metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Bis(2,2′-bi­pyridyl-κ2N,N′)(nitrato-κ2O,O′)(tri­fluoro­acetato-κO)cadmium(II)

aDepartment of Chemistry and Environmental Science, Taishan University, 271021 Taian, Shandong, People's Republic of China, bSchool of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, People's Republic of China, and cDepartment of Materials and Chemical Engineering, Taishan University, 271021 Taian, Shandong, People's Republic of China
*Correspondence e-mail: duanwenzeng@163.com

(Received 23 April 2009; accepted 4 May 2009; online 14 May 2009)

In the title complex, [Cd(C2F3O2)(NO3)(C10H8N2)2], the Cd(II) ion is hepta­coordinated by two chelating 2,2′-bipyridyl ligands [Cd⋯N 2.370 (6)–2.416 (6) Å], one carboxyl­ate O atom [Cd⋯O 2.290 (6) Å] from the trifluoro­acetate ligand and two O atoms [Cd⋯O 2.386 (6), 2.633 (6) Å] from a chelating nitrate anion. The trifluoro­methyl fragment is rotationally disordered between two orientations in a 0.640 (7):0.360 (7) ratio. In the crystal, weak inter­molecular C—H⋯O hydrogen bonds contribute to the crystal packing stability.

Related literature

For the crystal structures of related compounds with nickel, see: Eremenko et al. (1999[Eremenko, I. L., Nefedov, V. N. & Sidorov, A. A. (1999). Inorg. Chem. 38, 3764-3773.]); Rajaraman et al. (2005[Rajaraman, G., Christensen, K. E. & Larsen, F. K. (2005). Chem. Commun. pp. 3053-3055.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd(C2F3O2)(NO3)(C10H8N2)2]

  • Mr = 599.80

  • Monoclinic, P 21 /c

  • a = 14.9327 (13) Å

  • b = 9.6613 (8) Å

  • c = 15.9859 (14) Å

  • β = 93.568 (2)°

  • V = 2301.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.02 mm−1

  • T = 273 K

  • 0.12 × 0.10 × 0.06 mm

Data collection
  • Bruker Smart APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.888, Tmax = 0.941

  • 11743 measured reflections

  • 4075 independent reflections

  • 3128 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.170

  • S = 1.02

  • 4075 reflections

  • 329 parameters

  • 516 restraints

  • H-atom parameters constrained

  • Δρmax = 0.94 e Å−3

  • Δρmin = −1.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O5i 0.93 2.44 3.160 (13) 134
C19—H19⋯O2ii 0.93 2.52 3.320 (11) 145
C13—H13⋯O3iii 0.93 2.43 3.287 (12) 152
C14—H14⋯O2iv 0.93 2.44 3.294 (11) 152
Symmetry codes: (i) [-x+2, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iv) -x+1, -y+1, -z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

In recent years, researchers showed considerable interest in the physical and chemical properties of mono- and polynuclear complexes of transition metals. especially in the metal complexes with carboxylates, which are among the most investigated complexes in the field of coordination chemistry. Due to their versatile bonding modes with metal ions, they have also been used in the synthesis of mononuclear (Eremenko, et al., 1999) and multi-nuclear (Rajaraman, et al., 2005) compounds. Herein, we report the crystal structure of the title compound, (I).

In (I) (Fig. 1), the CdII ion is seven-coordinated by four N and three O atoms. Weak intermolecular C—H···O hydrogen bonds (Table 1) stabilize the crystal packing.

Related literature top

For the crystal structures of related compounds with nickel, see: Eremenko et al. (1999); Rajaraman et al. (2005).

Experimental top

A mixture of trifluoroacetate(1 mmol), 2, 2'-bipyridine(bpy)(1 mmol), cadmium nitrate tetrahydrate (0.5 mmol), NaOH(1 mmol) and H2O(15 ml) were placed in a Teflon-lined stainless steel vessel, and heated to 418 K for 48 h. It was then cooled to room temperature over a period of 24 h. Colourless crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

All H atoms were positioned geometrically with C—H = 0.93 Å are refined as riding model withh Uiso(H) = 1.2 times Ueq(C). Trifluoromethyl fragment was treated as rotationally disordered between two orientations with the refined occupancies of 0.640 (7) and 0.360 (7), respectively.

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) showing the atomic labeling and 30% probability displacement ellipsoids for non-H atoms. Only major part of the disordered trifluoromethyl group is shown. H atoms omitted for clarity.
Bis(2,2'-bipyridyl-κ2N,N')(nitrato-κ2O,O')(trifluoroacetato-κO)cadmium(II) top
Crystal data top
[Cd(C2F3O2)(NO3)(C10H8N2)2]F(000) = 1192
Mr = 599.80Dx = 1.731 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 14.9327 (13) ÅCell parameters from 3157 reflections
b = 9.6613 (8) Åθ = 2.5–23.1°
c = 15.9859 (14) ŵ = 1.02 mm1
β = 93.568 (2)°T = 273 K
V = 2301.8 (3) Å3Block, colourless
Z = 40.12 × 0.10 × 0.06 mm
Data collection top
Bruker Smart APEX
diffractometer
4075 independent reflections
Radiation source: fine-focus sealed tube3128 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
phi and ω scansθmax = 25.1°, θmin = 1.4°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1717
Tmin = 0.888, Tmax = 0.941k = 118
11743 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.080P)2 + 9.6055P]
where P = (Fo2 + 2Fc2)/3
4075 reflections(Δ/σ)max = 0.006
329 parametersΔρmax = 0.94 e Å3
516 restraintsΔρmin = 1.42 e Å3
Crystal data top
[Cd(C2F3O2)(NO3)(C10H8N2)2]V = 2301.8 (3) Å3
Mr = 599.80Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.9327 (13) ŵ = 1.02 mm1
b = 9.6613 (8) ÅT = 273 K
c = 15.9859 (14) Å0.12 × 0.10 × 0.06 mm
β = 93.568 (2)°
Data collection top
Bruker Smart APEX
diffractometer
4075 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3128 reflections with I > 2σ(I)
Tmin = 0.888, Tmax = 0.941Rint = 0.029
11743 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059516 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.02Δρmax = 0.94 e Å3
4075 reflectionsΔρmin = 1.42 e Å3
329 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.73713 (3)0.51539 (5)0.16084 (3)0.0502 (2)
O10.7323 (4)0.7621 (7)0.1656 (4)0.0763 (10)
O20.6002 (4)0.6880 (7)0.1509 (4)0.0773 (11)
O30.6236 (5)0.9068 (7)0.1476 (4)0.0931 (18)
O40.7112 (5)0.4828 (7)0.2991 (4)0.0792 (10)
O50.8383 (6)0.5634 (11)0.3232 (6)0.128 (2)
N10.8898 (4)0.5660 (7)0.1289 (4)0.0559 (15)
N20.8265 (4)0.3090 (7)0.1600 (4)0.0577 (16)
N30.6969 (4)0.5131 (6)0.0152 (4)0.0527 (15)
N40.6102 (4)0.3705 (6)0.1314 (4)0.0521 (14)
N50.6504 (5)0.7896 (8)0.1543 (4)0.0679 (14)
F10.6917 (8)0.4254 (18)0.4519 (9)0.1036 (14)0.428 (7)
F20.8262 (10)0.3799 (16)0.4695 (9)0.1036 (14)0.428 (7)
F30.7842 (17)0.580 (2)0.4859 (17)0.206 (12)0.428 (7)
F1'0.7171 (8)0.5430 (14)0.4766 (6)0.113 (5)0.572 (7)
F2'0.7697 (8)0.3425 (11)0.4502 (7)0.1036 (14)0.572 (7)
F3'0.8551 (7)0.5117 (12)0.4745 (7)0.1036 (14)0.572 (7)
C10.9188 (6)0.6926 (10)0.1099 (6)0.0709 (12)
H10.87820.76560.10920.085*
C21.0062 (6)0.7201 (10)0.0911 (6)0.0740 (15)
H21.02410.80940.07810.089*
C31.0650 (6)0.6135 (10)0.0922 (6)0.0743 (14)
H31.12430.62840.07990.089*
C41.0364 (6)0.4838 (9)0.1116 (6)0.0720 (13)
H41.07650.41010.11230.086*
C50.9488 (6)0.4609 (9)0.1302 (6)0.0689 (12)
C60.9155 (6)0.3222 (9)0.1502 (6)0.0675 (12)
C70.9715 (6)0.2077 (9)0.1592 (6)0.0709 (13)
H71.03280.21730.15320.085*
C80.9367 (6)0.0811 (10)0.1766 (6)0.0725 (14)
H80.97410.00430.18300.087*
C90.8474 (6)0.0680 (10)0.1846 (6)0.0713 (14)
H90.82220.01750.19620.086*
C100.7951 (6)0.1839 (9)0.1752 (6)0.0710 (12)
H100.73360.17420.17970.085*
C110.7339 (6)0.5950 (9)0.0407 (5)0.0667 (12)
H110.77850.65630.02130.080*
C120.7101 (6)0.5938 (9)0.1246 (5)0.0678 (14)
H120.73780.65280.16100.081*
C130.6456 (6)0.5054 (9)0.1536 (6)0.0688 (13)
H130.62900.50080.21060.083*
C140.6042 (6)0.4213 (9)0.0969 (5)0.0684 (13)
H140.55820.36190.11540.082*
C150.6322 (6)0.4267 (9)0.0128 (5)0.0642 (11)
C160.5884 (5)0.3408 (9)0.0510 (5)0.0644 (11)
C170.5253 (6)0.2399 (9)0.0290 (6)0.0680 (13)
H170.51040.22060.02710.082*
C180.4850 (6)0.1688 (9)0.0905 (6)0.0698 (13)
H180.44420.09870.07630.084*
C190.5047 (5)0.2006 (9)0.1722 (6)0.0679 (14)
H190.47650.15520.21460.082*
C200.5677 (5)0.3019 (9)0.1906 (6)0.0669 (12)
H200.58150.32410.24660.080*
C210.7753 (7)0.5073 (11)0.3446 (6)0.0822 (16)
C220.7743 (6)0.4755 (11)0.4334 (8)0.1036 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.0439 (3)0.0563 (4)0.0505 (3)0.0040 (2)0.0033 (2)0.0030 (2)
O10.070 (2)0.0743 (17)0.085 (2)0.002 (2)0.005 (2)0.003 (2)
O20.068 (2)0.081 (2)0.083 (2)0.0039 (18)0.006 (2)0.004 (2)
O30.105 (4)0.079 (4)0.094 (4)0.028 (3)0.004 (3)0.006 (3)
O40.078 (2)0.098 (2)0.0612 (14)0.006 (2)0.0060 (19)0.004 (2)
O50.114 (4)0.154 (4)0.116 (4)0.029 (4)0.009 (4)0.011 (4)
N10.051 (4)0.054 (4)0.063 (4)0.006 (3)0.008 (3)0.003 (3)
N20.052 (4)0.056 (4)0.065 (4)0.002 (3)0.003 (3)0.003 (3)
N30.048 (3)0.059 (4)0.051 (3)0.001 (3)0.006 (3)0.001 (3)
N40.048 (3)0.059 (4)0.050 (3)0.005 (3)0.003 (3)0.003 (3)
N50.068 (3)0.067 (3)0.069 (3)0.004 (3)0.008 (3)0.008 (3)
F10.100 (3)0.122 (3)0.087 (3)0.000 (3)0.005 (3)0.010 (3)
F20.100 (3)0.122 (3)0.087 (3)0.000 (3)0.005 (3)0.010 (3)
F30.207 (12)0.206 (12)0.206 (12)0.0001 (11)0.0128 (13)0.0002 (11)
F1'0.115 (9)0.166 (12)0.061 (6)0.071 (9)0.029 (6)0.019 (6)
F2'0.100 (3)0.122 (3)0.087 (3)0.000 (3)0.005 (3)0.010 (3)
F3'0.100 (3)0.122 (3)0.087 (3)0.000 (3)0.005 (3)0.010 (3)
C10.062 (2)0.072 (2)0.080 (2)0.005 (2)0.009 (2)0.001 (2)
C20.064 (3)0.075 (3)0.084 (3)0.009 (3)0.011 (3)0.001 (3)
C30.062 (3)0.078 (3)0.084 (3)0.006 (2)0.011 (2)0.002 (3)
C40.060 (2)0.075 (3)0.082 (3)0.004 (2)0.009 (2)0.002 (2)
C50.059 (2)0.073 (2)0.075 (2)0.005 (2)0.008 (2)0.001 (2)
C60.060 (2)0.069 (2)0.074 (2)0.002 (2)0.005 (2)0.000 (2)
C70.062 (2)0.073 (3)0.078 (3)0.000 (2)0.007 (2)0.000 (2)
C80.067 (3)0.072 (3)0.079 (3)0.002 (2)0.005 (2)0.000 (3)
C90.067 (3)0.070 (3)0.078 (3)0.001 (3)0.005 (3)0.001 (3)
C100.064 (2)0.074 (2)0.075 (2)0.003 (2)0.006 (2)0.003 (2)
C110.060 (2)0.071 (2)0.070 (2)0.003 (2)0.006 (2)0.003 (2)
C120.064 (3)0.073 (3)0.067 (3)0.001 (3)0.008 (3)0.006 (3)
C130.066 (3)0.075 (3)0.066 (3)0.000 (2)0.002 (2)0.003 (2)
C140.064 (2)0.073 (3)0.068 (2)0.001 (2)0.001 (2)0.002 (2)
C150.058 (2)0.069 (2)0.066 (2)0.0006 (19)0.0032 (19)0.000 (2)
C160.056 (2)0.069 (2)0.068 (2)0.0015 (19)0.0023 (19)0.002 (2)
C170.061 (2)0.072 (3)0.071 (2)0.005 (2)0.001 (2)0.002 (2)
C180.061 (3)0.072 (3)0.076 (3)0.008 (2)0.002 (2)0.003 (2)
C190.058 (3)0.071 (3)0.075 (3)0.004 (2)0.007 (3)0.008 (3)
C200.060 (2)0.073 (2)0.068 (2)0.004 (2)0.005 (2)0.004 (2)
C210.073 (3)0.099 (3)0.074 (3)0.010 (3)0.002 (3)0.005 (3)
C220.100 (3)0.122 (3)0.087 (3)0.000 (3)0.005 (3)0.010 (3)
Geometric parameters (Å, º) top
Cd1—O42.289 (6)C3—H30.9300
Cd1—N32.367 (6)C4—C51.377 (12)
Cd1—N42.379 (6)C4—H40.9300
Cd1—O12.386 (6)C5—C61.471 (12)
Cd1—N22.400 (6)C6—C71.389 (12)
Cd1—N12.417 (6)C7—C81.365 (12)
Cd1—O22.636 (6)C7—H70.9300
O1—N51.254 (8)C8—C91.354 (12)
O2—N51.235 (9)C8—H80.9300
O3—N51.203 (9)C9—C101.368 (12)
O4—C211.190 (11)C9—H90.9300
O5—C211.156 (12)C10—H100.9300
N1—C11.339 (11)C11—C121.366 (11)
N1—C51.343 (11)C11—H110.9300
N2—C101.325 (10)C12—C131.347 (12)
N2—C61.354 (10)C12—H120.9300
N3—C151.334 (10)C13—C141.389 (12)
N3—C111.339 (10)C13—H130.9300
N4—C161.336 (10)C14—C151.383 (11)
N4—C201.347 (10)C14—H140.9300
F1—C221.374 (13)C15—C161.497 (11)
F2—C221.316 (13)C16—C171.386 (11)
F3—C221.316 (15)C17—C181.369 (12)
F1'—C221.306 (11)C17—H170.9300
F2'—C221.315 (12)C18—C191.355 (12)
F3'—C221.382 (12)C18—H180.9300
C1—C21.384 (12)C19—C201.377 (11)
C1—H10.9300C19—H190.9300
C2—C31.352 (12)C20—H200.9300
C2—H20.9300C21—C221.454 (15)
C3—C41.366 (12)
O4—Cd1—N3154.2 (2)C7—C8—H8120.2
O4—Cd1—N485.9 (2)C8—C9—C10118.1 (9)
N3—Cd1—N469.5 (2)C8—C9—H9120.9
O4—Cd1—O195.7 (2)C10—C9—H9120.9
N3—Cd1—O192.0 (2)N2—C10—C9124.1 (8)
N4—Cd1—O1124.7 (2)N2—C10—H10117.9
O4—Cd1—N291.1 (2)C9—C10—H10117.9
N3—Cd1—N295.4 (2)N3—C11—C12123.9 (8)
N4—Cd1—N286.9 (2)N3—C11—H11118.1
O1—Cd1—N2148.0 (2)C12—C11—H11118.1
O4—Cd1—N1116.8 (2)C13—C12—C11118.7 (9)
N3—Cd1—N188.8 (2)C13—C12—H12120.6
N4—Cd1—N1145.8 (2)C11—C12—H12120.6
O1—Cd1—N180.6 (2)C12—C13—C14118.9 (9)
N2—Cd1—N168.6 (2)C12—C13—H13120.6
O4—Cd1—O288.2 (2)C14—C13—H13120.6
N3—Cd1—O278.3 (2)C15—C14—C13119.5 (8)
N4—Cd1—O275.8 (2)C15—C14—H14120.3
O1—Cd1—O249.1 (2)C13—C14—H14120.3
N2—Cd1—O2162.7 (2)N3—C15—C14121.3 (8)
N1—Cd1—O2126.7 (2)N3—C15—C16117.1 (7)
N5—O1—Cd1103.8 (5)C14—C15—C16121.6 (8)
N5—O2—Cd191.9 (5)N4—C16—C17121.1 (8)
C21—O4—Cd1112.6 (7)N4—C16—C15116.5 (7)
C1—N1—C5118.2 (7)C17—C16—C15122.4 (8)
C1—N1—Cd1123.7 (5)C18—C17—C16119.5 (8)
C5—N1—Cd1118.1 (5)C18—C17—H17120.2
C10—N2—C6117.9 (7)C16—C17—H17120.2
C10—N2—Cd1123.6 (6)C19—C18—C17120.0 (8)
C6—N2—Cd1118.2 (5)C19—C18—H18120.0
C15—N3—C11117.7 (7)C17—C18—H18120.0
C15—N3—Cd1118.1 (5)C18—C19—C20118.1 (8)
C11—N3—Cd1124.1 (5)C18—C19—H19120.9
C16—N4—C20118.2 (7)C20—C19—H19120.9
C16—N4—Cd1117.4 (5)N4—C20—C19123.0 (8)
C20—N4—Cd1123.7 (5)N4—C20—H20118.5
O3—N5—O2123.2 (8)C19—C20—H20118.5
O3—N5—O1121.9 (8)O5—C21—O4123.5 (11)
O2—N5—O1114.9 (7)O5—C21—C22116.5 (10)
N1—C1—C2123.2 (9)O4—C21—C22119.9 (10)
N1—C1—H1118.4F1'—C22—F2'109.6 (11)
C2—C1—H1118.4F1'—C22—F348.0 (11)
C3—C2—C1118.1 (9)F2'—C22—F3128.6 (18)
C3—C2—H2120.9F1'—C22—F2120.3 (13)
C1—C2—H2120.9F2'—C22—F242.4 (7)
C2—C3—C4119.3 (9)F3—C22—F2102.6 (14)
C2—C3—H3120.4F1'—C22—F155.7 (9)
C4—C3—H3120.4F2'—C22—F163.4 (9)
C3—C4—C5120.8 (9)F3—C22—F1101.5 (13)
C3—C4—H4119.6F2—C22—F199.8 (11)
C5—C4—H4119.6F1'—C22—F3'101.7 (10)
N1—C5—C4120.4 (8)F2'—C22—F3'101.9 (9)
N1—C5—C6117.5 (7)F3—C22—F3'56.1 (10)
C4—C5—C6122.1 (8)F2—C22—F3'59.7 (8)
N2—C6—C7120.1 (8)F1—C22—F3'139.1 (13)
N2—C6—C5117.3 (8)F1'—C22—C21117.3 (10)
C7—C6—C5122.6 (8)F2'—C22—C21114.2 (10)
C8—C7—C6120.0 (8)F3—C22—C21117.0 (17)
C8—C7—H7120.0F2—C22—C21122.4 (11)
C6—C7—H7120.0F1—C22—C21110.4 (10)
C9—C8—C7119.6 (9)F3'—C22—C21110.4 (10)
C9—C8—H8120.2
O4—Cd1—O1—N585.4 (5)Cd1—O1—N5—O3175.2 (7)
N3—Cd1—O1—N569.9 (5)Cd1—O1—N5—O25.0 (8)
N4—Cd1—O1—N53.6 (6)C5—N1—C1—C20.3 (13)
N2—Cd1—O1—N5173.4 (5)Cd1—N1—C1—C2179.5 (7)
N1—Cd1—O1—N5158.4 (5)N1—C1—C2—C30.1 (14)
O2—Cd1—O1—N52.8 (4)C1—C2—C3—C40.0 (14)
O4—Cd1—O2—N5101.9 (5)C2—C3—C4—C50.2 (15)
N3—Cd1—O2—N5100.2 (5)C1—N1—C5—C40.6 (13)
N4—Cd1—O2—N5171.8 (5)Cd1—N1—C5—C4179.3 (7)
O1—Cd1—O2—N52.8 (4)C1—N1—C5—C6179.3 (8)
N2—Cd1—O2—N5170.4 (6)Cd1—N1—C5—C60.6 (10)
N1—Cd1—O2—N520.6 (6)C3—C4—C5—N10.5 (14)
N3—Cd1—O4—C21178.0 (7)C3—C4—C5—C6179.1 (9)
N4—Cd1—O4—C21160.1 (7)C10—N2—C6—C72.4 (12)
O1—Cd1—O4—C2175.4 (7)Cd1—N2—C6—C7172.5 (6)
N2—Cd1—O4—C2173.3 (7)C10—N2—C6—C5177.7 (8)
N1—Cd1—O4—C216.9 (8)Cd1—N2—C6—C57.5 (10)
O2—Cd1—O4—C21123.9 (7)N1—C5—C6—N24.6 (12)
O4—Cd1—N1—C1103.4 (7)C4—C5—C6—N2174.1 (8)
N3—Cd1—N1—C180.5 (7)N1—C5—C6—C7175.4 (8)
N4—Cd1—N1—C1129.6 (6)C4—C5—C6—C75.9 (14)
O1—Cd1—N1—C111.7 (6)N2—C6—C7—C81.0 (13)
N2—Cd1—N1—C1176.8 (7)C5—C6—C7—C8179.1 (9)
O2—Cd1—N1—C16.0 (7)C6—C7—C8—C90.4 (14)
O4—Cd1—N1—C576.8 (6)C7—C8—C9—C100.4 (14)
N3—Cd1—N1—C599.4 (6)C6—N2—C10—C92.5 (13)
N4—Cd1—N1—C550.2 (8)Cd1—N2—C10—C9172.0 (7)
O1—Cd1—N1—C5168.4 (6)C8—C9—C10—N21.1 (14)
N2—Cd1—N1—C53.1 (6)C15—N3—C11—C120.9 (12)
O2—Cd1—N1—C5173.9 (6)Cd1—N3—C11—C12179.6 (6)
O4—Cd1—N2—C1061.6 (7)N3—C11—C12—C130.0 (14)
N3—Cd1—N2—C1093.3 (7)C11—C12—C13—C141.6 (13)
N4—Cd1—N2—C1024.3 (7)C12—C13—C14—C152.2 (13)
O1—Cd1—N2—C10164.1 (6)C11—N3—C15—C140.2 (12)
N1—Cd1—N2—C10179.9 (7)Cd1—N3—C15—C14179.0 (6)
O2—Cd1—N2—C1025.6 (11)C11—N3—C15—C16177.1 (7)
O4—Cd1—N2—C6112.9 (6)Cd1—N3—C15—C161.7 (10)
N3—Cd1—N2—C692.2 (6)C13—C14—C15—N31.3 (13)
N4—Cd1—N2—C6161.2 (6)C13—C14—C15—C16178.5 (8)
O1—Cd1—N2—C610.4 (8)C20—N4—C16—C171.6 (12)
N1—Cd1—N2—C65.6 (6)Cd1—N4—C16—C17169.2 (6)
O2—Cd1—N2—C6159.9 (7)C20—N4—C16—C15175.6 (7)
O4—Cd1—N3—C1525.2 (9)Cd1—N4—C16—C1513.6 (9)
N4—Cd1—N3—C156.1 (6)N3—C15—C16—N48.0 (11)
O1—Cd1—N3—C15132.6 (6)C14—C15—C16—N4169.3 (8)
N2—Cd1—N3—C1578.6 (6)N3—C15—C16—C17174.9 (8)
N1—Cd1—N3—C15146.9 (6)C14—C15—C16—C177.8 (13)
O2—Cd1—N3—C1585.2 (6)N4—C16—C17—C180.4 (13)
O4—Cd1—N3—C11153.5 (6)C15—C16—C17—C18177.3 (8)
N4—Cd1—N3—C11172.6 (7)C16—C17—C18—C192.2 (14)
O1—Cd1—N3—C1146.1 (6)C17—C18—C19—C202.1 (13)
N2—Cd1—N3—C11102.7 (6)C16—N4—C20—C191.8 (12)
N1—Cd1—N3—C1134.4 (6)Cd1—N4—C20—C19168.5 (6)
O2—Cd1—N3—C1193.6 (6)C18—C19—C20—N40.1 (13)
O4—Cd1—N4—C16177.7 (6)Cd1—O4—C21—O512.3 (15)
N3—Cd1—N4—C1610.5 (5)Cd1—O4—C21—C22172.2 (7)
O1—Cd1—N4—C1688.2 (6)O5—C21—C22—F1'111.4 (14)
N2—Cd1—N4—C1686.4 (6)O4—C21—C22—F1'64.4 (15)
N1—Cd1—N4—C1643.3 (7)O5—C21—C22—F2'118.5 (13)
O2—Cd1—N4—C1693.2 (6)O4—C21—C22—F2'65.8 (14)
O4—Cd1—N4—C207.4 (6)O5—C21—C22—F357.0 (18)
N3—Cd1—N4—C20179.2 (7)O4—C21—C22—F3118.7 (15)
O1—Cd1—N4—C20101.5 (6)O5—C21—C22—F270.8 (17)
N2—Cd1—N4—C2083.9 (6)O4—C21—C22—F2113.5 (14)
N1—Cd1—N4—C20127.0 (6)O5—C21—C22—F1172.4 (13)
O2—Cd1—N4—C2096.5 (6)O4—C21—C22—F13.4 (16)
Cd1—O2—N5—O3175.8 (8)O5—C21—C22—F3'4.4 (15)
Cd1—O2—N5—O14.4 (7)O4—C21—C22—F3'179.9 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O5i0.932.443.160 (13)134
C19—H19···O2ii0.932.523.320 (11)145
C13—H13···O3iii0.932.433.287 (12)152
C14—H14···O2iv0.932.443.294 (11)152
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Cd(C2F3O2)(NO3)(C10H8N2)2]
Mr599.80
Crystal system, space groupMonoclinic, P21/c
Temperature (K)273
a, b, c (Å)14.9327 (13), 9.6613 (8), 15.9859 (14)
β (°) 93.568 (2)
V3)2301.8 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.02
Crystal size (mm)0.12 × 0.10 × 0.06
Data collection
DiffractometerBruker Smart APEX
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.888, 0.941
No. of measured, independent and
observed [I > 2σ(I)] reflections
11743, 4075, 3128
Rint0.029
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.170, 1.02
No. of reflections4075
No. of parameters329
No. of restraints516
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.94, 1.42

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7···O5i0.932.443.160 (13)134.0
C19—H19···O2ii0.932.523.320 (11)144.5
C13—H13···O3iii0.932.433.287 (12)152.4
C14—H14···O2iv0.932.443.294 (11)151.8
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y1/2, z+1/2; (iii) x, y+3/2, z1/2; (iv) x+1, y+1, z.
 

Acknowledgements

This work was supported by the Postgraduate Foundation of Taishan University (grant No. Y07–2–16).

References

First citationEremenko, I. L., Nefedov, V. N. & Sidorov, A. A. (1999). Inorg. Chem. 38, 3764–3773.  Web of Science CSD CrossRef CAS Google Scholar
First citationRajaraman, G., Christensen, K. E. & Larsen, F. K. (2005). Chem. Commun. pp. 3053–3055.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiemens (1996). SMART and SAINT. Siemens Analytical X-ray Systems, Inc., Madison, Wisconsin, USA.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds