metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Di­bromido(2,2′:6′,2′′-terpyridine-κ3N,N′,N′′)zinc(II)

aCollege of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China, and bInstitute of Molecular and Crystal Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475001, Henan, People's Republic of China
*Correspondence e-mail: imce18@163.com

(Received 5 May 2009; accepted 21 May 2009; online 29 May 2009)

In the title compound, [ZnBr2(C15H11N3)], the ZnII ion is five-coordinated by the three N atoms from a 2,2′:6′,2′′-terpyridine ligand (terpy) and two bromide anions in a distorted trigonal bipyramidal configuration. Each mol­ecule is situated on a twofold rotational axis that passes through the ZnII ion and the central ring of the terpy ligand. In the crystal structure, aromatic ππ inter­actions between terpy ligands [centroid–centroid distances = 3.6265 (9) Å] link mol­ecules into stacks propagated in the [001] direction.

Related literature

For related structures, see: Alizadeh et al. (2009[Alizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483-m484.]); Mahmoudi et al. (2009[Mahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555.]); Huang et al. (2009[Huang, W., You, W., Wang, L. & Yao, C. (2009). Inorg. Chim. Acta, 362, 2127-2135.]); Ma et al. (2009[Ma, Z., Xing, Y. P., Yang, M., Hua, M., Liu, B. Q., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2009). Inorg. Chim. Acta, 362, 2921-2926.]); Bai et al. (2009[Bai, F. Q., Zhou, X., Xia, B. H., Liu, T., Zhang, J. P. & Zhang, H. X. (2009). J. Organomet. Chem. 694, 1848-1860.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnBr2(C15H11N3)]

  • Mr = 458.46

  • Monoclinic, C 2/c

  • a = 17.0972 (5) Å

  • b = 9.3528 (3) Å

  • c = 11.5334 (4) Å

  • β = 126.051 (1)°

  • V = 1491.08 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 7.00 mm−1

  • T = 296 K

  • 0.20 × 0.18 × 0.16 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.335, Tmax = 0.401 (expected range = 0.273–0.326)

  • 9665 measured reflections

  • 1457 independent reflections

  • 1371 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.015

  • wR(F2) = 0.039

  • S = 1.08

  • 1457 reflections

  • 97 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

As a contribution to structural characterization of 2,2':6',2''-terpyridine complexes (Alizadeh et al., 2009; Huang et al., 2009; Ma et al., 2009; Bai et al., 2009) we present here the title complex (I).

In (I) (Fig. 1), the ZnII ion is five-coordinated in a distorted trigonal bipyramidal configuration by three N atoms from a 2,2':6',2''-terpyridine ligand and by two Br anions. The Zn–Br and Zn–N bond lengths are within normal ranges (Mahmoudi et al., 2009).

In the crystal structure, the ππ stacking interactions between aromatic rings of Cg1 and Cg2 [Cg1 and Cg2 are (N1, C6 — C8, C7i, C6i) and (N2, C1 — C5) ring centroids, respectively, symmetry code: (i) -x + 1, y, -z + 1/2] are observed, with a centroid–centroid distances of 3.6265 (9) Å.

Related literature top

For related structures, see: Alizadeh et al. (2009); Mahmoudi et al. (2009); Huang et al. (2009); Ma et al. (2009); Bai et al. (2009).

Experimental top

The title compound was synthesized hydrothermally in a Teflon-lined autoclave (25 mL) by heating a mixture of 2,2':6',2''-terpyridine (0.2 mmol), ZnBr2 (0.2 mmol) and one drop of Et3N (pH 8–9) in water (10 mL) at 393 K for 3 d. Crystals suitable for X-ray analysis were obtained.

Refinement top

All H atoms were included in calculated positions, with C—H distances fixed to 0.93 Å and were refined in the riding-model approximation, with Uiso(H) = 1.2 Ueq (C).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound with the atom-labelling scheme [symmetry code: (A) -x, + 1, y, -z + 1/2]. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.
[Figure 2] Fig. 2. A portion of the crystal packing showing the ππ interactions (dashed lines) between the aromatic rings.
Dibromido(2,2':6',2''-terpyridine-κ3N,N',N'')zinc(II) top
Crystal data top
[ZnBr2(C15H11N3)]F(000) = 888
Mr = 458.46Dx = 2.042 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 1580 reflections
a = 17.0972 (5) Åθ = 2.5–26.3°
b = 9.3528 (3) ŵ = 7.00 mm1
c = 11.5334 (4) ÅT = 296 K
β = 126.051 (1)°Block, colourless
V = 1491.08 (8) Å30.20 × 0.18 × 0.16 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD
diffractometer
1457 independent reflections
Radiation source: fine-focus sealed tube1371 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 26.0°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 2121
Tmin = 0.335, Tmax = 0.401k = 1111
9665 measured reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.015Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.039H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0184P)2 + 1.2604P]
where P = (Fo2 + 2Fc2)/3
1457 reflections(Δ/σ)max < 0.001
97 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
[ZnBr2(C15H11N3)]V = 1491.08 (8) Å3
Mr = 458.46Z = 4
Monoclinic, C2/cMo Kα radiation
a = 17.0972 (5) ŵ = 7.00 mm1
b = 9.3528 (3) ÅT = 296 K
c = 11.5334 (4) Å0.20 × 0.18 × 0.16 mm
β = 126.051 (1)°
Data collection top
Bruker SMART APEXII CCD
diffractometer
1457 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1371 reflections with I > 2σ(I)
Tmin = 0.335, Tmax = 0.401Rint = 0.019
9665 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0150 restraints
wR(F2) = 0.039H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
1457 reflectionsΔρmin = 0.29 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.380531 (15)0.11870 (2)0.03979 (2)0.04022 (8)
Zn10.50000.25499 (3)0.25000.02736 (8)
N10.50000.4802 (2)0.25000.0253 (4)
N20.58982 (11)0.31649 (16)0.18054 (15)0.0288 (3)
C10.63375 (14)0.2248 (2)0.1474 (2)0.0352 (4)
H10.62560.12720.15250.042*
C20.69093 (14)0.2696 (2)0.1056 (2)0.0392 (4)
H20.72100.20330.08380.047*
C30.70254 (14)0.4137 (2)0.0970 (2)0.0394 (4)
H30.74110.44610.07000.047*
C40.65606 (13)0.5102 (2)0.12890 (18)0.0346 (4)
H40.66200.60810.12190.042*
C50.60056 (12)0.45792 (18)0.17152 (16)0.0268 (4)
C60.54892 (12)0.55136 (18)0.21013 (16)0.0263 (3)
C70.54910 (13)0.69976 (19)0.20701 (19)0.0337 (4)
H70.58150.74850.17670.040*
C80.50000.7736 (3)0.25000.0367 (6)
H80.50000.87300.25000.044*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.04910 (14)0.03300 (12)0.03959 (12)0.01116 (8)0.02667 (10)0.00711 (7)
Zn10.03545 (17)0.01984 (14)0.03395 (16)0.0000.02441 (14)0.000
N10.0293 (10)0.0231 (10)0.0253 (9)0.0000.0170 (9)0.000
N20.0322 (8)0.0264 (8)0.0335 (7)0.0007 (6)0.0224 (7)0.0004 (6)
C10.0407 (11)0.0311 (10)0.0417 (10)0.0025 (8)0.0285 (9)0.0011 (8)
C20.0372 (11)0.0487 (12)0.0398 (10)0.0025 (9)0.0271 (9)0.0038 (9)
C30.0354 (10)0.0545 (12)0.0380 (10)0.0069 (9)0.0271 (9)0.0022 (9)
C40.0367 (10)0.0359 (10)0.0339 (9)0.0072 (8)0.0222 (8)0.0005 (8)
C50.0268 (9)0.0287 (9)0.0235 (7)0.0027 (7)0.0139 (7)0.0004 (7)
C60.0274 (9)0.0247 (8)0.0237 (7)0.0027 (7)0.0133 (7)0.0007 (6)
C70.0360 (10)0.0268 (9)0.0351 (9)0.0042 (8)0.0193 (8)0.0030 (7)
C80.0426 (16)0.0201 (12)0.0409 (14)0.0000.0210 (13)0.000
Geometric parameters (Å, º) top
Br1—Zn12.4179 (2)C2—H20.9300
Zn1—N12.106 (2)C3—C41.388 (3)
Zn1—N2i2.1861 (14)C3—H30.9300
Zn1—N22.1861 (14)C4—C51.389 (2)
Zn1—Br1i2.4179 (2)C4—H40.9300
N1—C6i1.3441 (19)C5—C61.485 (2)
N1—C61.3441 (19)C6—C71.388 (3)
N2—C11.336 (2)C7—C81.385 (2)
N2—C51.348 (2)C7—H70.9300
C1—C21.385 (3)C8—C7i1.385 (2)
C1—H10.9300C8—H80.9300
C2—C31.374 (3)
N1—Zn1—N2i74.75 (4)C3—C2—H2120.5
N1—Zn1—N274.75 (4)C1—C2—H2120.5
N2i—Zn1—N2149.49 (8)C2—C3—C4119.27 (17)
N1—Zn1—Br1121.815 (7)C2—C3—H3120.4
N2i—Zn1—Br198.34 (4)C4—C3—H3120.4
N2—Zn1—Br197.60 (4)C3—C4—C5118.78 (18)
N1—Zn1—Br1i121.815 (7)C3—C4—H4120.6
N2i—Zn1—Br1i97.60 (4)C5—C4—H4120.6
N2—Zn1—Br1i98.34 (4)N2—C5—C4121.69 (16)
Br1—Zn1—Br1i116.370 (14)N2—C5—C6114.99 (14)
C6i—N1—C6120.6 (2)C4—C5—C6123.32 (16)
C6i—N1—Zn1119.68 (10)N1—C6—C7121.01 (16)
C6—N1—Zn1119.68 (10)N1—C6—C5114.25 (15)
C1—N2—C5118.88 (15)C7—C6—C5124.74 (15)
C1—N2—Zn1124.80 (12)C8—C7—C6118.57 (17)
C5—N2—Zn1116.32 (11)C8—C7—H7120.7
N2—C1—C2122.43 (18)C6—C7—H7120.7
N2—C1—H1118.8C7i—C8—C7120.2 (2)
C2—C1—H1118.8C7i—C8—H8119.9
C3—C2—C1118.93 (18)C7—C8—H8119.9
N2i—Zn1—N1—C6i0.68 (9)C1—C2—C3—C40.6 (3)
N2—Zn1—N1—C6i179.32 (9)C2—C3—C4—C51.3 (3)
Br1—Zn1—N1—C6i91.12 (8)C1—N2—C5—C40.1 (2)
Br1i—Zn1—N1—C6i88.88 (8)Zn1—N2—C5—C4179.88 (12)
N2i—Zn1—N1—C6179.32 (9)C1—N2—C5—C6179.87 (15)
N2—Zn1—N1—C60.68 (9)Zn1—N2—C5—C60.19 (18)
Br1—Zn1—N1—C688.88 (8)C3—C4—C5—N20.9 (3)
Br1i—Zn1—N1—C691.12 (8)C3—C4—C5—C6179.12 (16)
N1—Zn1—N2—C1179.71 (15)C6i—N1—C6—C70.96 (12)
N2i—Zn1—N2—C1179.71 (15)Zn1—N1—C6—C7179.04 (12)
Br1—Zn1—N2—C159.30 (14)C6i—N1—C6—C5179.02 (15)
Br1i—Zn1—N2—C158.90 (14)Zn1—N1—C6—C50.98 (15)
N1—Zn1—N2—C50.23 (11)N2—C5—C6—N10.74 (19)
N2i—Zn1—N2—C50.23 (11)C4—C5—C6—N1179.33 (14)
Br1—Zn1—N2—C5120.76 (11)N2—C5—C6—C7179.29 (16)
Br1i—Zn1—N2—C5121.05 (11)C4—C5—C6—C70.6 (3)
C5—N2—C1—C20.8 (3)N1—C6—C7—C81.9 (2)
Zn1—N2—C1—C2179.16 (14)C5—C6—C7—C8178.10 (13)
N2—C1—C2—C30.4 (3)C6—C7—C8—C7i0.91 (11)
Symmetry code: (i) x+1, y, z+1/2.

Experimental details

Crystal data
Chemical formula[ZnBr2(C15H11N3)]
Mr458.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)296
a, b, c (Å)17.0972 (5), 9.3528 (3), 11.5334 (4)
β (°) 126.051 (1)
V3)1491.08 (8)
Z4
Radiation typeMo Kα
µ (mm1)7.00
Crystal size (mm)0.20 × 0.18 × 0.16
Data collection
DiffractometerBruker SMART APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.335, 0.401
No. of measured, independent and
observed [I > 2σ(I)] reflections
9665, 1457, 1371
Rint0.019
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.015, 0.039, 1.08
No. of reflections1457
No. of parameters97
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors are grateful to the Henan Administration of Science and Technology for financial support (grant No. 092300410031).

References

First citationAlizadeh, R., Heidari, A., Ahmadi, R. & Amani, V. (2009). Acta Cryst. E65, m483–m484.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBai, F. Q., Zhou, X., Xia, B. H., Liu, T., Zhang, J. P. & Zhang, H. X. (2009). J. Organomet. Chem. 694, 1848–1860.  Web of Science CrossRef CAS Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, W., You, W., Wang, L. & Yao, C. (2009). Inorg. Chim. Acta, 362, 2127–2135.  Web of Science CSD CrossRef CAS Google Scholar
First citationMa, Z., Xing, Y. P., Yang, M., Hua, M., Liu, B. Q., da Silva, M. F. C. G. & Pombeiro, A. J. L. (2009). Inorg. Chim. Acta, 362, 2921–2926.  Web of Science CSD CrossRef CAS Google Scholar
First citationMahmoudi, A., Khalaj, M., Gao, S., Ng, S. W. & Mohammadgholiha, M. (2009). Acta Cryst. E65, m555.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds