metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(5,7,7,12,14,14-Hexa­methyl-1,4,8,11-tetra­aza­cyclo­tetra­deca-4,11-diene-κ4N1,N4,N8,N11)(thio­cyanato-κS)nickel(II) perchlorate monohydrate

aDeparment of Chemistry and Chemical Engineering, Hefei Teachers College, Hefei 230061, People's Republic of China
*Correspondence e-mail: bi010101@126.com

(Received 5 May 2009; accepted 13 May 2009; online 20 May 2009)

In the title compound, [Ni(SCN)(C16H32N4)]ClO4·H2O, the NiII ion is coordinated by the four N atoms of the tetra­azacyclo­tetra­deca-4,11-diene macrocyclic ligand and by the S atom of a thio­cyanate anion. The perchlorate anion is rotationally disordered around one Cl—O bond between two orientations; the occupancies refined to 0.61 (4) and 0.39 (4). Inter­molecular O—H⋯N, N—H⋯O and N—H⋯N hydrogen bonds link two cations, two anions and two solvent water mol­ecules into a centrosymmetric cluster. The crystal packing is further stabilized by weak inter­molecular C—H⋯O hydrogen bonds.

Related literature

For the crystal structures of related complexes, see: Bienko et al. (2007[Bienko, A., Klak, J., Mrozinski, J., Boca, R., Brudgam, I. & Hartl, H. (2007). Dalton Trans. pp. 2681-2688.]); Shen et al. (1999[Shen, H. Y., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (1999). Transition Met. Chem. 24, 581-583.]); Szalda & Fujita (1992[Szalda, D. J. & Fujita, E. (1992). Acta Cryst. C48, 1767-1771.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(NCS)(C16H32N4)]ClO4·H2O

  • Mr = 514.71

  • Triclinic, [P \overline 1]

  • a = 7.2678 (11) Å

  • b = 8.9998 (13) Å

  • c = 19.513 (2) Å

  • α = 84.1430 (10)°

  • β = 87.005 (2)°

  • γ = 67.3480 (10)°

  • V = 1171.6 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.07 mm−1

  • T = 291 K

  • 0.49 × 0.40 × 0.39 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.623, Tmax = 0.681

  • 6103 measured reflections

  • 4062 independent reflections

  • 3247 reflections with I > 2σ(I)

  • Rint = 0.019

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.109

  • S = 1.03

  • 4062 reflections

  • 299 parameters

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.90 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O2 0.91 2.28 3.16 (3) 162
N4—H4⋯N5 0.91 2.33 3.241 (5) 175
O5—H5F⋯N5 0.85 2.09 2.942 (6) 178
O5—H5G⋯N5i 0.85 2.15 2.997 (6) 178
C3—H3A⋯O4ii 0.97 2.49 3.450 (16) 172
C3—H3B⋯O2 0.97 2.48 3.26 (3) 137
C15—H15A⋯O1iii 0.97 2.37 3.155 (6) 138
Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) -x+1, -y+1, -z+2; (iii) x-1, y+1, z.

Data collection: SMART (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2000[Bruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A number of researches study azamacrocyclic systems (Bienko et al., 2007; Shen et al., 1999; Szalda et al., 1992). Szalda reported a crystal structure of metal complex derived from tetraazacyclotetradeca-4,11-diene macrocycles (Szalda et al., 1992). To investigate whether the potentially explosive perchlorate anions in this complex can be replaced by other anions to facilitate its further application, NCS- anion was used and the title complex was obtained.

The coordination geometry of NiII center is shown in Fig.1. The NiII center adopts a square-pyramidal coordination geometry, where four N atoms from macrocyclic ligand form an equatorial plane and one S atom from the thiocyanate anion occupies an apical position. The Ni–S bond length of 3.298 (13) Å is slightly longer than those of 3.171 (14) Å observed and discussed by Bienko et al. (2007).

The crystal packing is stabilized by intermolecular hydrogen bonding interactions (Table 1).

Related literature top

For the crystal structures of related complexes, see: Bienko et al. (2007); Shen et al. (1999); Szalda et al. (1992)

Experimental top

All solvents and chemicals were of analytical grade and were used without further purification. The mononuclear nickel(II)-diperchlorate macrocycle complex (0.538 g, 0.1 mmol), which was prepared via similar method as reported previously (Szalda et al., 1992), was dissolved in acetonitrile (30 ml) and NH4(NCS)(0.152 g, 0.2 mmol) was added. The mixture was refluxed for 2 h, and then cooled to room temperature. The green precipitate was collected, washed with a small amount of acetonitrile and dried in vacuo. Single crystals suitable for X-ray analysis were grown from the mother solution by slow evaporation at room temperature in air. Elemental analysis calculated for C17H34ClN5NiO5S: C 39.67, H 6.66, N 13.61%; found: C 39.71, H 6.70, N 13.57%.

Refinement top

All hydrogen atoms were geometrically positioned (C—H 0.93–0.97 Å, O–H 0.84–0.85 Å, N–H 0.91 Å) and refined as riding, with Uiso(H)=1.2–1.5 Ueq of the parent atom. The oxygen atoms O2, O3 and O4 of the perchlorate anion were treated as disordered between two orientions with the occupancies refined to 0.61 (4) and 0.39 (4).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the cation of the title compound showing 30% probability displacement ellipsoids and the atomic numbering.
(5,7,7,12,14,14-Hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene- κ4N1,N4,N8,N11)(thiocyanato- κS)nickel(II) perchlorate monohydrate top
Crystal data top
[Ni(NCS)(C16H32N4)]ClO4·H2OZ = 2
Mr = 514.71F(000) = 544
Triclinic, P1Dx = 1.459 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2678 (11) ÅCell parameters from 2923 reflections
b = 8.9998 (13) Åθ = 2.5–27.7°
c = 19.513 (2) ŵ = 1.07 mm1
α = 84.143 (1)°T = 291 K
β = 87.005 (2)°Block, green
γ = 67.348 (1)°0.49 × 0.40 × 0.39 mm
V = 1171.6 (3) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4062 independent reflections
Radiation source: fine-focus sealed tube3247 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ϕ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 88
Tmin = 0.623, Tmax = 0.681k = 108
6103 measured reflectionsl = 2316
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0501P)2 + 0.9082P]
where P = (Fo2 + 2Fc2)/3
4062 reflections(Δ/σ)max = 0.001
299 parametersΔρmax = 0.53 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
[Ni(NCS)(C16H32N4)]ClO4·H2Oγ = 67.348 (1)°
Mr = 514.71V = 1171.6 (3) Å3
Triclinic, P1Z = 2
a = 7.2678 (11) ÅMo Kα radiation
b = 8.9998 (13) ŵ = 1.07 mm1
c = 19.513 (2) ÅT = 291 K
α = 84.143 (1)°0.49 × 0.40 × 0.39 mm
β = 87.005 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4062 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
3247 reflections with I > 2σ(I)
Tmin = 0.623, Tmax = 0.681Rint = 0.019
6103 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.03Δρmax = 0.53 e Å3
4062 reflectionsΔρmin = 0.90 e Å3
299 parameters
Special details top

Experimental. The structure was solved by direct methods (Bruker, 2000) and successive difference Fourier syntheses.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.30773 (6)0.73405 (4)0.74822 (2)0.03298 (14)
S10.77119 (17)0.55310 (15)0.69389 (7)0.0742 (3)
Cl10.83588 (13)0.23413 (11)0.87389 (5)0.0488 (2)
N10.3810 (4)0.8445 (3)0.81175 (14)0.0369 (6)
N20.3265 (4)0.5584 (3)0.81554 (13)0.0358 (6)
H20.45850.50400.82460.043*
N30.2600 (4)0.6153 (3)0.68168 (14)0.0370 (6)
N40.2731 (4)0.9145 (3)0.68173 (13)0.0358 (6)
H40.37690.88120.65120.043*
N50.6503 (6)0.7714 (6)0.5780 (2)0.0895 (13)
O11.0226 (5)0.1857 (5)0.8446 (3)0.1262 (16)
O20.758 (4)0.401 (3)0.8792 (15)0.103 (6)0.61 (4)
O30.698 (3)0.198 (3)0.8398 (14)0.115 (7)0.61 (4)
O40.889 (5)0.1340 (19)0.9359 (6)0.151 (8)0.61 (4)
O2'0.765 (6)0.150 (3)0.9228 (18)0.125 (11)0.39 (4)
O3'0.724 (6)0.244 (5)0.8153 (16)0.132 (12)0.39 (4)
O4'0.774 (7)0.381 (6)0.9037 (19)0.101 (10)0.39 (4)
O50.4522 (5)0.8714 (5)0.44382 (19)0.1003 (11)
H5F0.50990.83960.48240.120*
H5G0.42170.97270.43650.120*
C10.4568 (6)0.9196 (5)0.9214 (2)0.0567 (10)
H1A0.56020.94700.89770.085*
H1B0.50660.85750.96420.085*
H1C0.34551.01680.93030.085*
C20.3917 (5)0.8227 (4)0.87771 (17)0.0393 (7)
C30.3413 (5)0.6913 (4)0.91705 (18)0.0470 (8)
H3A0.26670.73550.95790.056*
H3B0.46580.60700.93270.056*
C40.2248 (5)0.6103 (4)0.88317 (17)0.0423 (8)
C50.0098 (5)0.7264 (5)0.8714 (2)0.0587 (10)
H5A0.00780.82220.84420.088*
H5B0.05510.75500.91500.088*
H5C0.05890.67530.84760.088*
C60.2333 (6)0.4619 (5)0.9316 (2)0.0595 (10)
H6A0.14730.41560.91480.089*
H6B0.19020.49420.97700.089*
H6C0.36760.38320.93320.089*
C70.2598 (6)0.4456 (4)0.78297 (19)0.0482 (9)
H7A0.11580.48140.78630.058*
H7B0.31800.33790.80630.058*
C80.3252 (6)0.4434 (4)0.70907 (19)0.0493 (9)
H8A0.46890.38950.70520.059*
H8B0.26350.38740.68400.059*
C90.2099 (7)0.5436 (5)0.5678 (2)0.0617 (11)
H9A0.33870.45690.56870.093*
H9B0.18620.59960.52260.093*
H9C0.10920.50040.57940.093*
C100.2029 (5)0.6592 (4)0.61938 (17)0.0404 (8)
C110.1245 (5)0.8328 (4)0.59141 (17)0.0432 (8)
H11A0.00020.85460.56850.052*
H11B0.21790.84550.55620.052*
C120.0857 (5)0.9639 (4)0.64053 (16)0.0394 (7)
C130.0909 (5)0.9766 (4)0.68875 (18)0.0466 (8)
H13A0.07510.87100.70930.070*
H13B0.21211.02220.66310.070*
H13C0.09651.04480.72420.070*
C140.0433 (6)1.1253 (4)0.5974 (2)0.0554 (10)
H14A0.01241.21010.62750.083*
H14B0.06781.14760.56800.083*
H14C0.15871.11940.56980.083*
C150.2952 (6)1.0464 (4)0.71649 (18)0.0473 (9)
H15A0.16771.11450.73530.057*
H15B0.34271.11280.68380.057*
C160.4423 (6)0.9688 (4)0.77314 (19)0.0487 (9)
H16A0.57590.91940.75420.058*
H16B0.44091.04860.80320.058*
C170.7045 (6)0.6772 (5)0.6252 (3)0.0621 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0374 (2)0.0284 (2)0.0350 (2)0.01414 (17)0.00074 (17)0.00531 (16)
S10.0542 (6)0.0768 (8)0.0868 (9)0.0221 (6)0.0052 (6)0.0040 (6)
Cl10.0432 (5)0.0483 (5)0.0450 (5)0.0061 (4)0.0094 (4)0.0117 (4)
N10.0370 (14)0.0317 (14)0.0435 (16)0.0140 (12)0.0022 (12)0.0078 (12)
N20.0340 (14)0.0309 (14)0.0409 (15)0.0111 (11)0.0024 (11)0.0012 (11)
N30.0396 (15)0.0305 (14)0.0428 (16)0.0149 (12)0.0008 (12)0.0070 (12)
N40.0425 (15)0.0315 (14)0.0356 (15)0.0164 (12)0.0068 (12)0.0078 (11)
N50.071 (3)0.098 (3)0.082 (3)0.017 (2)0.000 (2)0.007 (3)
O10.070 (2)0.144 (4)0.160 (4)0.029 (2)0.041 (2)0.062 (3)
O20.083 (7)0.074 (6)0.143 (16)0.012 (5)0.027 (11)0.026 (10)
O30.078 (5)0.119 (9)0.169 (19)0.053 (6)0.008 (9)0.040 (11)
O40.158 (16)0.151 (8)0.071 (5)0.013 (9)0.002 (7)0.027 (5)
O2'0.13 (2)0.110 (13)0.125 (17)0.050 (13)0.048 (15)0.002 (11)
O3'0.121 (19)0.15 (2)0.081 (13)0.002 (13)0.035 (11)0.040 (12)
O4'0.10 (2)0.10 (2)0.104 (17)0.026 (15)0.031 (14)0.071 (17)
O50.106 (3)0.114 (3)0.085 (3)0.045 (2)0.019 (2)0.004 (2)
C10.063 (2)0.063 (2)0.049 (2)0.026 (2)0.0088 (19)0.0173 (19)
C20.0320 (16)0.0397 (18)0.0408 (19)0.0060 (14)0.0001 (14)0.0115 (15)
C30.051 (2)0.052 (2)0.0383 (19)0.0191 (17)0.0002 (16)0.0057 (16)
C40.0389 (18)0.0453 (19)0.0405 (19)0.0151 (15)0.0031 (15)0.0002 (15)
C50.042 (2)0.065 (3)0.061 (3)0.0130 (18)0.0071 (18)0.003 (2)
C60.063 (2)0.065 (3)0.053 (2)0.032 (2)0.0009 (19)0.0119 (19)
C70.058 (2)0.0326 (18)0.058 (2)0.0216 (17)0.0078 (18)0.0007 (16)
C80.063 (2)0.0290 (17)0.058 (2)0.0171 (16)0.0087 (18)0.0095 (16)
C90.080 (3)0.054 (2)0.054 (2)0.024 (2)0.001 (2)0.0235 (19)
C100.0436 (19)0.0434 (19)0.0402 (19)0.0219 (16)0.0069 (15)0.0135 (15)
C110.0467 (19)0.049 (2)0.0362 (18)0.0204 (17)0.0019 (15)0.0068 (15)
C120.0427 (18)0.0382 (18)0.0333 (17)0.0118 (15)0.0022 (14)0.0020 (14)
C130.0398 (18)0.049 (2)0.044 (2)0.0088 (16)0.0031 (15)0.0065 (16)
C140.066 (2)0.044 (2)0.049 (2)0.0161 (19)0.0030 (19)0.0058 (17)
C150.067 (2)0.0337 (18)0.047 (2)0.0252 (17)0.0034 (17)0.0061 (15)
C160.061 (2)0.045 (2)0.053 (2)0.0321 (18)0.0022 (18)0.0107 (17)
C170.041 (2)0.066 (3)0.075 (3)0.015 (2)0.006 (2)0.016 (2)
Geometric parameters (Å, º) top
Ni1—N11.880 (3)C4—C51.522 (5)
Ni1—N31.888 (3)C4—C61.538 (5)
Ni1—N21.916 (2)C5—H5A0.9600
Ni1—N41.917 (2)C5—H5B0.9600
Ni1—S13.2979 (13)C5—H5C0.9600
S1—C171.620 (5)C6—H6A0.9600
Cl1—O2'1.359 (18)C6—H6B0.9600
Cl1—O11.369 (4)C6—H6C0.9600
Cl1—O31.385 (18)C7—C81.494 (5)
Cl1—O21.40 (3)C7—H7A0.9700
Cl1—O4'1.40 (4)C7—H7B0.9700
Cl1—O41.408 (11)C8—H8A0.9700
Cl1—O3'1.41 (3)C8—H8B0.9700
N1—C21.284 (4)C9—C101.505 (5)
N1—C161.482 (4)C9—H9A0.9600
N2—C71.487 (4)C9—H9B0.9600
N2—C41.505 (4)C9—H9C0.9600
N2—H20.9100C10—C111.495 (5)
N3—C101.278 (4)C11—C121.529 (4)
N3—C81.482 (4)C11—H11A0.9700
N4—C151.489 (4)C11—H11B0.9700
N4—C121.508 (4)C12—C131.526 (4)
N4—H40.9100C12—C141.531 (4)
N5—C171.159 (5)C13—H13A0.9600
O5—H5F0.8500C13—H13B0.9600
O5—H5G0.8500C13—H13C0.9600
C1—C21.491 (5)C14—H14A0.9600
C1—H1A0.9600C14—H14B0.9600
C1—H1B0.9600C14—H14C0.9600
C1—H1C0.9600C15—C161.498 (5)
C2—C31.496 (5)C15—H15A0.9700
C3—C41.523 (5)C15—H15B0.9700
C3—H3A0.9700C16—H16A0.9700
C3—H3B0.9700C16—H16B0.9700
N1—Ni1—N3174.53 (11)C3—C4—C6107.2 (3)
N1—Ni1—N292.60 (11)C4—C5—H5A109.5
N3—Ni1—N288.02 (11)C4—C5—H5B109.5
N1—Ni1—N487.93 (11)H5A—C5—H5B109.5
N3—Ni1—N491.75 (11)C4—C5—H5C109.5
N2—Ni1—N4176.80 (11)H5A—C5—H5C109.5
N1—Ni1—S192.86 (8)H5B—C5—H5C109.5
N3—Ni1—S181.67 (8)C4—C6—H6A109.5
N2—Ni1—S192.88 (8)C4—C6—H6B109.5
N4—Ni1—S190.25 (8)H6A—C6—H6B109.5
C17—S1—Ni185.87 (14)C4—C6—H6C109.5
O2'—Cl1—O1127.9 (17)H6A—C6—H6C109.5
O2'—Cl1—O375.5 (14)H6B—C6—H6C109.5
O1—Cl1—O3115.2 (10)N2—C7—C8108.2 (3)
O2'—Cl1—O2113.7 (19)N2—C7—H7A110.0
O1—Cl1—O2110.6 (14)C8—C7—H7A110.0
O3—Cl1—O2107.7 (14)N2—C7—H7B110.0
O2'—Cl1—O4'99 (2)C8—C7—H7B110.0
O1—Cl1—O4'115 (2)H7A—C7—H7B108.4
O3—Cl1—O4'119 (2)N3—C8—C7105.6 (3)
O2—Cl1—O4'21 (2)N3—C8—H8A110.6
O2'—Cl1—O438.1 (9)C7—C8—H8A110.6
O1—Cl1—O497.2 (13)N3—C8—H8B110.6
O3—Cl1—O4109.6 (11)C7—C8—H8B110.6
O2—Cl1—O4116.7 (11)H8A—C8—H8B108.7
O4'—Cl1—O496.2 (18)C10—C9—H9A109.5
O2'—Cl1—O3'103.0 (12)C10—C9—H9B109.5
O1—Cl1—O3'99.4 (17)H9A—C9—H9B109.5
O3—Cl1—O3'27.7 (17)C10—C9—H9C109.5
O2—Cl1—O3'94.5 (16)H9A—C9—H9C109.5
O4'—Cl1—O3'113 (2)H9B—C9—H9C109.5
O4—Cl1—O3'136.4 (14)N3—C10—C11122.0 (3)
C2—N1—C16120.5 (3)N3—C10—C9123.9 (3)
C2—N1—Ni1130.8 (2)C11—C10—C9114.1 (3)
C16—N1—Ni1108.6 (2)C10—C11—C12119.3 (3)
C7—N2—C4114.5 (3)C10—C11—H11A107.5
C7—N2—Ni1107.9 (2)C12—C11—H11A107.5
C4—N2—Ni1114.08 (19)C10—C11—H11B107.5
C7—N2—H2106.6C12—C11—H11B107.5
C4—N2—H2106.6H11A—C11—H11B107.0
Ni1—N2—H2106.6N4—C12—C13109.9 (3)
C10—N3—C8120.7 (3)N4—C12—C11106.1 (3)
C10—N3—Ni1129.9 (2)C13—C12—C11111.4 (3)
C8—N3—Ni1109.0 (2)N4—C12—C14111.4 (3)
C15—N4—C12115.1 (2)C13—C12—C14109.8 (3)
C15—N4—Ni1109.0 (2)C11—C12—C14108.3 (3)
C12—N4—Ni1112.87 (18)C12—C13—H13A109.5
C15—N4—H4106.4C12—C13—H13B109.5
C12—N4—H4106.4H13A—C13—H13B109.5
Ni1—N4—H4106.4C12—C13—H13C109.5
H5F—O5—H5G108.3H13A—C13—H13C109.5
C2—C1—H1A109.5H13B—C13—H13C109.5
C2—C1—H1B109.5C12—C14—H14A109.5
H1A—C1—H1B109.5C12—C14—H14B109.5
C2—C1—H1C109.5H14A—C14—H14B109.5
H1A—C1—H1C109.5C12—C14—H14C109.5
H1B—C1—H1C109.5H14A—C14—H14C109.5
N1—C2—C1124.5 (3)H14B—C14—H14C109.5
N1—C2—C3121.1 (3)N4—C15—C16107.5 (3)
C1—C2—C3114.4 (3)N4—C15—H15A110.2
C2—C3—C4120.4 (3)C16—C15—H15A110.2
C2—C3—H3A107.2N4—C15—H15B110.2
C4—C3—H3A107.2C16—C15—H15B110.2
C2—C3—H3B107.2H15A—C15—H15B108.5
C4—C3—H3B107.2N1—C16—C15106.6 (3)
H3A—C3—H3B106.9N1—C16—H16A110.4
N2—C4—C5110.3 (3)C15—C16—H16A110.4
N2—C4—C3107.6 (3)N1—C16—H16B110.4
C5—C4—C3110.8 (3)C15—C16—H16B110.4
N2—C4—C6110.3 (3)H16A—C16—H16B108.6
C5—C4—C6110.7 (3)N5—C17—S1176.7 (4)
N1—Ni1—S1—C17106.07 (18)Ni1—N1—C2—C30.1 (5)
N3—Ni1—S1—C1773.60 (18)N1—C2—C3—C416.4 (5)
N2—Ni1—S1—C17161.18 (18)C1—C2—C3—C4164.7 (3)
N4—Ni1—S1—C1718.13 (18)C7—N2—C4—C572.0 (3)
N3—Ni1—N1—C2110.1 (12)Ni1—N2—C4—C553.0 (3)
N2—Ni1—N1—C213.6 (3)C7—N2—C4—C3167.1 (3)
N4—Ni1—N1—C2163.2 (3)Ni1—N2—C4—C367.9 (3)
S1—Ni1—N1—C2106.7 (3)C7—N2—C4—C650.5 (4)
N3—Ni1—N1—C1666.7 (12)Ni1—N2—C4—C6175.5 (2)
N2—Ni1—N1—C16163.1 (2)C2—C3—C4—N250.8 (4)
N4—Ni1—N1—C1620.1 (2)C2—C3—C4—C569.8 (4)
S1—Ni1—N1—C1670.1 (2)C2—C3—C4—C6169.4 (3)
N1—Ni1—N2—C7175.6 (2)C4—N2—C7—C8163.6 (3)
N3—Ni1—N2—C79.8 (2)Ni1—N2—C7—C835.4 (3)
N4—Ni1—N2—C776 (2)C10—N3—C8—C7145.6 (3)
S1—Ni1—N2—C791.4 (2)Ni1—N3—C8—C741.0 (3)
N1—Ni1—N2—C447.2 (2)N2—C7—C8—N349.6 (4)
N3—Ni1—N2—C4138.3 (2)C8—N3—C10—C11176.2 (3)
N4—Ni1—N2—C452 (2)Ni1—N3—C10—C1112.0 (5)
S1—Ni1—N2—C4140.2 (2)C8—N3—C10—C94.5 (5)
N1—Ni1—N3—C1093.8 (12)Ni1—N3—C10—C9167.3 (3)
N2—Ni1—N3—C10169.6 (3)N3—C10—C11—C128.1 (5)
N4—Ni1—N3—C107.2 (3)C9—C10—C11—C12172.5 (3)
S1—Ni1—N3—C1097.2 (3)C15—N4—C12—C1378.0 (3)
N1—Ni1—N3—C878.7 (12)Ni1—N4—C12—C1348.0 (3)
N2—Ni1—N3—C817.9 (2)C15—N4—C12—C11161.5 (3)
N4—Ni1—N3—C8165.3 (2)Ni1—N4—C12—C1172.5 (3)
S1—Ni1—N3—C875.3 (2)C15—N4—C12—C1443.8 (4)
N1—Ni1—N4—C157.0 (2)Ni1—N4—C12—C14169.8 (2)
N3—Ni1—N4—C15178.5 (2)C10—C11—C12—N450.3 (4)
N2—Ni1—N4—C1592.6 (19)C10—C11—C12—C1369.3 (4)
S1—Ni1—N4—C1599.9 (2)C10—C11—C12—C14169.9 (3)
N1—Ni1—N4—C12136.2 (2)C12—N4—C15—C16160.1 (3)
N3—Ni1—N4—C1249.2 (2)Ni1—N4—C15—C1632.1 (3)
N2—Ni1—N4—C1237 (2)C2—N1—C16—C15140.5 (3)
S1—Ni1—N4—C12130.90 (19)Ni1—N1—C16—C1542.3 (3)
C16—N1—C2—C12.4 (5)N4—C15—C16—N148.1 (4)
Ni1—N1—C2—C1178.8 (2)Ni1—S1—C17—N531 (8)
C16—N1—C2—C3176.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.912.283.16 (3)162
N4—H4···N50.912.333.241 (5)175
O5—H5F···N50.852.092.942 (6)178
O5—H5G···N5i0.852.152.997 (6)178
C3—H3A···O4ii0.972.493.450 (16)172
C3—H3B···O20.972.483.26 (3)137
C15—H15A···O1iii0.972.373.155 (6)138
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+2; (iii) x1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ni(NCS)(C16H32N4)]ClO4·H2O
Mr514.71
Crystal system, space groupTriclinic, P1
Temperature (K)291
a, b, c (Å)7.2678 (11), 8.9998 (13), 19.513 (2)
α, β, γ (°)84.143 (1), 87.005 (2), 67.348 (1)
V3)1171.6 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.07
Crystal size (mm)0.49 × 0.40 × 0.39
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.623, 0.681
No. of measured, independent and
observed [I > 2σ(I)] reflections
6103, 4062, 3247
Rint0.019
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.109, 1.03
No. of reflections4062
No. of parameters299
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.53, 0.90

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2···O20.912.283.16 (3)162.0
N4—H4···N50.912.333.241 (5)175.0
O5—H5F···N50.852.092.942 (6)178.0
O5—H5G···N5i0.852.152.997 (6)178.0
C3—H3A···O4ii0.972.493.450 (16)172.0
C3—H3B···O20.972.483.26 (3)137.0
C15—H15A···O1iii0.972.373.155 (6)138.0
Symmetry codes: (i) x+1, y+2, z+1; (ii) x+1, y+1, z+2; (iii) x1, y+1, z.
 

Acknowledgements

The author is indebted to the National Natural Science Foundation of China for financial support (grant No. 20871039).

References

First citationBienko, A., Klak, J., Mrozinski, J., Boca, R., Brudgam, I. & Hartl, H. (2007). Dalton Trans. pp. 2681–2688.  Web of Science PubMed Google Scholar
First citationBruker (2000). SADABS, SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShen, H. Y., Liao, D. Z., Jiang, Z. H. & Yan, S. P. (1999). Transition Met. Chem. 24, 581–583.  Web of Science CSD CrossRef CAS Google Scholar
First citationSzalda, D. J. & Fujita, E. (1992). Acta Cryst. C48, 1767–1771.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds