metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

The ansa-bridged cyclo­penta­dienyl titanium complex [{η5-C5Me4CH2-C(NMe2)=N}TiCl2]

aSchool of Life Science and Technology, Shanxi University, Taiyuan 030006, People's Republic of China, and bInstitute of Applied Chemistry, Shanxi University, Taiyuan 030006, People's Republic of China
*Correspondence e-mail: mszhou@sxu.edu.cn

(Received 22 April 2009; accepted 28 April 2009; online 7 May 2009)

The title complex, dichlorido[N,N-di­methyl-2-(η5-tetra­methyl­cyclo­penta­dien­yl)acetamidinido-κN′]titanium(IV), [Ti(C13H20N2)Cl2], exhibits an unusual ansa-bridged conformation. The cyclo­penta­dienyl ring and the mean plane of the Ti—N=C—C—C fragment form a dihedral angle of 88.08 (11)°.

Related literature

For related crystal structures, see: Hughes et al. (1993[Hughes, A. K., Meetsma, A. & Teuben, J. H. (1993). Organometallics, 12, 1936-1945.]); Zhang et al. (2004[Zhang, Y., Mu, Y., Lu, C., Li, G., Xu, J., Zhang, Y., Zhu, D. & Feng, S. (2004). Organometallics, 23, 540-546.]). For general background, see: Chen & Marks (1997[Chen, Y. X. & Marks, T. J. (1997). Organometallics, 16, 5958-5963.]); Mahanthappa et al. (2004[Mahanthappa, M. K., Cole, A, P. & Waymouth, R. M. (2004). Organometallics, 23, 836-845.]).

[Scheme 1]

Experimental

Crystal data
  • [Ti(C13H20N2)Cl2]

  • Mr = 323.11

  • Orthorhombic, P b c a

  • a = 12.600 (5) Å

  • b = 15.498 (6) Å

  • c = 15.574 (5) Å

  • V = 3041.1 (19) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.90 mm−1

  • T = 213 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Siemens SMART diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997[Sheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.]) Tmin = 0.774, Tmax = 0.841

  • 11691 measured reflections

  • 2677 independent reflections

  • 2554 reflections with I > 2σ(I)

  • Rint = 0.037

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.117

  • S = 1.27

  • 2677 reflections

  • 169 parameters

  • H-atom parameters constrained

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The homogeneous coordination polymerization catalysts, especially group IV metallocene catalysts, have created new opportunities for the production of ethylene α-olefin copolymers and received extensive attention in recent years (Mahanthappa et al., 2004). The constrained geometry catalysts with a pendant nitrogen or oxygen donor on the cyclopentadienyl ligand, such as Me2Si-(η5-Me4C5)(t-BuN)TiCl2 (Hughes et al., 1993) and 2-tetramethylcyclopentadienyl-4-methylphenoxytitaniumdibenzyl (Zhang et al., 2004) have been developed due to their structural features and good catalytic activities (Chen et al., 1997). Here we present the synthesis and crystal structure of a new ansa-bridged cyclopentadienyl titanium complex (I)

In (I) (Fig. 1), the distance from the central metal atom Ti to the centroid of Cp* is 2.024 (2) Å. The bond lengths Ti—N1, Ti—Cl1 and Ti—Cl2 are 1.823 (3), 2.3104 (12) and 2.3036 (12) Å, respectively. The bond angle Cl1—Ti—Cl2 is 105.40 (5) °. Atoms C1, C6, C7, N1 and Ti are exactly co-planar with a highest deviation of 0.0191 Å. The two planes - Cp* and C1/C6/C7/N1/Ti are almost perpendicular making a dihedral angle of 88.08 (11)°. The bond angles C1—C6—C7, C6—C7—N1 and C7—N1—Ti are 106.7 (3),116.7 (3) and 129.5 (2) °, respectively.

Related literature top

For related crystal structures, see: Hughes et al. (1993); Zhang et al. (2004). For general background, see: Chen et al. (1997); Mahanthappa et al. (2004).

Experimental top

(CH3)2NCN (0.36 ml, 4.52 mmol) was added to a solution of PhN(Li)SiMe3(0.386 g, 2.26 mmol) in THF (30 cm3) at -78 °C. The resulting mixture was warmed to ca.25°C and stirred for overnight. CpTiCl3 (0.99 g, 4.52 mmol) was added at -78°C. The resulting mixture was warmed to ca.25°C and stirred for 24 h. The volatiles were removed in vacuo, and there residue was extracted with dichloromethane and filtered. The filtrate was concentrated to give red crystals of (I)(0.14 g, 13%).

Anal. calcd. for C13H20Cl2N2Ti(%): C, 48.33; H, 6.24; N, 8.67. Found: C, 48.25; H, 6.25; N, 8.73. A l l manipulations were performed under argonusing standard Schlenk and vacuum line techniques. THF was dried and distilled over Na underargon prior to use. Elemental analysis and NMR spectra are completely in agreement with the structure of (I). Spectroscopic analysis, 1HNMR (CDCl3): d 2.11~2.18 (d, 12 H, Cp—CH3), d 2.80, 3.10 (d, 6 H, N(CH3)2), d 4.09 (s, 2 H, CH2). 13CNMR (CDCl3): d 10.0, 10.8 (Cp-CH3), d 28.9 (CH2), d 33.3, 35.9 (N(CH3)2), d 118.5, 123.2, 127.4,128.6, 129.0 (Cp), 171.6 (CH2-C(NMe2)-N).

Refinement top

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å, and Uiso = 1.2-1.5 Ueq(parent atom).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are omitted for clarity.
dichlorido[N,N-dimethyl-2-(η5- tetramethylcyclopentadienyl)acetamidinido-κN']titanium(IV) top
Crystal data top
[Ti(C13H20N2)Cl2]Dx = 1.411 Mg m3
Mr = 323.11Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 4409 reflections
a = 12.600 (5) Åθ = 2.5–27.0°
b = 15.498 (6) ŵ = 0.90 mm1
c = 15.574 (5) ÅT = 213 K
V = 3041.1 (19) Å3Block, orange
Z = 80.30 × 0.20 × 0.20 mm
F(000) = 1344
Data collection top
Siemens SMART
diffractometer
2677 independent reflections
Radiation source: fine-focus sealed tube2554 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 25.0°, θmin = 2.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
h = 1414
Tmin = 0.774, Tmax = 0.841k = 1812
11691 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117H-atom parameters constrained
S = 1.27 w = 1/[σ2(Fo2) + (0.036P)2 + 4.3005P]
where P = (Fo2 + 2Fc2)/3
2677 reflections(Δ/σ)max = 0.001
169 parametersΔρmax = 0.38 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
[Ti(C13H20N2)Cl2]V = 3041.1 (19) Å3
Mr = 323.11Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.600 (5) ŵ = 0.90 mm1
b = 15.498 (6) ÅT = 213 K
c = 15.574 (5) Å0.30 × 0.20 × 0.20 mm
Data collection top
Siemens SMART
diffractometer
2677 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1997)
2554 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.841Rint = 0.037
11691 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.117H-atom parameters constrained
S = 1.27Δρmax = 0.38 e Å3
2677 reflectionsΔρmin = 0.30 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti0.21528 (5)0.56734 (4)0.10562 (4)0.02449 (19)
Cl10.10277 (7)0.66810 (6)0.04506 (6)0.0396 (3)
Cl20.11570 (8)0.49802 (7)0.20873 (6)0.0416 (3)
N10.3122 (2)0.63161 (19)0.16445 (18)0.0302 (7)
N20.4755 (2)0.69295 (19)0.19627 (19)0.0326 (7)
C10.3752 (3)0.5272 (2)0.0479 (2)0.0289 (8)
C20.3304 (3)0.4522 (2)0.0835 (2)0.0285 (8)
C30.2387 (3)0.4307 (2)0.0348 (2)0.0314 (8)
C40.2270 (3)0.4933 (2)0.0298 (2)0.0313 (8)
C50.3117 (3)0.5534 (2)0.0221 (2)0.0299 (8)
C60.4650 (3)0.5788 (2)0.0867 (2)0.0347 (9)
H6A0.50140.61230.04230.042*
H6B0.51660.54030.11410.042*
C70.4158 (3)0.6384 (2)0.1528 (2)0.0282 (8)
C80.4285 (3)0.7477 (3)0.2621 (3)0.0458 (10)
H8A0.35290.73620.26580.069*
H8B0.43960.80780.24730.069*
H8C0.46150.73560.31710.069*
C90.5892 (3)0.7047 (3)0.1806 (3)0.0447 (10)
H9A0.61760.65360.15310.067*
H9B0.62530.71410.23480.067*
H9C0.59990.75440.14370.067*
C100.3711 (3)0.4014 (3)0.1590 (2)0.0421 (10)
H10A0.40400.34860.13870.063*
H10B0.31250.38720.19680.063*
H10C0.42290.43550.19000.063*
C110.1708 (3)0.3522 (2)0.0475 (3)0.0442 (10)
H11A0.09670.36780.04120.066*
H11B0.18260.32900.10460.066*
H11C0.18920.30900.00500.066*
C120.1436 (3)0.4946 (3)0.0985 (3)0.0448 (10)
H12A0.17330.47250.15160.067*
H12B0.11940.55340.10730.067*
H12C0.08420.45880.08120.067*
C130.3304 (3)0.6293 (3)0.0800 (2)0.0438 (10)
H13A0.38360.66670.05470.066*
H13B0.26470.66110.08720.066*
H13C0.35500.60910.13550.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti0.0217 (3)0.0269 (3)0.0249 (3)0.0006 (3)0.0008 (2)0.0016 (3)
Cl10.0328 (5)0.0388 (5)0.0471 (6)0.0091 (4)0.0028 (4)0.0043 (4)
Cl20.0404 (5)0.0474 (6)0.0370 (5)0.0053 (5)0.0098 (4)0.0072 (4)
N10.0284 (16)0.0325 (16)0.0296 (15)0.0011 (13)0.0017 (13)0.0100 (13)
N20.0275 (16)0.0341 (17)0.0362 (17)0.0027 (13)0.0056 (13)0.0058 (14)
C10.0254 (18)0.0333 (19)0.0281 (18)0.0029 (15)0.0048 (14)0.0097 (16)
C20.0273 (18)0.0292 (18)0.0292 (18)0.0055 (15)0.0010 (15)0.0057 (15)
C30.0316 (19)0.0304 (19)0.0322 (19)0.0039 (16)0.0029 (16)0.0050 (16)
C40.034 (2)0.0330 (19)0.0270 (18)0.0037 (16)0.0009 (15)0.0057 (16)
C50.0337 (19)0.0284 (18)0.0275 (18)0.0008 (16)0.0073 (15)0.0039 (15)
C60.0242 (18)0.040 (2)0.040 (2)0.0016 (16)0.0036 (16)0.0100 (17)
C70.0259 (18)0.0284 (18)0.0302 (19)0.0013 (15)0.0026 (15)0.0004 (15)
C80.049 (2)0.041 (2)0.047 (2)0.002 (2)0.010 (2)0.018 (2)
C90.035 (2)0.045 (2)0.054 (3)0.0144 (19)0.0090 (19)0.000 (2)
C100.044 (2)0.041 (2)0.041 (2)0.0107 (19)0.0116 (19)0.0001 (19)
C110.045 (2)0.034 (2)0.054 (3)0.0069 (19)0.009 (2)0.0018 (19)
C120.052 (3)0.049 (2)0.034 (2)0.003 (2)0.0164 (19)0.0002 (19)
C130.053 (3)0.042 (2)0.036 (2)0.001 (2)0.0120 (19)0.0009 (18)
Geometric parameters (Å, º) top
Ti—N11.823 (3)C6—C71.515 (5)
Ti—C12.292 (3)C6—H6A0.9800
Ti—Cl22.3036 (12)C6—H6B0.9800
Ti—Cl12.3104 (12)C8—H8A0.9700
Ti—C22.325 (3)C8—H8B0.9700
Ti—C52.341 (3)C8—H8C0.9700
Ti—C42.405 (3)C9—H9A0.9700
Ti—C32.406 (4)C9—H9B0.9700
N1—C71.322 (4)C9—H9C0.9700
N2—C71.319 (4)C10—H10A0.9700
N2—C81.457 (5)C10—H10B0.9700
N2—C91.464 (5)C10—H10C0.9700
C1—C21.406 (5)C11—H11A0.9700
C1—C51.412 (5)C11—H11B0.9700
C1—C61.512 (5)C11—H11C0.9700
C2—C31.422 (5)C12—H12A0.9700
C2—C101.504 (5)C12—H12B0.9700
C3—C41.405 (5)C12—H12C0.9700
C3—C111.500 (5)C13—H13A0.9700
C4—C51.422 (5)C13—H13B0.9700
C4—C121.500 (5)C13—H13C0.9700
C5—C131.500 (5)
N1—Ti—C175.92 (13)C5—C4—Ti70.10 (19)
N1—Ti—Cl2105.63 (10)C12—C4—Ti125.2 (3)
C1—Ti—Cl2128.71 (10)C1—C5—C4107.5 (3)
N1—Ti—Cl1104.29 (10)C1—C5—C13126.9 (3)
C1—Ti—Cl1124.25 (10)C4—C5—C13125.5 (3)
Cl2—Ti—Cl1105.40 (5)C1—C5—Ti70.40 (19)
N1—Ti—C294.34 (13)C4—C5—Ti75.1 (2)
C1—Ti—C235.44 (13)C13—C5—Ti121.3 (2)
Cl2—Ti—C294.88 (10)C1—C6—C7106.7 (3)
Cl1—Ti—C2147.26 (9)C1—C6—H6A110.4
N1—Ti—C597.46 (13)C7—C6—H6A110.4
C1—Ti—C535.48 (12)C1—C6—H6B110.4
Cl2—Ti—C5146.31 (9)C7—C6—H6B110.4
Cl1—Ti—C591.94 (10)H6A—C6—H6B108.6
C2—Ti—C558.66 (12)N2—C7—N1122.9 (3)
N1—Ti—C4131.33 (13)N2—C7—C6120.4 (3)
C1—Ti—C458.19 (12)N1—C7—C6116.7 (3)
Cl2—Ti—C4114.96 (10)N2—C8—H8A109.5
Cl1—Ti—C490.13 (9)N2—C8—H8B109.5
C2—Ti—C457.72 (12)H8A—C8—H8B109.5
C5—Ti—C434.83 (12)N2—C8—H8C109.5
N1—Ti—C3128.99 (13)H8A—C8—H8C109.5
C1—Ti—C358.23 (12)H8B—C8—H8C109.5
Cl2—Ti—C388.61 (10)N2—C9—H9A109.5
Cl1—Ti—C3118.89 (9)N2—C9—H9B109.5
C2—Ti—C334.93 (12)H9A—C9—H9B109.5
C5—Ti—C357.70 (12)N2—C9—H9C109.5
C4—Ti—C333.97 (12)H9A—C9—H9C109.5
C7—N1—Ti129.5 (2)H9B—C9—H9C109.5
C7—N2—C8120.2 (3)C2—C10—H10A109.5
C7—N2—C9123.5 (3)C2—C10—H10B109.5
C8—N2—C9116.3 (3)H10A—C10—H10B109.5
C2—C1—C5108.4 (3)C2—C10—H10C109.5
C2—C1—C6125.4 (3)H10A—C10—H10C109.5
C5—C1—C6125.5 (3)H10B—C10—H10C109.5
C2—C1—Ti73.55 (19)C3—C11—H11A109.5
C5—C1—Ti74.12 (19)C3—C11—H11B109.5
C6—C1—Ti110.9 (2)H11A—C11—H11B109.5
C1—C2—C3108.0 (3)C3—C11—H11C109.5
C1—C2—C10127.2 (3)H11A—C11—H11C109.5
C3—C2—C10124.8 (3)H11B—C11—H11C109.5
C1—C2—Ti71.01 (19)C4—C12—H12A109.5
C3—C2—Ti75.7 (2)C4—C12—H12B109.5
C10—C2—Ti119.9 (2)H12A—C12—H12B109.5
C4—C3—C2107.8 (3)C4—C12—H12C109.5
C4—C3—C11126.4 (3)H12A—C12—H12C109.5
C2—C3—C11125.7 (3)H12B—C12—H12C109.5
C4—C3—Ti73.0 (2)C5—C13—H13A109.5
C2—C3—Ti69.41 (19)C5—C13—H13B109.5
C11—C3—Ti125.7 (3)H13A—C13—H13B109.5
C3—C4—C5108.3 (3)C5—C13—H13C109.5
C3—C4—C12126.4 (3)H13A—C13—H13C109.5
C5—C4—C12125.2 (3)H13B—C13—H13C109.5
C3—C4—Ti73.1 (2)

Experimental details

Crystal data
Chemical formula[Ti(C13H20N2)Cl2]
Mr323.11
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)213
a, b, c (Å)12.600 (5), 15.498 (6), 15.574 (5)
V3)3041.1 (19)
Z8
Radiation typeMo Kα
µ (mm1)0.90
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerSiemens SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1997)
Tmin, Tmax0.774, 0.841
No. of measured, independent and
observed [I > 2σ(I)] reflections
11691, 2677, 2554
Rint0.037
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.117, 1.27
No. of reflections2677
No. of parameters169
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.38, 0.30

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).

 

Acknowledgements

The authors thank the Natural Science Foundation of China (grant No. 20672070 to MZ), the Natural Science Foundation of Shanxi (grant No. 2007011020) and the Foundation for Returned Overseas Chinese Scholars of Shanxi Province.

References

First citationChen, Y. X. & Marks, T. J. (1997). Organometallics, 16, 5958–5963.  Web of Science CSD CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHughes, A. K., Meetsma, A. & Teuben, J. H. (1993). Organometallics, 12, 1936–1945.  CSD CrossRef CAS Web of Science Google Scholar
First citationMahanthappa, M. K., Cole, A, P. & Waymouth, R. M. (2004). Organometallics, 23, 836–845.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1997). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.  Google Scholar
First citationZhang, Y., Mu, Y., Lu, C., Li, G., Xu, J., Zhang, Y., Zhu, D. & Feng, S. (2004). Organometallics, 23, 540–546.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds