organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 3-[3-(eth­oxy­carbon­yl)thio­ureido]-1H-pyrazole-5-carboxyl­ate

aPfizer Global Research and Development, La Jolla Labs, 10770 Science Center Drive, San Diego, CA 92121, USA, and bDepartment of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
*Correspondence e-mail: alex.yanovsky@pfizer.com

(Received 1 May 2009; accepted 4 May 2009; online 14 May 2009)

The title compound, C9H12N4O4S, was proven to be the product of the reaction of methyl 5-amino-1H-pyrazole-3-carboxyl­ate with ethyl isothio­cyanato­carbonate. All non-H atoms of the mol­ecule are planar, the mean deviation from the least squares plane being 0.048 Å. The intra­molecular N—H⋯O bond involving the NH-group, which links the thio­urea and pyrazole fragments, closes a six-membered pseudo-heterocyclic ring, and two more hydrogen bonds (N—H⋯O with the participation of the pyrazole NH group and N—H⋯S involving the second thio­urea NH group) link the mol­ecules into infinite chains running along [1[\overline{2}]0].

Related literature

For the structures of similar N-pyrazole-substituted thio­urea derivatives, see: Pask et al. (2006[Pask, C. M., Camm, K. D., Kilner, C. A. & Halcrow, M. A. (2006). Tetrahedron Lett. 2531-2534.]); Wen et al. (2006[Wen, L.-R., Li, M., Zhou, J.-X. & Liu, P. (2006). Acta Cryst. E62, o940-o941.]).

[Scheme 1]

Experimental

Crystal data
  • C9H12N4O4S

  • Mr = 272.29

  • Triclinic, [P \overline 1]

  • a = 8.0855 (8) Å

  • b = 9.0035 (8) Å

  • c = 9.5959 (9) Å

  • α = 64.510 (1)°

  • β = 82.294 (1)°

  • γ = 78.716 (1)°

  • V = 617.39 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 208 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Siemens P4 diffractometer with APEX CCD detector

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.947, Tmax = 0.973

  • 5852 measured reflections

  • 2653 independent reflections

  • 2255 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.113

  • S = 1.04

  • 2653 reflections

  • 166 parameters

  • H-atom parameters constrained

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.87 2.51 3.347 (1) 161
N2—H2⋯O2 0.87 1.92 2.657 (2) 141
N4—H4⋯O3ii 0.87 2.03 2.876 (2) 164
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y-1, -z+1.

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-32 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The reaction of methyl 5-amino-1H-pyrazole-3-carboxylate with ethyl isothiocyanatocarbonate produces the pyrazole-thiourea deivative; its structure was established by the present X-ray study (Fig.1).

All non-H atoms of the molecule are planar (mean deviation from its least squares plane is 0.048 Å), in contrast to previously studied pyrazole-thiourea derivative (Wen et al., 2006), where the pyrazole fragment has a nitrile substituent in position 4 and pyrazole/thiourea fragments form dihedral angle of 46.2°. Another similar compound, where pyrazole has no substituents in position 4 (Pask et al., 2006), is also essentially planar, just like the title compound.

There are three NH-groups in the molecule which are responsible for the formation of three independent H-bonds in the crystal (Table 2). The intramolecular N2—H2···O2 bond closes the 6-membered pseudo-cycle, whereas two intermolecular H-bonds each produce typical centrosymmmetric pairing motive, and their combination thus gives rise to infinite chains running along the [1,-2,0]. direction in the crystal (Fig. 2).

Related literature top

For the structures of similar N-pyrazole-substituted thiourea derivatives, see: Pask et al. (2006); Wen et al. (2006).

Experimental top

A suspension of methyl 5-amino-1H-pyrazole-3-carboxylate (2.0 g, 14.2 mmol) in 10 ml of ethyl acetate and 40 ml of benzene was cooled to 0°C and stirred. To this solution, ethyl isothiocyanatocarbonate (2.04 g, 15.6 mmol) in 10 ml benzene was added dropwise. The resulting reaction mixture was allowed to warm up to room temperature, and stirring was continued for 5 h. The reaction mixture was filtered, and washed with plenty of ether to afford the desired product (3.32 g, 12.2 mmol, 86.0% yield). 1H NMR (400 MHz, DMSO-d6) δ p.p.m.: 13.99 (br. s., 1 H), 12.12 (br. s., 1 H), 11.48 (br. s., 1 H), 7.51 (s, 1 H), 4.22 (q, J=7.07 Hz, 2 H), 3.85 (s, 3 H), 1.26 (t, J=7.07 Hz, 3 H).

Refinement top

All H atoms were placed in geometrically calculated positions (N—H 0.87 Å, C—H 0.94 Å, 0.97 Å, 0.98 Å, for aromatic, methyl and methylene H atoms respectively) and included in the refinement in riding motion approximation. The Uiso(H) were set to 1.2Ueq of the carrying atom for aromatic, methylene, methyne and amine groups, and 1.5Ueq for methyl H atoms.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound showing 50% probability displacement ellipsoids and atom numbering scheme; H atoms are drawn as circles with arbitrary small radius.
[Figure 2] Fig. 2. Packing diagram for the title compound viewed approximately along the a axis; H-bonds are shown as dashed lines.
Methyl 3-[3-(ethoxycarbonyl)thioureido]-1H-pyrazole-5-carboxylate top
Crystal data top
C9H12N4O4SZ = 2
Mr = 272.29F(000) = 284
Triclinic, P1Dx = 1.465 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.0855 (8) ÅCell parameters from 3767 reflections
b = 9.0035 (8) Åθ = 2.5–27.8°
c = 9.5959 (9) ŵ = 0.28 mm1
α = 64.510 (1)°T = 208 K
β = 82.294 (1)°Block, colorless
γ = 78.716 (1)°0.20 × 0.15 × 0.10 mm
V = 617.39 (10) Å3
Data collection top
Siemens P4
diffractometer with APEX CCD
2653 independent reflections
Radiation source: fine-focus sealed tube2255 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 28.2°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 510
Tmin = 0.947, Tmax = 0.973k = 1111
5852 measured reflectionsl = 1112
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H-atom parameters constrained
wR(F2) = 0.113 w = 1/[σ2(Fo2) + (0.0521P)2 + 0.1805P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
2653 reflectionsΔρmax = 0.39 e Å3
166 parametersΔρmin = 0.28 e Å3
0 restraintsExtinction correction: SHELXL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.064 (8)
Crystal data top
C9H12N4O4Sγ = 78.716 (1)°
Mr = 272.29V = 617.39 (10) Å3
Triclinic, P1Z = 2
a = 8.0855 (8) ÅMo Kα radiation
b = 9.0035 (8) ŵ = 0.28 mm1
c = 9.5959 (9) ÅT = 208 K
α = 64.510 (1)°0.20 × 0.15 × 0.10 mm
β = 82.294 (1)°
Data collection top
Siemens P4
diffractometer with APEX CCD
2653 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2255 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.973Rint = 0.044
5852 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 1.04Δρmax = 0.39 e Å3
2653 reflectionsΔρmin = 0.28 e Å3
166 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7861 (3)0.9454 (2)0.0198 (2)0.0539 (6)
H1A0.66530.97250.03200.081*
H1B0.84461.01060.11560.081*
H1C0.81250.97060.06260.081*
C20.8414 (3)0.7653 (2)0.0194 (2)0.0451 (5)
H2A0.81350.73750.06190.054*
H2B0.96380.73660.03010.054*
C30.7832 (2)0.5090 (2)0.22047 (19)0.0319 (4)
C40.6784 (2)0.27556 (19)0.44802 (18)0.0285 (4)
C50.7965 (2)0.00499 (19)0.46055 (19)0.0300 (4)
C60.7316 (2)0.1229 (2)0.5968 (2)0.0310 (4)
H60.65620.10480.67340.037*
C70.8050 (2)0.2725 (2)0.59165 (19)0.0312 (4)
C80.7909 (2)0.4462 (2)0.6958 (2)0.0328 (4)
C90.6497 (3)0.6292 (2)0.9141 (2)0.0435 (5)
H9A0.63410.68940.85500.065*
H9B0.55090.62670.98310.065*
H9C0.74860.68440.97410.065*
N10.69023 (19)0.44206 (16)0.35749 (16)0.0322 (3)
H10.63160.51270.39170.039*
N20.77543 (19)0.16936 (16)0.39615 (16)0.0327 (3)
H20.83400.21520.30990.039*
N30.9003 (2)0.07384 (17)0.37579 (17)0.0360 (4)
N40.9033 (2)0.23814 (17)0.46052 (17)0.0344 (3)
H40.96260.31410.43330.041*
O10.75193 (17)0.67399 (14)0.16595 (14)0.0374 (3)
O20.87813 (18)0.43041 (15)0.15826 (15)0.0425 (3)
O30.87755 (18)0.56425 (14)0.67884 (15)0.0407 (3)
O40.67259 (17)0.46002 (15)0.80911 (15)0.0397 (3)
S10.54880 (6)0.22717 (5)0.60563 (5)0.03395 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0681 (15)0.0334 (10)0.0449 (11)0.0077 (10)0.0106 (10)0.0060 (8)
C20.0512 (12)0.0338 (9)0.0352 (9)0.0029 (8)0.0133 (8)0.0061 (8)
C30.0347 (9)0.0267 (8)0.0311 (8)0.0000 (7)0.0010 (7)0.0119 (6)
C40.0312 (9)0.0247 (7)0.0300 (8)0.0008 (6)0.0025 (7)0.0137 (6)
C50.0340 (9)0.0240 (8)0.0333 (8)0.0005 (6)0.0013 (7)0.0154 (7)
C60.0343 (9)0.0257 (8)0.0346 (8)0.0005 (6)0.0007 (7)0.0171 (7)
C70.0346 (9)0.0259 (8)0.0359 (9)0.0010 (7)0.0003 (7)0.0174 (7)
C80.0356 (9)0.0295 (8)0.0373 (9)0.0036 (7)0.0003 (7)0.0189 (7)
C90.0499 (12)0.0310 (9)0.0460 (11)0.0095 (8)0.0089 (9)0.0147 (8)
N10.0393 (8)0.0234 (7)0.0306 (7)0.0001 (6)0.0074 (6)0.0127 (6)
N20.0405 (8)0.0234 (7)0.0313 (7)0.0012 (6)0.0061 (6)0.0124 (6)
N30.0436 (9)0.0251 (7)0.0383 (8)0.0008 (6)0.0038 (7)0.0160 (6)
N40.0403 (9)0.0256 (7)0.0396 (8)0.0003 (6)0.0042 (7)0.0195 (6)
O10.0432 (7)0.0254 (6)0.0341 (6)0.0013 (5)0.0113 (5)0.0091 (5)
O20.0514 (8)0.0321 (7)0.0377 (7)0.0001 (6)0.0138 (6)0.0160 (6)
O30.0490 (8)0.0263 (6)0.0472 (7)0.0015 (6)0.0073 (6)0.0204 (6)
O40.0455 (8)0.0274 (6)0.0448 (7)0.0050 (5)0.0098 (6)0.0174 (5)
S10.0400 (3)0.0257 (2)0.0328 (2)0.00173 (17)0.00760 (18)0.01324 (18)
Geometric parameters (Å, º) top
C1—C21.486 (3)C5—N21.401 (2)
C1—H1A0.9700C6—C71.380 (2)
C1—H1B0.9700C6—H60.9400
C1—H1C0.9700C7—N41.343 (2)
C2—O11.463 (2)C7—C81.466 (2)
C2—H2A0.9800C8—O31.214 (2)
C2—H2B0.9800C8—O41.329 (2)
C3—O21.214 (2)C9—O41.452 (2)
C3—O11.3278 (19)C9—H9A0.9700
C3—N11.374 (2)C9—H9B0.9700
C4—N21.338 (2)C9—H9C0.9700
C4—N11.387 (2)N1—H10.8700
C4—S11.6617 (16)N2—H20.8700
C5—N31.340 (2)N3—N41.344 (2)
C5—C61.397 (2)N4—H40.8700
C2—C1—H1A109.5N4—C7—C6107.60 (14)
C2—C1—H1B109.5N4—C7—C8119.72 (14)
H1A—C1—H1B109.5C6—C7—C8132.67 (16)
C2—C1—H1C109.5O3—C8—O4123.84 (16)
H1A—C1—H1C109.5O3—C8—C7123.32 (16)
H1B—C1—H1C109.5O4—C8—C7112.84 (14)
O1—C2—C1106.83 (15)O4—C9—H9A109.5
O1—C2—H2A110.4O4—C9—H9B109.5
C1—C2—H2A110.4H9A—C9—H9B109.5
O1—C2—H2B110.4O4—C9—H9C109.5
C1—C2—H2B110.4H9A—C9—H9C109.5
H2A—C2—H2B108.6H9B—C9—H9C109.5
O2—C3—O1125.25 (16)C3—N1—C4127.95 (13)
O2—C3—N1125.62 (15)C3—N1—H1116.0
O1—C3—N1109.13 (13)C4—N1—H1116.0
N2—C4—N1114.69 (14)C4—N2—C5129.41 (14)
N2—C4—S1126.73 (12)C4—N2—H2115.3
N1—C4—S1118.59 (11)C5—N2—H2115.3
N3—C5—C6112.89 (14)C5—N3—N4103.49 (14)
N3—C5—N2114.22 (15)C7—N4—N3112.76 (13)
C6—C5—N2132.89 (15)C7—N4—H4123.6
C7—C6—C5103.26 (14)N3—N4—H4123.6
C7—C6—H6128.4C3—O1—C2116.14 (14)
C5—C6—H6128.4C8—O4—C9115.46 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.872.513.347 (1)161
N2—H2···O20.871.922.657 (2)141
N4—H4···O3ii0.872.032.876 (2)164
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y1, z+1.

Experimental details

Crystal data
Chemical formulaC9H12N4O4S
Mr272.29
Crystal system, space groupTriclinic, P1
Temperature (K)208
a, b, c (Å)8.0855 (8), 9.0035 (8), 9.5959 (9)
α, β, γ (°)64.510 (1), 82.294 (1), 78.716 (1)
V3)617.39 (10)
Z2
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerSiemens P4
diffractometer with APEX CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 2001)
Tmin, Tmax0.947, 0.973
No. of measured, independent and
observed [I > 2σ(I)] reflections
5852, 2653, 2255
Rint0.044
(sin θ/λ)max1)0.665
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.113, 1.04
No. of reflections2653
No. of parameters166
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.28

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-32 (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···S1i0.872.513.347 (1)160.6
N2—H2···O20.871.922.657 (2)141.0
N4—H4···O3ii0.872.032.876 (2)164.2
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y1, z+1.
 

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationPask, C. M., Camm, K. D., Kilner, C. A. & Halcrow, M. A. (2006). Tetrahedron Lett. 2531–2534.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWen, L.-R., Li, M., Zhou, J.-X. & Liu, P. (2006). Acta Cryst. E62, o940–o941.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds