organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1374-o1375

3-[1-(3-Hy­droxy­benz­yl)-1H-benz­imid­azol-2-yl]phenol

aSchool of Chemical Science, Universiti Sains Malaysia, Minden, Penang, Malaysia, and bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia
*Correspondence e-mail: hkfun@usm.my

(Received 13 May 2009; accepted 18 May 2009; online 23 May 2009)

In the title mol­ecule, C20H16N2O2, the benzimidazole mean plane forms dihedral angles of 56.55 (3) and 81.65 (4)° with the two benzene rings. In the crystal structure, inter­molecular O—H⋯O and O—H⋯N hydrogen bonds link the mol­ecules into layers parallel to the (101) plane. The crystal packing also exhibits weak inter­molecular C—H⋯O and C—H⋯π inter­actions.

Related literature

For the biological activity of benzimidazole derivatives, see: Demirayak et al. (2002[Demirayak, S., Abu Mohsen, U. & Lagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255-260.]); Minoura et al. (2004[Minoura, H., Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y. & Mutoh, S. (2004). Eur. J. Pharmacol. 494, 273-281.]); Pawar et al. (2004[Pawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci. 21, 115-118.]); Tomei et al. (2003[Tomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., Pacini, L., Narjes, F., Gennari, N., Bisbocci, M., Incitti, I., Orsatti, L., Harper, S., Stansfield, I., Rowley, M., De Francesco, R. & Migliaccio, G. (2003). J. Virol. 77, 13225-13231.]). For related structures, see: Eltayeb et al. (2007a[Eltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007a). Acta Cryst. E63, o4141-o4142.],b[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o465-o467.],c[Eltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, o300-o302.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986[Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.]).

[Scheme 1]

Experimental

Crystal data
  • C20H16N2O2

  • Mr = 316.35

  • Monoclinic, P 21 /n

  • a = 10.5128 (2) Å

  • b = 12.1096 (2) Å

  • c = 12.5235 (2) Å

  • β = 96.948 (1)°

  • V = 1582.61 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 100 K

  • 0.55 × 0.34 × 0.15 mm

Data collection
  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.954, Tmax = 0.987

  • 34106 measured reflections

  • 7426 independent reflections

  • 6004 reflections with I > 2σ(I)

  • Rint = 0.040

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.136

  • S = 1.05

  • 7426 reflections

  • 225 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1O1⋯O2i 0.931 (19) 1.712 (19) 2.6406 (9) 175.4 (17)
O2—H1O2⋯N2ii 0.994 (19) 1.646 (19) 2.6297 (10) 169.7 (16)
C3—H3A⋯O1iii 0.93 2.57 3.2987 (10) 136
C9—H9A⋯O1iv 0.93 2.59 3.4287 (10) 150
C12—H12ACg1ii 0.93 2.67 3.4521 (9) 142
Symmetry codes: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (ii) -x+1, -y+1, -z+1; (iii) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iv) -x+1, -y+1, -z. Cg1 is the centroid of the ring C1–C6.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

The synthesis of benzimidazoles has received much attention owing to the varied biological activities such as antidiabetic (Minoura et al., 2004), antimicrobial, antifungal (Pawar et al., 2004), antiviral (Tomei et al., 2003), and anticancer (Demirayak et al., 2002) properties exhibited by a number of derivatives of these compounds. In continuation of our structural study of benzimidazole derivatives (Eltayeb et al. 2007a,b,c), we describe in this paper the crystal structure of the title compound (I).

In (I) (Fig. 1), the bond lengths and bond angles are normal (Allen et al., 1987). The benzimidazole unit is planar with the maximum deviation from planarity of 0.0403 (9) Å for atom C3. The dihedral angle formed by the benzimidazole unit with the two benzene rings (C8–C13 and C15–C20) are 56.55 (3)° and 81.65 (4)° respectively. The two benzene rings (C8–C13 and C15–C20) are inclined to each other forming a dihedral angle of 72.54 (4)°.

In the crystal, intermolecular O—H···O, O—H···N hydrogen bonds (Table 1) link the molecules into layers parallel to the (101) plane. The crystal packing exhibits also weak C—H···O and C—H···π interactions (Table 1).

Related literature top

For biological activities of benzimidazole derivatives, see: Demirayak et al. (2002); Minoura et al. (2004); Pawar et al. (2004); Tomei et al. (2003). For related structures, see: Eltayeb et al. (2007a,b,c). For normal values of geometric parameters in organic compounds, see: Allen et al. (1987). For stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).

Experimental top

To a solution of o-phenylenediamine (0.216 g, 2 mmol) in ethanol (30 ml) was added 3-hydroxybenzaldehyde (0.488 g, 4 mmol). The mixture was refluxed with stirring for half an hour. The resultant yellow solution was filtered. Crystals suitable for XRD were formed after several days of slow evaporation of solvent at room temperature.

Refinement top

H atoms were positioned geometrically [C—H = 0.93–0.97 Å] and refined using a riding model with Uiso(H) = 1.2Ueq(C). The O-bound H atoms were located on a Fourier map and were refined isotropically.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom numbering scheme.
3-[1-(3-Hydroxybenzyl)-1H-benzimidazol-2-yl]phenol top
Crystal data top
C20H16N2O2F(000) = 664
Mr = 316.35Dx = 1.328 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 8327 reflections
a = 10.5128 (2) Åθ = 2.4–37.2°
b = 12.1096 (2) ŵ = 0.09 mm1
c = 12.5235 (2) ÅT = 100 K
β = 96.948 (1)°Plate, colourless
V = 1582.61 (5) Å30.55 × 0.34 × 0.15 mm
Z = 4
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7426 independent reflections
Radiation source: fine-focus sealed tube6004 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 36.0°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1417
Tmin = 0.954, Tmax = 0.987k = 2020
34106 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.2344P]
where P = (Fo2 + 2Fc2)/3
7426 reflections(Δ/σ)max < 0.001
225 parametersΔρmax = 0.51 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C20H16N2O2V = 1582.61 (5) Å3
Mr = 316.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.5128 (2) ŵ = 0.09 mm1
b = 12.1096 (2) ÅT = 100 K
c = 12.5235 (2) Å0.55 × 0.34 × 0.15 mm
β = 96.948 (1)°
Data collection top
Bruker SMART APEXII CCD area-detector
diffractometer
7426 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
6004 reflections with I > 2σ(I)
Tmin = 0.954, Tmax = 0.987Rint = 0.040
34106 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.136H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.51 e Å3
7426 reflectionsΔρmin = 0.29 e Å3
225 parameters
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.60369 (7)0.60548 (5)0.04595 (5)0.01932 (13)
O20.21201 (7)0.70928 (6)0.49193 (6)0.02850 (16)
N10.36876 (7)0.35014 (5)0.31082 (5)0.01366 (12)
N20.55084 (7)0.30903 (6)0.41524 (5)0.01468 (12)
C10.34113 (8)0.26119 (6)0.37376 (6)0.01385 (13)
C20.22644 (8)0.20556 (7)0.38301 (6)0.01625 (14)
H2A0.15020.22470.34150.019*
C30.23254 (9)0.12006 (7)0.45759 (7)0.01787 (15)
H3A0.15810.08200.46760.021*
C40.34872 (9)0.08978 (7)0.51829 (7)0.01903 (16)
H4A0.34970.03080.56590.023*
C50.46206 (9)0.14602 (7)0.50872 (7)0.01765 (15)
H5A0.53880.12550.54860.021*
C60.45615 (8)0.23468 (6)0.43671 (6)0.01408 (13)
C70.49493 (8)0.37658 (6)0.34028 (6)0.01328 (13)
C80.55758 (8)0.47449 (6)0.29966 (6)0.01346 (13)
C90.55681 (8)0.49315 (6)0.18938 (6)0.01442 (13)
H9A0.52140.44110.13980.017*
C100.60956 (8)0.59058 (6)0.15413 (6)0.01466 (14)
C110.66423 (8)0.66833 (7)0.22849 (6)0.01679 (15)
H11A0.69880.73330.20490.020*
C120.66666 (9)0.64783 (7)0.33810 (7)0.01769 (15)
H12A0.70410.69900.38760.021*
C130.61356 (8)0.55155 (7)0.37433 (6)0.01600 (14)
