organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(4-Pyrid­yl)benzoic acid

aDepartment of Biology, Dezhou University, Dezhou Shandong 253023, People's Republic of China
*Correspondence e-mail: dzxingjianxin@yahoo.cn

(Received 11 April 2009; accepted 26 April 2009; online 14 May 2009)

The mol­ecule of the title compound, C12H9NO2, is not planar, the benzene and pyridine rings making a dihedral angle of 32.14 (7)°. The carb­oxy group is slightly twisted with respect to the benzene ring by 11.95 (10)°. In the crystal structure, inter­molecular O—H⋯N hydrogen bonds link neighboring mol­ecules into infinite chains along the c axis.

Related literature

For coordination polymers with pyridine carboxyl­ate, see: Lu & Luck (2003[Lu, T. B. & Luck, R. L. (2003). Inorg. Chim. Acta, 351, 345-355.]); Luo et al. (2007[Luo, J. H., Zhao, Y. S., Xu, H. W., Kinnibrugh, T. L., Yang, D. L., Timofeeva, T. V., Daemen, L. L., Zhang, J. Z., Bao, W., Thompson, J. D. & Currier, R. P. (2007). Inorg. Chem. 46, 9021-9023.]).

[Scheme 1]

Experimental

Crystal data
  • C12H9NO2

  • Mr = 199.20

  • Orthorhombic, P b c a

  • a = 13.839 (3) Å

  • b = 7.013 (7) Å

  • c = 19.469 (10) Å

  • V = 1890 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.33 × 0.25 × 0.20 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]) Tmin = 0.958, Tmax = 0.979

  • 11481 measured reflections

  • 2365 independent reflections

  • 1480 reflections with I > 2σ(I)

  • Rint = 0.041

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.135

  • S = 1.03

  • 2365 reflections

  • 137 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯N1i 0.82 1.83 2.6526 (18) 178
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999[Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg & Putz, 1999[Brandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

As part of an ongoing investigation into coordination polymer with pyridine carboxylate (Lu et al., 2003; Luo et al., 2007), the crystal structure of the title compound is presented here.

The molecule of the title compound, C12H9NO2, is not planar, the phenyl and the pyridine rings make a dihedral angle of 32.14 (7)° (Fig. 1). The acetic group is slightly twisted with respect to the phenyl ring by 11.95 (10)°. In the crystal structure, intermolecular O—H···N hydrogen bonds link neighboring molecules into infinite chains along the c axis (Table 1, Fig. 2).

Related literature top

For coordination polymers with pyridine carboxylate, see: Lu & Luck (2003); Luo et al. (2007).

Experimental top

Commercially available 3-Pyrid-4-ylbenzoic acid was further purified by repeated recrystallization anhydrous ethanol from. Single crystals suitable for X-ray analysis were grown by slow evaporation of an anhydrous ethanol solution at room temperature.

Refinement top

All H atoms attached to C atoms and O atom were fixed geometrically and treated as riding with C—H = 0.93 Å and O—H = 0.82 Å with Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with the atom labeling scheme. Displacement ellipsoids are drawn at the 50% probalility level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Partial packing view showing the formation of infinite chain through the O-H···N hydrogen bondings. H bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
3-(4-Pyridyl)benzoic acid top
Crystal data top
C12H9NO2F(000) = 832
Mr = 199.20Dx = 1.400 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 1695 reflections
a = 13.839 (3) Åθ = 2.6–24.3°
b = 7.013 (7) ŵ = 0.10 mm1
c = 19.469 (10) ÅT = 296 K
V = 1890 (2) Å3Block, colorless
Z = 80.33 × 0.25 × 0.20 mm
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2365 independent reflections
Radiation source: fine-focus sealed tube1480 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
ϕ and ω scansθmax = 28.5°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1218
Tmin = 0.958, Tmax = 0.979k = 98
11481 measured reflectionsl = 2526
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0645P)2 + 0.2238P]
where P = (Fo2 + 2Fc2)/3
2365 reflections(Δ/σ)max = 0.001
137 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C12H9NO2V = 1890 (2) Å3
Mr = 199.20Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.839 (3) ŵ = 0.10 mm1
b = 7.013 (7) ÅT = 296 K
c = 19.469 (10) Å0.33 × 0.25 × 0.20 mm
Data collection top
Bruker APEX2 CCD area-detector
diffractometer
2365 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1480 reflections with I > 2σ(I)
Tmin = 0.958, Tmax = 0.979Rint = 0.041
11481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.03Δρmax = 0.24 e Å3
2365 reflectionsΔρmin = 0.19 e Å3
137 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.40429 (11)0.07701 (18)0.11778 (6)0.0584 (4)
O20.36926 (10)0.18026 (17)0.17987 (6)0.0522 (4)
H20.37070.23220.14220.078*
N10.37092 (10)0.1441 (2)0.55920 (6)0.0404 (4)
C10.32413 (12)0.1110 (2)0.48533 (8)0.0394 (4)
H10.29100.22540.48010.047*
C20.32519 (12)0.0204 (2)0.54811 (8)0.0409 (4)
H2A0.29240.07670.58450.049*
C30.41717 (12)0.2214 (2)0.50565 (8)0.0412 (4)
H30.44950.33620.51230.049*
C40.41965 (13)0.1406 (2)0.44148 (8)0.0384 (4)
H40.45270.20070.40590.046*
C50.37253 (11)0.0313 (2)0.42988 (7)0.0333 (4)
C60.37464 (11)0.1281 (2)0.36208 (7)0.0351 (4)
C70.37848 (12)0.0237 (2)0.30137 (8)0.0367 (4)
H70.37840.10880.30340.044*
C80.38238 (11)0.1135 (2)0.23794 (8)0.0370 (4)
C90.38217 (13)0.3104 (2)0.23504 (9)0.0449 (4)
H90.38590.37180.19280.054*
C100.37647 (14)0.4159 (2)0.29454 (9)0.0517 (5)
H100.37520.54840.29220.062*
C110.37260 (13)0.3262 (2)0.35748 (9)0.0449 (4)
H110.36860.39890.39730.054*
C120.38692 (12)0.0033 (2)0.17260 (8)0.0405 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0891 (11)0.0554 (8)0.0308 (7)0.0103 (7)0.0039 (6)0.0069 (6)
O20.0824 (10)0.0435 (7)0.0306 (6)0.0105 (7)0.0057 (6)0.0034 (5)
N10.0462 (9)0.0433 (8)0.0316 (7)0.0036 (6)0.0016 (6)0.0014 (6)
C10.0434 (10)0.0387 (9)0.0361 (9)0.0052 (7)0.0005 (7)0.0049 (7)
C20.0436 (10)0.0468 (10)0.0322 (9)0.0013 (8)0.0036 (7)0.0073 (7)
C30.0483 (10)0.0375 (8)0.0377 (9)0.0036 (8)0.0022 (7)0.0007 (7)
C40.0460 (10)0.0373 (9)0.0319 (8)0.0016 (7)0.0039 (7)0.0037 (7)
C50.0374 (8)0.0340 (8)0.0285 (8)0.0034 (7)0.0011 (6)0.0023 (6)
C60.0381 (9)0.0342 (8)0.0330 (8)0.0005 (7)0.0009 (7)0.0000 (6)
C70.0452 (9)0.0319 (8)0.0330 (8)0.0011 (7)0.0011 (7)0.0008 (6)
C80.0406 (9)0.0385 (9)0.0320 (8)0.0026 (7)0.0008 (7)0.0013 (6)
C90.0567 (11)0.0409 (10)0.0370 (9)0.0037 (8)0.0058 (8)0.0095 (7)
C100.0732 (14)0.0300 (9)0.0519 (11)0.0004 (9)0.0051 (9)0.0038 (8)
C110.0590 (11)0.0359 (9)0.0399 (9)0.0018 (8)0.0004 (8)0.0047 (7)
C120.0468 (10)0.0423 (10)0.0324 (9)0.0017 (7)0.0010 (7)0.0035 (7)
Geometric parameters (Å, º) top
O1—C121.2102 (18)C5—C61.485 (2)
O2—C121.318 (2)C6—C71.391 (2)
O2—H20.8200C6—C111.393 (2)
N1—C21.333 (2)C7—C81.387 (2)
N1—C31.338 (2)C7—H70.9300
C1—C21.378 (2)C8—C91.382 (2)
C1—C51.388 (2)C8—C121.490 (2)
C1—H10.9300C9—C101.377 (2)
C2—H2A0.9300C9—H90.9300
C3—C41.372 (2)C10—C111.379 (2)
C3—H30.9300C10—H100.9300
C4—C51.389 (2)C11—H110.9300
C4—H40.9300
C12—O2—H2109.5C11—C6—C5120.85 (13)
C2—N1—C3116.83 (14)C8—C7—C6121.25 (15)
C2—C1—C5119.96 (15)C8—C7—H7119.4
C2—C1—H1120.0C6—C7—H7119.4
C5—C1—H1120.0C9—C8—C7119.33 (15)
N1—C2—C1123.21 (15)C9—C8—C12118.92 (14)
N1—C2—H2A118.4C7—C8—C12121.75 (15)
C1—C2—H2A118.4C10—C9—C8120.19 (15)
N1—C3—C4123.66 (16)C10—C9—H9119.9
N1—C3—H3118.2C8—C9—H9119.9
C4—C3—H3118.2C9—C10—C11120.32 (16)
C3—C4—C5119.64 (15)C9—C10—H10119.8
C3—C4—H4120.2C11—C10—H10119.8
C5—C4—H4120.2C10—C11—C6120.77 (15)
C1—C5—C4116.70 (14)C10—C11—H11119.6
C1—C5—C6121.14 (14)C6—C11—H11119.6
C4—C5—C6122.15 (14)O1—C12—O2123.30 (16)
C7—C6—C11118.12 (14)O1—C12—C8122.67 (16)
C7—C6—C5121.03 (14)O2—C12—C8114.03 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.832.6526 (18)178
Symmetry code: (i) x, y1/2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H9NO2
Mr199.20
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)13.839 (3), 7.013 (7), 19.469 (10)
V3)1890 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.33 × 0.25 × 0.20
Data collection
DiffractometerBruker APEX2 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.958, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
11481, 2365, 1480
Rint0.041
(sin θ/λ)max1)0.670
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.135, 1.03
No. of reflections2365
No. of parameters137
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.24, 0.19

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), DIAMOND (Brandenburg & Putz, 1999), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···N1i0.821.832.6526 (18)177.7
Symmetry code: (i) x, y1/2, z1/2.
 

References

First citationAltomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBrandenburg, K. & Putz, H. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc.,Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationLu, T. B. & Luck, R. L. (2003). Inorg. Chim. Acta, 351, 345–355.  Web of Science CSD CrossRef CAS Google Scholar
First citationLuo, J. H., Zhao, Y. S., Xu, H. W., Kinnibrugh, T. L., Yang, D. L., Timofeeva, T. V., Daemen, L. L., Zhang, J. Z., Bao, W., Thompson, J. D. & Currier, R. P. (2007). Inorg. Chem. 46, 9021–9023.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds