organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4,4′-Di-3-pyridyl-2,2′-di­thio­di­pyrimidine

aSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
*Correspondence e-mail: zhuhaibin@seu.edu.cn

(Received 23 April 2009; accepted 5 May 2009; online 14 May 2009)

The asymmetric unit of the title compound, C18H12N6S2, contains one half-mol­ecule situated on a twofold rotational axis that passes through the mid-point of the S—S bond. In the mol­ecule, the C—S—S—C torsion angle is 81.33 (7)°. The crystal packing exhibits no significantly short inter­molecular contacts.

Related literature

For general background to heterocyclic disulfides, see Horikoshi & Mochida (2006[Horikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595-2609.]). For related crystal structures, see: Higashi et al. (1978[Higashi, L. S., Lundeen, M. & Seff, J. (1978). J. Am. Chem. Soc. 100, 8101-8106.]); Tabellion et al. (2001[Tabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). J. Am Chem. Soc. 123, 7740-7741.]).

[Scheme 1]

Experimental

Crystal data
  • C18H12N6S2

  • Mr = 376.48

  • Monoclinic, C 2/c

  • a = 19.480 (3) Å

  • b = 5.4192 (9) Å

  • c = 17.979 (3) Å

  • β = 115.034 (2)°

  • V = 1719.6 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 298 K

  • 0.12 × 0.11 × 0.09 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.884, Tmax = 0.920 (expected range = 0.933–0.971)

  • 5331 measured reflections

  • 2091 independent reflections

  • 1590 reflections with I > 2σ(I)

  • Rint = 0.054

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.106

  • S = 1.07

  • 2091 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2007[Bruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Heterocyclic disulfide ligands have attracted considerable attention due to its conformationally defined torison angle and axial chirality (Horikoshi & Mochida, 2006). Herein, we report the molecular structure of the title compound (I) - the newly synthesized disulfide ligand.

In (I) (Fig. 1), the dihedral angle between the pyrimidinyl and pyrdinyl rings is 17.62 (6)°. The C—S—S—C torsion angle of 81.33 (7)° and S—S bond length of 2.0148 (8) Å are comparable to those of typical aromatic disulfides (Higashi et al., 1978; Tabellion et al., 2001).

Related literature top

For general background to heterocyclic disulfides, see Horikoshi & Mochida (2006). For related crystal structures, see: Higashi et al. (1978); Tabellion et al. (2001).

Experimental top

A solution of SO2Cl2 (0.5 mL) in CH2Cl2 (20 ml) was added dropwise into the suspension containing 4-(pyridin-3-yl)pyrimidine-2-thiol (1.89 g) and 30 ml of CH2Cl2.Upon addition, the mixture was stirred at room temperature for 30 min. The solid was collected by filtration and dissolved into 30 ml of H2O. The solution PH was adjusted into the range of 8–9 to give white precipitates. Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of the CH2Cl2 solution of the title compound.

Refinement top

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT-Plus (Bruker, 2007); data reduction: SAINT-Plus (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atomic numbering and 40% probability displacement ellipsoids [symmetry code: (A) -x, y, 1/2 - z].
4,4'-Di-3-pyridyl-2,2'-dithiodipyrimidine top
Crystal data top
C18H12N6S2F(000) = 776
Mr = 376.48Dx = 1.454 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2091 reflections
a = 19.480 (3) Åθ = 2.3–25.5°
b = 5.4192 (9) ŵ = 0.33 mm1
c = 17.979 (3) ÅT = 298 K
β = 115.034 (2)°Block, yellow
V = 1719.6 (5) Å30.12 × 0.11 × 0.09 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2091 independent reflections
Radiation source: fine-focus sealed tube1590 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.054
ϕ and ω scansθmax = 28.2°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1525
Tmin = 0.884, Tmax = 0.920k = 76
5331 measured reflectionsl = 2321
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
2091 reflections(Δ/σ)max < 0.001
118 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C18H12N6S2V = 1719.6 (5) Å3
Mr = 376.48Z = 4
Monoclinic, C2/cMo Kα radiation
a = 19.480 (3) ŵ = 0.33 mm1
b = 5.4192 (9) ÅT = 298 K
c = 17.979 (3) Å0.12 × 0.11 × 0.09 mm
β = 115.034 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2091 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
1590 reflections with I > 2σ(I)
Tmin = 0.884, Tmax = 0.920Rint = 0.054
5331 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 1.07Δρmax = 0.20 e Å3
2091 reflectionsΔρmin = 0.25 e Å3
118 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.03745 (2)0.82831 (7)0.22489 (2)0.05022 (17)
N30.09221 (7)0.4611 (2)0.33598 (7)0.0431 (3)
C50.13449 (9)0.1539 (3)0.44158 (9)0.0494 (4)
C60.14360 (8)0.2851 (3)0.37363 (9)0.0449 (4)
N20.15519 (8)0.5576 (3)0.25070 (8)0.0560 (4)
C90.10152 (8)0.5858 (3)0.27763 (8)0.0436 (3)
C70.20210 (9)0.2385 (3)0.35106 (10)0.0549 (4)
H7A0.23800.11680.37690.066*
C80.20481 (10)0.3797 (3)0.28883 (11)0.0599 (5)
H8A0.24340.34930.27250.072*
C40.09033 (11)0.2523 (4)0.47734 (10)0.0617 (5)
H4A0.06420.39950.45820.074*
C10.17081 (12)0.0663 (3)0.47231 (10)0.0668 (5)
H1A0.20020.13340.44790.080*
N10.16688 (12)0.1900 (3)0.53450 (11)0.0827 (6)
C30.08571 (12)0.1278 (5)0.54219 (11)0.0771 (6)
H3B0.05690.19060.56790.092*
C20.12428 (14)0.0895 (5)0.56778 (12)0.0858 (7)
H2B0.12040.17200.61120.103*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0489 (3)0.0576 (3)0.0448 (2)0.00386 (18)0.02041 (19)0.00495 (17)
N30.0412 (7)0.0496 (7)0.0378 (6)0.0045 (6)0.0159 (5)0.0041 (5)
C50.0477 (9)0.0511 (9)0.0405 (8)0.0095 (7)0.0101 (7)0.0034 (6)
C60.0417 (8)0.0475 (8)0.0394 (8)0.0074 (7)0.0113 (7)0.0102 (6)
N20.0466 (8)0.0760 (10)0.0524 (8)0.0031 (7)0.0278 (7)0.0019 (7)
C90.0389 (7)0.0533 (8)0.0375 (7)0.0080 (7)0.0150 (6)0.0080 (6)
C70.0427 (9)0.0596 (9)0.0578 (10)0.0013 (8)0.0170 (8)0.0079 (8)
C80.0454 (9)0.0795 (12)0.0626 (10)0.0025 (9)0.0304 (8)0.0114 (9)
C40.0586 (11)0.0721 (11)0.0550 (10)0.0076 (9)0.0246 (9)0.0058 (8)
C10.0716 (12)0.0599 (11)0.0551 (10)0.0021 (10)0.0133 (9)0.0008 (9)
N10.0928 (14)0.0723 (11)0.0631 (10)0.0090 (10)0.0137 (10)0.0172 (8)
C30.0734 (14)0.1040 (16)0.0558 (11)0.0123 (12)0.0292 (10)0.0095 (10)
C20.0838 (16)0.1026 (17)0.0541 (11)0.0319 (14)0.0129 (11)0.0196 (11)
Geometric parameters (Å, º) top
S1—C91.7840 (16)C7—H7A0.9300
S1—S1i2.0148 (8)C8—H8A0.9300
N3—C91.3233 (17)C4—C31.383 (2)
N3—C61.3402 (19)C4—H4A0.9300
C5—C11.378 (2)C1—N11.333 (2)
C5—C41.380 (2)C1—H1A0.9300
C5—C61.488 (2)N1—C21.328 (3)
C6—C71.385 (2)C3—C21.367 (3)
N2—C91.334 (2)C3—H3B0.9300
N2—C81.332 (2)C2—H2B0.9300
C7—C81.375 (2)
C9—S1—S1i103.78 (5)N2—C8—H8A118.2
C9—N3—C6116.12 (13)C7—C8—H8A118.2
C1—C5—C4117.59 (17)C5—C4—C3118.7 (2)
C1—C5—C6121.58 (16)C5—C4—H4A120.7
C4—C5—C6120.81 (15)C3—C4—H4A120.7
N3—C6—C7120.87 (14)N1—C1—C5124.72 (19)
N3—C6—C5115.57 (13)N1—C1—H1A117.6
C7—C6—C5123.53 (15)C5—C1—H1A117.6
C9—N2—C8113.93 (13)C2—N1—C1116.12 (18)
N3—C9—N2128.37 (15)C2—C3—C4118.8 (2)
N3—C9—S1119.86 (11)C2—C3—H3B120.6
N2—C9—S1111.77 (11)C4—C3—H3B120.6
C8—C7—C6117.17 (16)N1—C2—C3124.10 (19)
C8—C7—H7A121.4N1—C2—H2B118.0
C6—C7—H7A121.4C3—C2—H2B118.0
N2—C8—C7123.54 (15)
Symmetry code: (i) x, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC18H12N6S2
Mr376.48
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)19.480 (3), 5.4192 (9), 17.979 (3)
β (°) 115.034 (2)
V3)1719.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.33
Crystal size (mm)0.12 × 0.11 × 0.09
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.884, 0.920
No. of measured, independent and
observed [I > 2σ(I)] reflections
5331, 2091, 1590
Rint0.054
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.039, 0.106, 1.07
No. of reflections2091
No. of parameters118
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.25

Computer programs: APEX2 (Bruker, 2007), SAINT-Plus (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (grant No. 20801011) and the Young Teachers' Starting Fund of Southeast University.

References

First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHigashi, L. S., Lundeen, M. & Seff, J. (1978). J. Am. Chem. Soc. 100, 8101–8106.  CSD CrossRef CAS Web of Science Google Scholar
First citationHorikoshi, R. & Mochida, T. (2006). Coord. Chem. Rev. 250, 2595–2609.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTabellion, F. M., Seidel, S. R., Arif, A. M. & Stang, P. J. (2001). J. Am Chem. Soc. 123, 7740–7741.  Web of Science CSD CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds