2621 (3) | 0.0458 (10) | |
H8A | 0.3529 | 0.7362 | 0.2658 | 0.069* | |
H8B | 0.4396 | 0.8078 | 0.2473 | 0.069* | |
H8C | 0.4615 | 0.7356 | 0.3171 | 0.069* | |
C9 | 0.5892 (3) | 0.7047 (3) | 0.1806 (3) | 0.0447 (10) | |
H9A | 0.6176 | 0.6536 | 0.1531 | 0.067* | |
H9B | 0.6253 | 0.7141 | 0.2348 | 0.067* | |
H9C | 0.5999 | 0.7544 | 0.1437 | 0.067* | |
C10 | 0.3711 (3) | 0.4014 (3) | 0.1590 (2) | 0.0421 (10) | |
H10A | 0.4040 | 0.3486 | 0.1387 | 0.063* | |
H10B | 0.3125 | 0.3872 | 0.1968 | 0.063* | |
H10C | 0.4229 | 0.4355 | 0.1900 | 0.063* | |
C11 | 0.1708 (3) | 0.3522 (2) | 0.0475 (3) | 0.0442 (10) | |
H11A | 0.0967 | 0.3678 | 0.0412 | 0.066* | |
H11B | 0.1826 | 0.3290 | 0.1046 | 0.066* | |
H11C | 0.1892 | 0.3090 | 0.0050 | 0.066* | |
C12 | 0.1436 (3) | 0.4946 (3) | −0.0985 (3) | 0.0448 (10) | |
H12A | 0.1733 | 0.4725 | −0.1516 | 0.067* | |
H12B | 0.1194 | 0.5534 | −0.1073 | 0.067* | |
H12C | 0.0842 | 0.4588 | −0.0812 | 0.067* | |
C13 | 0.3304 (3) | 0.6293 (3) | −0.0800 (2) | 0.0438 (10) | |
H13A | 0.3836 | 0.6667 | −0.0547 | 0.066* | |
H13B | 0.2647 | 0.6611 | −0.0872 | 0.066* | |
H13C | 0.3550 | 0.6091 | −0.1355 | 0.066* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ti | 0.0217 (3) | 0.0269 (3) | 0.0249 (3) | 0.0006 (3) | 0.0008 (2) | −0.0016 (3) |
Cl1 | 0.0328 (5) | 0.0388 (5) | 0.0471 (6) | 0.0091 (4) | −0.0028 (4) | 0.0043 (4) |
Cl2 | 0.0404 (5) | 0.0474 (6) | 0.0370 (5) | −0.0053 (5) | 0.0098 (4) | 0.0072 (4) |
N1 | 0.0284 (16) | 0.0325 (16) | 0.0296 (15) | 0.0011 (13) | 0.0017 (13) | −0.0100 (13) |
N2 | 0.0275 (16) | 0.0341 (17) | 0.0362 (17) | −0.0027 (13) | −0.0056 (13) | −0.0058 (14) |
C1 | 0.0254 (18) | 0.0333 (19) | 0.0281 (18) | 0.0029 (15) | 0.0048 (14) | −0.0097 (16) |
C2 | 0.0273 (18) | 0.0292 (18) | 0.0292 (18) | 0.0055 (15) | 0.0010 (15) | −0.0057 (15) |
C3 | 0.0316 (19) | 0.0304 (19) | 0.0322 (19) | 0.0039 (16) | −0.0029 (16) | −0.0050 (16) |
C4 | 0.034 (2) | 0.0330 (19) | 0.0270 (18) | 0.0037 (16) | −0.0009 (15) | −0.0057 (16) |
C5 | 0.0337 (19) | 0.0284 (18) | 0.0275 (18) | 0.0008 (16) | 0.0073 (15) | −0.0039 (15) |
C6 | 0.0242 (18) | 0.040 (2) | 0.040 (2) | −0.0016 (16) | 0.0036 (16) | −0.0100 (17) |
C7 | 0.0259 (18) | 0.0284 (18) | 0.0302 (19) | 0.0013 (15) | −0.0026 (15) | −0.0004 (15) |
C8 | 0.049 (2) | 0.041 (2) | 0.047 (2) | −0.002 (2) | −0.010 (2) | −0.018 (2) |
C9 | 0.035 (2) | 0.045 (2) | 0.054 (3) | −0.0144 (19) | −0.0090 (19) | 0.000 (2) |
C10 | 0.044 (2) | 0.041 (2) | 0.041 (2) | 0.0107 (19) | −0.0116 (19) | 0.0001 (19) |
C11 | 0.045 (2) | 0.034 (2) | 0.054 (3) | −0.0069 (19) | −0.009 (2) | −0.0018 (19) |
C12 | 0.052 (3) | 0.049 (2) | 0.034 (2) | −0.003 (2) | −0.0164 (19) | −0.0002 (19) |
C13 | 0.053 (3) | 0.042 (2) | 0.036 (2) | −0.001 (2) | 0.0120 (19) | 0.0009 (18) |
Ti—N1 | 1.823 (3) | C6—C7 | 1.515 (5) |
Ti—C1 | 2.292 (3) | C6—H6A | 0.9800 |
Ti—Cl2 | 2.3036 (12) | C6—H6B | 0.9800 |
Ti—Cl1 | 2.3104 (12) | C8—H8A | 0.9700 |
Ti—C2 | 2.325 (3) | C8—H8B | 0.9700 |
Ti—C5 | 2.341 (3) | C8—H8C | 0.9700 |
Ti—C4 | 2.405 (3) | C9—H9A | 0.9700 |
Ti—C3 | 2.406 (4) | C9—H9B | 0.9700 |
N1—C7 | 1.322 (4) | C9—H9C | 0.9700 |
N2—C7 | 1.319 (4) | C10—H10A | 0.9700 |
N2—C8 | 1.457 (5) | C10—H10B | 0.9700 |
N2—C9 | 1.464 (5) | C10—H10C | 0.9700 |
C1—C2 | 1.406 (5) | C11—H11A | 0.9700 |
C1—C5 | 1.412 (5) | C11—H11B | 0.9700 |
C1—C6 | 1.512 (5) | C11—H11C | 0.9700 |
C2—C3 | 1.422 (5) | C12—H12A | 0.9700 |
C2—C10 | 1.504 (5) | C12—H12B | 0.9700 |
C3—C4 | 1.405 (5) | C12—H12C | 0.9700 |
C3—C11 | 1.500 (5) | C13—H13A | 0.9700 |
C4—C5 | 1.422 (5) | C13—H13B | 0.9700 |
C4—C12 | 1.500 (5) | C13—H13C | 0.9700 |
C5—C13 | 1.500 (5) | ||
N1—Ti—C1 | 75.92 (13) | C5—C4—Ti | 70.10 (19) |
N1—Ti—Cl2 | 105.63 (10) | C12—C4—Ti | 125.2 (3) |
C1—Ti—Cl2 | 128.71 (10) | C1—C5—C4 | 107.5 (3) |
N1—Ti—Cl1 | 104.29 (10) | C1—C5—C13 | 126.9 (3) |
C1—Ti—Cl1 | 124.25 (10) | C4—C5—C13 | 125.5 (3) |
Cl2—Ti—Cl1 | 105.40 (5) | C1—C5—Ti | 70.40 (19) |
N1—Ti—C2 | 94.34 (13) | C4—C5—Ti | 75.1 (2) |
C1—Ti—C2 | 35.44 (13) | C13—C5—Ti | 121.3 (2) |
Cl2—Ti—C2 | 94.88 (10) | C1—C6—C7 | 106.7 (3) |
Cl1—Ti—C2 | 147.26 (9) | C1—C6—H6A | 110.4 |
N1—Ti—C5 | 97.46 (13) | C7—C6—H6A | 110.4 |
C1—Ti—C5 | 35.48 (12) | C1—C6—H6B | 110.4 |
Cl2—Ti—C5 | 146.31 (9) | C7—C6—H6B | 110.4 |
Cl1—Ti—C5 | 91.94 (10) | H6A—C6—H6B | 108.6 |
C2—Ti—C5 | 58.66 (12) | N2—C7—N1 | 122.9 (3) |
N1—Ti—C4 | 131.33 (13) | N2—C7—C6 | 120.4 (3) |
C1—Ti—C4 | 58.19 (12) | N1—C7—C6 | 116.7 (3) |
Cl2—Ti—C4 | 114.96 (10) | N2—C8—H8A | 109.5 |
Cl1—Ti—C4 | 90.13 (9) | N2—C8—H8B | 109.5 |
C2—Ti—C4 | 57.72 (12) | H8A—C8—H8B | 109.5 |
C5—Ti—C4 | 34.83 (12) | N2—C8—H8C | 109.5 |
N1—Ti—C3 | 128.99 (13) | H8A—C8—H8C | 109.5 |
C1—Ti—C3 | 58.23 (12) | H8B—C8—H8C | 109.5 |
Cl2—Ti—C3 | 88.61 (10) | N2—C9—H9A | 109.5 |
Cl1—Ti—C3 | 118.89 (9) | N2—C9—H9B | 109.5 |
C2—Ti—C3 | 34.93 (12) | H9A—C9—H9B | 109.5 |
C5—Ti—C3 | 57.70 (12) | N2—C9—H9C | 109.5 |
C4—Ti—C3 | 33.97 (12) | H9A—C9—H9C | 109.5 |
C7—N1—Ti | 129.5 (2) | H9B—C9—H9C | 109.5 |
C7—N2—C8 | 120.2 (3) | C2—C10—H10A | 109.5 |
C7—N2—C9 | 123.5 (3) | C2—C10—H10B | 109.5 |
C8—N2—C9 | 116.3 (3) | H10A—C10—H10B | 109.5 |
C2—C1—C5 | 108.4 (3) | C2—C10—H10C | 109.5 |
C2—C1—C6 | 125.4 (3) | H10A—C10—H10C | 109.5 |
C5—C1—C6 | 125.5 (3) | H10B—C10—H10C | 109.5 |
C2—C1—Ti | 73.55 (19) | C3—C11—H11A | 109.5 |
C5—C1—Ti | 74.12 (19) | C3—C11—H11B | 109.5 |
C6—C1—Ti | 110.9 (2) | H11A—C11—H11B | 109.5 |
C1—C2—C3 | 108.0 (3) | C3—C11—H11C | 109.5 |
C1—C2—C10 | 127.2 (3) | H11A—C11—H11C | 109.5 |
C3—C2—C10 | 124.8 (3) | H11B—C11—H11C | 109.5 |
C1—C2—Ti | 71.01 (19) | C4—C12—H12A | 109.5 |
C3—C2—Ti | 75.7 (2) | C4—C12—H12B | 109.5 |
C10—C2—Ti | 119.9 (2) | H12A—C12—H12B | 109.5 |
C4—C3—C2 | 107.8 (3) | C4—C12—H12C | 109.5 |
C4—C3—C11 | 126.4 (3) | H12A—C12—H12C | 109.5 |
C2—C3—C11 | 125.7 (3) | H12B—C12—H12C | 109.5 |
C4—C3—Ti | 73.0 (2) | C5—C13—H13A | 109.5 |
C2—C3—Ti | 69.41 (19) | C5—C13—H13B | 109.5 |
C11—C3—Ti | 125.7 (3) | H13A—C13—H13B | 109.5 |
C3—C4—C5 | 108.3 (3) | C5—C13—H13C | 109.5 |
C3—C4—C12 | 126.4 (3) | H13A—C13—H13C | 109.5 |
C5—C4—C12 | 125.2 (3) | H13B—C13—H13C | 109.5 |
C3—C4—Ti | 73.1 (2) |
Experimental details
Crystal data | |
Chemical formula | [Ti(C13H20N2)Cl2] |
Mr | 323.11 |
Crystal system, space group | Orthorhombic, Pbca |
Temperature (K) | 213 |
a, b, c (Å) | 12.600 (5), 15.498 (6), 15.574 (5) |
V (Å3) | 3041.1 (19) |
Z | 8 |
Radiation type | Mo Kα |
µ (mm−1) | 0.90 |
Crystal size (mm) | 0.30 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Siemens SMART diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1997) |
Tmin, Tmax | 0.774, 0.841 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 11691, 2677, 2554 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.595 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.056, 0.117, 1.27 |
No. of reflections | 2677 |
No. of parameters | 169 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.30 |
Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Acknowledgements
The authors thank the Natural Science Foundation of China (grant No. 20672070 to MZ), the Natural Science Foundation of Shanxi (grant No. 2007011020) and the Foundation for Returned Overseas Chinese Scholars of Shanxi Province.
References
Chen, Y. X. & Marks, T. J. (1997). Organometallics, 16, 5958–5963. Web of Science CSD CrossRef CAS Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Hughes, A. K., Meetsma, A. & Teuben, J. H. (1993). Organometallics, 12, 1936–1945. CSD CrossRef CAS Web of Science Google Scholar
Mahanthappa, M. K., Cole, A, P. & Waymouth, R. M. (2004). Organometallics, 23, 836–845. Web of Science CSD CrossRef CAS Google Scholar
Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA. Google Scholar
Zhang, Y., Mu, Y., Lu, C., Li, G., Xu, J., Zhang, Y., Zhu, D. & Feng, S. (2004). Organometallics, 23, 540–546. Web of Science CSD CrossRef CAS Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The homogeneous coordination polymerization catalysts, especially group IV metallocene catalysts, have created new opportunities for the production of ethylene α-olefin copolymers and received extensive attention in recent years (Mahanthappa et al., 2004). The constrained geometry catalysts with a pendant nitrogen or oxygen donor on the cyclopentadienyl ligand, such as Me2Si-(η5-Me4C5)(t-BuN)TiCl2 (Hughes et al., 1993) and 2-tetramethylcyclopentadienyl-4-methylphenoxytitaniumdibenzyl (Zhang et al., 2004) have been developed due to their structural features and good catalytic activities (Chen et al., 1997). Here we present the synthesis and crystal structure of a new ansa-bridged cyclopentadienyl titanium complex (I)
In (I) (Fig. 1), the distance from the central metal atom Ti to the centroid of Cp* is 2.024 (2) Å. The bond lengths Ti—N1, Ti—Cl1 and Ti—Cl2 are 1.823 (3), 2.3104 (12) and 2.3036 (12) Å, respectively. The bond angle Cl1—Ti—Cl2 is 105.40 (5) °. Atoms C1, C6, C7, N1 and Ti are exactly co-planar with a highest deviation of 0.0191 Å. The two planes - Cp* and C1/C6/C7/N1/Ti are almost perpendicular making a dihedral angle of 88.08 (11)°. The bond angles C1—C6—C7, C6—C7—N1 and C7—N1—Ti are 106.7 (3),116.7 (3) and 129.5 (2) °, respectively.