H13A0.61530.53850.44770.019*
C140.27189 (8)0.40916 (7)0.23858 (6)0.01493 (14)
H14A0.21990.35600.19480.018*
H14B0.31440.45560.19070.018*
C150.18581 (8)0.47993 (7)0.29866 (6)0.01546 (14)
C160.05416 (9)0.46392 (8)0.28541 (7)0.02214 (17)
H16A0.01820.40780.24090.027*
C170.02425 (10)0.53232 (10)0.33909 (9)0.0298 (2)
H17A0.11260.52260.32890.036*
C180.02893 (10)0.61473 (9)0.40753 (8)0.0276 (2)
H18A0.02350.66010.44320.033*
C190.16150 (9)0.62907 (8)0.42254 (7)0.02011 (16)
C200.23951 (8)0.56315 (7)0.36681 (6)0.01647 (14)
H20A0.32760.57460.37500.020*
H1O10.6430 (17)0.6716 (15)0.0307 (14)0.053 (5)*
H1O20.3026 (18)0.6952 (15)0.5216 (14)0.055 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0266 (3)0.0181 (3)0.0133 (2)0.0054 (2)0.0028 (2)0.00132 (19)
O20.0206 (3)0.0285 (3)0.0336 (4)0.0103 (3)0.0083 (3)0.0167 (3)
N10.0134 (3)0.0145 (3)0.0127 (3)0.0004 (2)0.0002 (2)0.0011 (2)
N20.0139 (3)0.0155 (3)0.0144 (3)0.0006 (2)0.0007 (2)0.0009 (2)
C10.0148 (3)0.0135 (3)0.0131 (3)0.0001 (2)0.0012 (3)0.0002 (2)
C20.0151 (3)0.0170 (3)0.0162 (3)0.0022 (3)0.0003 (3)0.0013 (2)
C30.0204 (4)0.0161 (3)0.0173 (3)0.0041 (3)0.0029 (3)0.0011 (2)
C40.0242 (4)0.0149 (3)0.0181 (3)0.0023 (3)0.0027 (3)0.0015 (3)
C50.0197 (4)0.0158 (3)0.0169 (3)0.0008 (3)0.0001 (3)0.0024 (2)
C60.0147 (3)0.0136 (3)0.0137 (3)0.0002 (2)0.0008 (3)0.0003 (2)
C70.0131 (3)0.0143 (3)0.0124 (3)0.0001 (2)0.0013 (2)0.0007 (2)
C80.0122 (3)0.0142 (3)0.0140 (3)0.0001 (2)0.0018 (2)0.0003 (2)
C90.0159 (3)0.0142 (3)0.0131 (3)0.0019 (2)0.0018 (3)0.0008 (2)
C100.0154 (3)0.0151 (3)0.0138 (3)0.0006 (3)0.0026 (3)0.0001 (2)
C110.0183 (4)0.0148 (3)0.0173 (3)0.0026 (3)0.0023 (3)0.0013 (2)
C120.0186 (4)0.0180 (3)0.0165 (3)0.0035 (3)0.0021 (3)0.0036 (2)
C130.0161 (4)0.0180 (3)0.0138 (3)0.0011 (3)0.0016 (3)0.0019 (2)
C140.0145 (3)0.0177 (3)0.0120 (3)0.0020 (3)0.0010 (3)0.0002 (2)
C150.0148 (3)0.0176 (3)0.0136 (3)0.0022 (3)0.0000 (3)0.0002 (2)
C160.0145 (4)0.0283 (4)0.0229 (4)0.0005 (3)0.0007 (3)0.0069 (3)
C170.0133 (4)0.0409 (6)0.0349 (5)0.0020 (4)0.0017 (4)0.0144 (4)
C180.0162 (4)0.0369 (5)0.0292 (5)0.0071 (4)0.0002 (3)0.0126 (4)
C190.0174 (4)0.0217 (4)0.0200 (4)0.0057 (3)0.0028 (3)0.0053 (3)
C200.0137 (3)0.0178 (3)0.0172 (3)0.0026 (3)0.0006 (3)0.0017 (3)
Geometric parameters (Å, º) top
O1—C101.3607 (10)C9—C101.3977 (11)
O1—H1O10.931 (19)C9—H9A0.9300
O2—C191.3671 (11)C10—C111.3980 (11)
O2—H1O20.994 (19)C11—C121.3922 (11)
N1—C71.3709 (10)C11—H11A0.9300
N1—C11.3861 (10)C12—C131.3922 (11)
N1—C141.4641 (11)C12—H12A0.9300
N2—C71.3275 (10)C13—H13A0.9300
N2—C61.3923 (10)C14—C151.5114 (11)
C1—C21.3981 (11)C14—H14A0.9700
C1—C61.3986 (12)C14—H14B0.9700
C2—C31.3906 (11)C15—C161.3874 (13)
C2—H2A0.9300C15—C201.3951 (11)
C3—C41.4070 (13)C16—C171.3970 (13)
C3—H3A0.9300C16—H16A0.9300
C4—C51.3901 (12)C17—C181.3882 (14)
C4—H4A0.9300C17—H17A0.9300
C5—C61.3987 (11)C18—C191.3944 (14)
C5—H5A0.9300C18—H18A0.9300
C7—C81.4763 (10)C19—C201.3911 (11)
C8—C91.3985 (10)C20—H20A0.9300
C8—C131.3995 (11)
C10—O1—H1O1110.5 (11)C9—C10—C11120.33 (7)
C19—O2—H1O2113.3 (10)C12—C11—C10119.59 (7)
C7—N1—C1106.91 (6)C12—C11—H11A120.2
C7—N1—C14129.07 (7)C10—C11—H11A120.2
C1—N1—C14123.56 (7)C11—C12—C13120.69 (8)
C7—N2—C6105.62 (7)C11—C12—H12A119.7
N1—C1—C2131.58 (8)C13—C12—H12A119.7
N1—C1—C6105.82 (7)C12—C13—C8119.56 (7)
C2—C1—C6122.56 (7)C12—C13—H13A120.2
C3—C2—C1116.37 (8)C8—C13—H13A120.2
C3—C2—H2A121.8N1—C14—C15112.50 (6)
C1—C2—H2A121.8N1—C14—H14A109.1
C2—C3—C4121.56 (8)C15—C14—H14A109.1
C2—C3—H3A119.2N1—C14—H14B109.1
C4—C3—H3A119.2C15—C14—H14B109.1
C5—C4—C3121.52 (8)H14A—C14—H14B107.8
C5—C4—H4A119.2C16—C15—C20119.87 (7)
C3—C4—H4A119.2C16—C15—C14120.66 (7)
C4—C5—C6117.39 (8)C20—C15—C14119.46 (7)
C4—C5—H5A121.3C15—C16—C17119.85 (9)
C6—C5—H5A121.3C15—C16—H16A120.1
N2—C6—C1109.41 (7)C17—C16—H16A120.1
N2—C6—C5130.08 (8)C18—C17—C16120.42 (9)
C1—C6—C5120.50 (7)C18—C17—H17A119.8
N2—C7—N1112.19 (7)C16—C17—H17A119.8
N2—C7—C8124.10 (7)C17—C18—C19119.60 (8)
N1—C7—C8123.52 (7)C17—C18—H18A120.2
C9—C8—C13120.26 (7)C19—C18—H18A120.2
C9—C8—C7121.37 (7)O2—C19—C20121.29 (8)
C13—C8—C7118.31 (7)O2—C19—C18118.63 (8)
C10—C9—C8119.55 (7)C20—C19—C18120.08 (8)
C10—C9—H9A120.2C19—C20—C15120.13 (8)
C8—C9—H9A120.2C19—C20—H20A119.9
O1—C10—C9117.03 (7)C15—C20—H20A119.9
O1—C10—C11122.64 (7)
C7—N1—C1—C2175.17 (8)N1—C7—C8—C13121.97 (8)
C14—N1—C1—C22.30 (12)C13—C8—C9—C101.55 (12)
C7—N1—C1—C62.40 (8)C7—C8—C9—C10175.65 (7)
C14—N1—C1—C6175.27 (6)C8—C9—C10—O1178.61 (7)
N1—C1—C2—C3178.27 (8)C8—C9—C10—C110.81 (12)
C6—C1—C2—C31.05 (11)O1—C10—C11—C12179.82 (8)
C1—C2—C3—C41.54 (12)C9—C10—C11—C120.44 (13)
C2—C3—C4—C51.89 (13)C10—C11—C12—C130.95 (13)
C3—C4—C5—C60.40 (12)C11—C12—C13—C80.22 (13)
C7—N2—C6—C11.16 (8)C9—C8—C13—C121.04 (12)
C7—N2—C6—C5180.00 (8)C7—C8—C13—C12176.24 (8)
N1—C1—C6—N22.23 (8)C7—N1—C14—C1598.85 (9)
C2—C1—C6—N2175.61 (7)C1—N1—C14—C1572.35 (9)
N1—C1—C6—C5178.80 (7)N1—C14—C15—C16121.88 (9)
C2—C1—C6—C53.37 (11)N1—C14—C15—C2059.08 (10)
C4—C5—C6—N2175.81 (8)C20—C15—C16—C170.98 (14)
C4—C5—C6—C12.93 (11)C14—C15—C16—C17178.05 (9)
C6—N2—C7—N10.41 (8)C15—C16—C17—C181.43 (17)
C6—N2—C7—C8174.77 (7)C16—C17—C18—C190.02 (18)
C1—N1—C7—N21.81 (8)C17—C18—C19—O2178.72 (10)
C14—N1—C7—N2174.16 (7)C17—C18—C19—C201.83 (16)
C1—N1—C7—C8173.40 (7)O2—C19—C20—C15178.29 (8)
C14—N1—C7—C81.05 (11)C18—C19—C20—C152.28 (14)
N2—C7—C8—C9130.08 (8)C16—C15—C20—C190.86 (13)
N1—C7—C8—C955.28 (11)C14—C15—C20—C19179.91 (8)
N2—C7—C8—C1352.67 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.931 (19)1.712 (19)2.6406 (9)175.4 (17)
O2—H1O2···N2ii0.994 (19)1.646 (19)2.6297 (10)169.7 (16)
C3—H3A···O1iii0.932.573.2987 (10)136
C9—H9A···O1iv0.932.593.4287 (10)150
C12—H12A···Cg1ii0.932.673.4521 (9)142
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC20H16N2O2
Mr316.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)100
a, b, c (Å)10.5128 (2), 12.1096 (2), 12.5235 (2)
β (°) 96.948 (1)
V3)1582.61 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.55 × 0.34 × 0.15
Data collection
DiffractometerBruker SMART APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.954, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
34106, 7426, 6004
Rint0.040
(sin θ/λ)max1)0.827
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.136, 1.05
No. of reflections7426
No. of parameters225
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.51, 0.29

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O2i0.931 (19)1.712 (19)2.6406 (9)175.4 (17)
O2—H1O2···N2ii0.994 (19)1.646 (19)2.6297 (10)169.7 (16)
C3—H3A···O1iii0.932.573.2987 (10)136.1
C9—H9A···O1iv0.932.593.4287 (10)149.9
C12—H12A···Cg1ii0.932.673.4521 (9)142
Symmetry codes: (i) x+1/2, y+3/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z+1/2; (iv) x+1, y+1, z.
 

Footnotes

On study leave from the International University of Africa, Sudan.

§Thomson Reuters ResearcherID: A-3561-2009.

Thomson Reuters ResearcherID: A-5473-2009. Permanent address: Department of Physics, Karunya University, Karunya Nagar, Coimbatore 641 114, India.

Acknowledgements

The authors thank the Malaysian Government, the Ministry of Science, Technology and Innovation (MOSTI) and Universiti Sains Malaysia for the E-Science Fund and RU research grants (Nos. PKIMIA/613308, PKIMIA/815002, and PKIMIA/811120). The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for a Science Fund grant (No. 305/PFIZIK/613312). SRJ thanks Universiti Sains Malaysia for a post-doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for a Research University Golden Goose grant (No. 1001/PFIZIK/811012).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationDemirayak, S., Abu Mohsen, U. & Lagri Karaburun, A. (2002). Eur. J. Med. Chem. 37, 255–260.  Web of Science CrossRef PubMed CAS Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Chantrapromma, S. & Fun, H.-K. (2007a). Acta Cryst. E63, o4141–o4142.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007b). Acta Cryst. E63, o465–o467.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationEltayeb, N. E., Teoh, S. G., Teh, J. B.-J., Fun, H.-K. & Ibrahim, K. (2007c). Acta Cryst. E63, o300–o302.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMinoura, H., Takeshita, S., Ita, M., Hirosumi, J., Mabuchi, M., Kawamura, I., Nakajima, S., Nakayama, O., Kayakiri, H., Oku, T., Ohkubo-Suzuki, A., Fukagawa, M., Kojo, H., Hanioka, K., Yamasaki, N., Imoto, T., Kobayashi, Y. & Mutoh, S. (2004). Eur. J. Pharmacol. 494, 273–281.  Web of Science CrossRef PubMed CAS Google Scholar
First citationPawar, N. S., Dalal, D. S., Shimpi, S. R. & Mahulikar, P. P. (2004). Eur. J. Pharm. Sci. 21, 115–118.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomei, L., Altamura, S., Bartholomew, L., Biroccio, A., Ceccacci, A., Pacini, L., Narjes, F., Gennari, N., Bisbocci, M., Incitti, I., Orsatti, L., Harper, S., Stansfield, I., Rowley, M., De Francesco, R. & Migliaccio, G. (2003). J. Virol. 77, 13225–13231.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1374-o1375
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds