metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m678-m679

Bis(di-2-pyridylmethane­diol-κ3N,O,N′)nickel(II) dinitrate

aDepartment of Fine Chemistry and Eco-Product and Materials Education Center, Seoul National University of Technology, Seoul 139-743, Republic of Korea, bDepartment of Computer Engineering, Yeosu Campus, Chonnam National University, Yeosu 550-749, Republic of Korea, and cDepartment of Chemistry and Nano Science, Ewha Women's University, Seoul 120-750, Republic of Korea
*Correspondence e-mail: chealkim@sunt.ac.kr, ymeekim@ewha.ac.kr

(Received 7 May 2009; accepted 18 May 2009; online 23 May 2009)

The title compound, [Ni(C11H10N2O2)2](NO3)2, consists of an NiII atom coordinated by two tridentate chelating di-2-pyridylmethane­diol [(2-py)2C(OH)2] ligands. The NiII atom is located on an inversion center. The geometry around the NiII atom is distorted octa­hedral. The gem-diol (2-py)2C(OH)2 ligand adopts the coordination mode η1:η1:η1. The Ni—N and Ni—O bond lengths are typical for high-spin NiII in an octa­hedral environment [Ni—N = 2.094 (2) and 2.124 (3) Å, and Ni—O = 2.108 (3) Å]. One of the hydr­oxy H atoms is split over two positions which both inter­act with the nitrate anion. The occurence of different O—H⋯O hydrogen bonds leads to the formation of a layer parallel to the (101) plane.

Related literature

For background information, see: Efthymiou et al. (2006[Efthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boča, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. pp. 2236-2252.]); Moragues-Cánovas et al. (2004[Moragues-Cánovas, M., Helliwell, M., Ricard, L., Rivière, E., Wernsdorfer, W., Brechin, E. & Mallah, T. (2004). Eur. J. Inorg. Chem. pp. 2219-2222.]); Papaefstathiou & Perlepes (2002[Papaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249-274.]); Papatriantafyllopoulou et al. (2007[Papatriantafyllopoulou, C., Efthymiou, C. G., Raptopoulou, C. P., Vicente, R., Manessi-Zoupa, E., Psycharis, V., Escuer, A. & Perlepes, S. P. (2007). J. Mol. Struct. 829, 176-188.]); Stoumpos et al. (2008[Stoumpos, C. C., Gass, I. A., Milios, C. J., Kefalloniti, E., Raptopoulou, C. P., Terzis, A., Lalioti, N., Brechin, E. K. & Perlepes, S. P. (2008). Inorg. Chem. Commun. 11, 196-202.], 2009[Stoumpos, C. C., Lalioti, N., Gass, I. A., Gkotsis, K., Kitos, A. A., Sartzi, H., Milios, C. J., Raptopoulou, C. P., Terzis, A., Brechin, E. K. & Perlepes, S. P. (2009). Polyhedron. doi:10.1016/j.poly.2008.12.001.]). For related structures, see: Li et al. (2005[Li, C.-J., Li, W., Tong, M.-L. & Ng, S. W. (2005). Acta Cryst. E61, m229-m231.]); Wang et al. (1986[Wang, S.-L., Richardson, J. W. Jr, Briggs, S. J., Jacobson, R. A. & Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67-72.]).

[Scheme 1]

Experimental

Crystal data
  • [Ni(C11H10N2O2)2](NO3)2

  • Mr = 587.15

  • Monoclinic, P 21 /n

  • a = 8.4077 (9) Å

  • b = 15.5098 (16) Å

  • c = 9.5556 (10) Å

  • β = 94.644 (2)°

  • V = 1242.0 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.85 mm−1

  • T = 293 K

  • 0.20 × 0.10 × 0.03 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: none

  • 7646 measured reflections

  • 2442 independent reflections

  • 1826 reflections with I > 2σ(I)

  • Rint = 0.057

Refinement
  • R[F2 > 2σ(F2)] = 0.046

  • wR(F2) = 0.135

  • S = 1.06

  • 2442 reflections

  • 179 parameters

  • H-atom parameters constrained

  • Δρmax = 0.49 e Å−3

  • Δρmin = −0.59 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O4 0.82 2.22 2.810 (4) 129
O1—H1B⋯O3 0.86 2.13 2.933 (4) 155
O1—H1A⋯O5i 0.87 2.04 2.884 (4) 165
Symmetry code: (i) [x+{\script{1\over 2}}, -y+{\script{3\over 2}}, z-{\script{1\over 2}}].

Data collection: SMART (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1997[Bruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Di-2-pyridyl ketone ((py)2CO) has been employed to form structurally interesting new complexes with 3 d-metal ions (Stoumpos et al., 2009). Water and alcohols (ROH) have been shown to add to the carbonyl group forming the ligands (2-py)2C(OH)2 [the gem-diol form of (2-py)2CO] and (2-py)2C(OR)(OH) [the hemiacetal form of (2- py)2CO], respectively (Efthymiou et al., 2006). The neutral ligands (py)2C(OH)2 and (py)2C(OR)(OH) coordinate to the metal centres as N,N',O chelates (Papaefstathiou & Perlepes, 2002). The different interesting coordination modes have been seen when the ligands (py)2C(OH)2 and (py)2C(OR)(OH) are deprotonated to form mono- or dianion. The deprotonation of hydroxyl groups leads to a coordinative flexibility (Papatriantafyllopoulou et al., 2007; Stoumpos et al., 2008). Some NiII complexes of the neutral ligand, (py)2C(OH)2 have been structuraly characterized (Wang et al., 1986; Li et al., 2005), but no structure with a nitrate ion as the counter-ion has been reported to date.

The NiII atom is located on an inversion center and is coordinated by two tridentate chelating (2-py)2C(OH)2 ligand to form a distorted octahedral geometry. The gem-diol ligand (2-py)2C(OH)2 adopts the coordination mode η1:η1:η1 (Fig. 1). The Ni—N and Ni—O bond lengths are typical for high-spin Ni(II) in octahedral environments [Ni—N = 2.094 (2) and 2.124 (3) Å, Ni—O = 2.108 (3) Å] (Moragues-Cánovas et al., 2004). The hydrogen attached to O1 is splitting on two positions which are both in interaction with the NO3- anion. The O—H···O hydrogen bonds build up a layer parallel to the (101) plane (Table 1, Fig. 2).

Related literature top

For background information, see: Efthymiou et al. (2006); Moragues-Cánovas et al. (2004); Papaefstathiou & Perlepes (2002); Papatriantafyllopoulou et al. (2007); Stoumpos et al. (2008, 2009). For related structures, see: Li et al. (2005); Wang et al. (1986).

Experimental top

36.7 mg (0.125 mmol) of Ni(NO3)2.6H2O and 35.5 mg (0.25 mmol) of C6H5COONH4 were dissolved in 4 ml water and carefully layered by 4 ml solution of amixture of acetone, methanol and ethanol (2/2/2) of di-2-pyridyl ketone ligand (46.1 mg, 0.25 mmol). Suitable crystals of the title compound for X-ray analysis were obtained in a few weeks.

Refinement top

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C). Hydroxyl H atom for O2 were treated as riding on the parent atom with O—H = 0.82 Å and Uiso(H) = 1.5Ueq(O). The hydroxyl H attached to O1 appears to be splitted on two positions. The coordinates of these two positions were initially refined with O—H restraints (0.85 Å) and Uiso(H) = 1.5Ueq(O). Then in the last stage of refinement these disordered H atoms were treated as riding on the O atom.

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex with the atom labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii and hydrogen bonds are shown as dashed lines. [Symmetry code: (i) 1 - x, 1 - y, 1 - z].
[Figure 2] Fig. 2. Packing view down the b axis. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity.
Bis(di-2-pyridylmethanediol-κ3N,O,N')nickel(II) dinitrate top
Crystal data top
[Ni(C11H10N2O2)2](NO3)2F(000) = 604
Mr = 587.15Dx = 1.570 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2352 reflections
a = 8.4077 (9) Åθ = 2.5–25.6°
b = 15.5098 (16) ŵ = 0.85 mm1
c = 9.5556 (10) ÅT = 293 K
β = 94.644 (2)°Plate, pale brown
V = 1242.0 (2) Å30.20 × 0.10 × 0.03 mm
Z = 2
Data collection top
Bruker SMART CCD
diffractometer
1826 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.057
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
ϕ and ω scansh = 1111
7646 measured reflectionsk = 2012
2442 independent reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.135H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0755P)2 + 0.0426P]
where P = (Fo2 + 2Fc2)/3
2442 reflections(Δ/σ)max < 0.001
179 parametersΔρmax = 0.49 e Å3
0 restraintsΔρmin = 0.59 e Å3
Crystal data top
[Ni(C11H10N2O2)2](NO3)2V = 1242.0 (2) Å3
Mr = 587.15Z = 2
Monoclinic, P21/nMo Kα radiation
a = 8.4077 (9) ŵ = 0.85 mm1
b = 15.5098 (16) ÅT = 293 K
c = 9.5556 (10) Å0.20 × 0.10 × 0.03 mm
β = 94.644 (2)°
Data collection top
Bruker SMART CCD
diffractometer
1826 reflections with I > 2σ(I)
7646 measured reflectionsRint = 0.057
2442 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.135H-atom parameters constrained
S = 1.06Δρmax = 0.49 e Å3
2442 reflectionsΔρmin = 0.59 e Å3
179 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.50000.50000.50000.0334 (2)
N10.3937 (3)0.52480 (18)0.2948 (3)0.0389 (6)
N20.2830 (3)0.54084 (17)0.5703 (3)0.0347 (6)
O10.5183 (3)0.63487 (17)0.4873 (2)0.0574 (7)
H1A0.59050.65530.43700.086*0.50
H1B0.53050.65900.56880.086*0.50
O20.3337 (3)0.74355 (14)0.3938 (3)0.0539 (6)
H20.38660.77200.45300.081*
C10.3774 (4)0.4731 (2)0.1816 (4)0.0478 (9)
H10.41550.41690.18840.057*
C20.3053 (5)0.5019 (3)0.0558 (4)0.0639 (11)
H2A0.29270.46530.02140.077*
C30.2515 (5)0.5865 (3)0.0458 (4)0.0685 (12)
H30.20480.60760.03890.082*
C40.2677 (4)0.6386 (3)0.1615 (4)0.0562 (10)
H40.23100.69510.15730.067*
C50.3394 (4)0.6055 (2)0.2841 (3)0.0394 (7)
C60.3583 (4)0.6549 (2)0.4213 (3)0.0386 (7)
C70.2392 (3)0.61766 (19)0.5177 (3)0.0353 (7)
C80.0989 (4)0.6581 (2)0.5451 (4)0.0459 (8)
H80.07000.71120.50540.055*
C90.0030 (4)0.6160 (3)0.6345 (4)0.0594 (10)
H90.09190.64140.65690.071*
C100.0462 (4)0.5378 (3)0.6898 (4)0.0521 (9)
H100.01820.50970.75000.063*
C110.1873 (4)0.5008 (2)0.6552 (3)0.0434 (8)
H110.21640.44700.69160.052*
N30.3476 (4)0.7718 (2)0.7595 (4)0.0585 (8)
O30.4512 (4)0.71600 (19)0.7535 (3)0.0755 (9)
O40.3188 (5)0.8218 (2)0.6577 (3)0.1014 (12)
O50.2759 (4)0.7785 (2)0.8634 (4)0.0834 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.0362 (3)0.0326 (3)0.0319 (3)0.0023 (2)0.0050 (2)0.0004 (2)
N10.0396 (15)0.0451 (16)0.0326 (15)0.0016 (11)0.0079 (11)0.0016 (11)
N20.0340 (13)0.0360 (15)0.0343 (14)0.0020 (11)0.0047 (11)0.0012 (11)
O10.0609 (16)0.0526 (16)0.0587 (16)0.0010 (12)0.0049 (13)0.0001 (12)
O20.0675 (17)0.0363 (13)0.0578 (16)0.0069 (12)0.0054 (12)0.0050 (11)
C10.054 (2)0.050 (2)0.040 (2)0.0031 (16)0.0081 (16)0.0051 (16)
C20.084 (3)0.072 (3)0.036 (2)0.001 (2)0.0032 (19)0.0137 (19)
C30.087 (3)0.079 (3)0.038 (2)0.011 (2)0.004 (2)0.006 (2)
C40.072 (3)0.054 (2)0.043 (2)0.0102 (19)0.0005 (18)0.0078 (17)
C50.0418 (18)0.0411 (19)0.0363 (17)0.0017 (14)0.0095 (14)0.0007 (14)
C60.0390 (18)0.0349 (18)0.0422 (18)0.0031 (14)0.0059 (14)0.0046 (14)
C70.0365 (16)0.0357 (17)0.0336 (16)0.0002 (13)0.0026 (13)0.0053 (13)
C80.0391 (18)0.048 (2)0.050 (2)0.0069 (15)0.0001 (15)0.0015 (15)
C90.040 (2)0.075 (3)0.065 (2)0.0062 (19)0.0128 (18)0.010 (2)
C100.047 (2)0.064 (2)0.047 (2)0.0077 (18)0.0155 (16)0.0005 (18)
C110.0485 (18)0.0451 (19)0.0370 (17)0.0049 (16)0.0053 (14)0.0002 (15)
N30.067 (2)0.047 (2)0.061 (2)0.0010 (16)0.0000 (17)0.0192 (17)
O30.077 (2)0.077 (2)0.0714 (19)0.0337 (16)0.0032 (15)0.0251 (15)
O40.173 (4)0.056 (2)0.071 (2)0.016 (2)0.014 (2)0.0052 (16)
O50.071 (2)0.092 (2)0.092 (2)0.0066 (16)0.0358 (18)0.0195 (18)
Geometric parameters (Å, º) top
Ni1—N22.093 (2)C2—H2A0.9300
Ni1—N2i2.093 (2)C3—C41.367 (5)
Ni1—O12.102 (3)C3—H30.9300
Ni1—O1i2.102 (3)C4—C51.372 (4)
Ni1—N12.123 (3)C4—H40.9300
Ni1—N1i2.123 (3)C5—C61.515 (4)
N1—C51.334 (4)C6—C71.528 (4)
N1—C11.345 (4)C7—C81.380 (4)
N2—C71.333 (4)C8—C91.385 (5)
N2—C111.340 (4)C8—H80.9300
O1—C61.472 (4)C9—C101.360 (5)
O1—H1A0.8650C9—H90.9300
O1—H1B0.8625C10—C111.382 (5)
O2—C61.412 (4)C10—H100.9300
O2—H20.8200C11—H110.9300
C1—C21.377 (5)N3—O51.206 (4)
C1—H10.9300N3—O31.233 (4)
C2—C31.388 (5)N3—O41.253 (4)
N2—Ni1—N2i180.0C4—C3—C2119.5 (4)
N2—Ni1—O177.70 (10)C4—C3—H3120.3
N2i—Ni1—O1102.30 (10)C2—C3—H3120.3
N2—Ni1—O1i102.30 (10)C3—C4—C5118.5 (4)
N2i—Ni1—O1i77.70 (10)C3—C4—H4120.7
O1—Ni1—O1i180.0C5—C4—H4120.7
N2—Ni1—N185.93 (9)N1—C5—C4122.7 (3)
N2i—Ni1—N194.07 (9)N1—C5—C6113.4 (3)
O1—Ni1—N178.10 (10)C4—C5—C6123.9 (3)
O1i—Ni1—N1101.90 (10)O2—C6—O1113.6 (2)
N2—Ni1—N1i94.07 (9)O2—C6—C5109.1 (3)
N2i—Ni1—N1i85.93 (9)O1—C6—C5107.0 (2)
O1—Ni1—N1i101.90 (10)O2—C6—C7112.8 (2)
O1i—Ni1—N1i78.10 (10)O1—C6—C7106.4 (2)
N1—Ni1—N1i180.000 (1)C5—C6—C7107.6 (2)
C5—N1—C1119.1 (3)N2—C7—C8123.3 (3)
C5—N1—Ni1110.9 (2)N2—C7—C6113.0 (2)
C1—N1—Ni1130.0 (2)C8—C7—C6123.7 (3)
C7—N2—C11118.7 (3)C7—C8—C9116.8 (3)
C7—N2—Ni1111.76 (19)C7—C8—H8121.6
C11—N2—Ni1129.5 (2)C9—C8—H8121.6
C6—O1—Ni199.56 (17)C10—C9—C8120.7 (3)
C6—O1—H1A110.0C10—C9—H9119.7
Ni1—O1—H1A117.0C8—C9—H9119.7
C6—O1—H1B109.5C9—C10—C11119.0 (3)
Ni1—O1—H1B112.6C9—C10—H10120.5
H1A—O1—H1B107.8C11—C10—H10120.5
C6—O2—H2109.5N2—C11—C10121.5 (3)
N1—C1—C2121.2 (4)N2—C11—H11119.3
N1—C1—H1119.4C10—C11—H11119.3
C2—C1—H1119.4O5—N3—O3120.1 (4)
C1—C2—C3119.0 (4)O5—N3—O4120.5 (4)
C1—C2—H2A120.5O3—N3—O4119.4 (4)
C3—C2—H2A120.5
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.822.222.810 (4)129
O1—H1B···O30.862.132.933 (4)155
O1—H1A···O5ii0.872.042.884 (4)165
Symmetry code: (ii) x+1/2, y+3/2, z1/2.

Experimental details

Crystal data
Chemical formula[Ni(C11H10N2O2)2](NO3)2
Mr587.15
Crystal system, space groupMonoclinic, P21/n
Temperature (K)293
a, b, c (Å)8.4077 (9), 15.5098 (16), 9.5556 (10)
β (°) 94.644 (2)
V3)1242.0 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.20 × 0.10 × 0.03
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7646, 2442, 1826
Rint0.057
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.135, 1.06
No. of reflections2442
No. of parameters179
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.49, 0.59

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O40.822.222.810 (4)129.1
O1—H1B···O30.862.132.933 (4)155.0
O1—H1A···O5i0.872.042.884 (4)165.3
Symmetry code: (i) x+1/2, y+3/2, z1/2.
 

Acknowledgements

Financial support from the Korean Environment Ministry `ET–Human Resource Development Project' and the Korean Science and Engineering Foundation (grant No. R01-2008-000-20704-0) is gratefully acknowledged.

References

First citationBruker (1997). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEfthymiou, C. G., Raptopoulou, C. P., Terzis, A., Boča, R., Korabic, M., Mrozinski, J., Perlepes, S. P. & Bakalbassis, E. G. (2006). Eur. J. Inorg. Chem. pp. 2236–2252.  Web of Science CSD CrossRef Google Scholar
First citationLi, C.-J., Li, W., Tong, M.-L. & Ng, S. W. (2005). Acta Cryst. E61, m229–m231.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMoragues-Cánovas, M., Helliwell, M., Ricard, L., Rivière, E., Wernsdorfer, W., Brechin, E. & Mallah, T. (2004). Eur. J. Inorg. Chem. pp. 2219–2222.  Google Scholar
First citationPapaefstathiou, G. S. & Perlepes, S. P. (2002). Comments Inorg. Chem. 23, 249–274.  Web of Science CrossRef CAS Google Scholar
First citationPapatriantafyllopoulou, C., Efthymiou, C. G., Raptopoulou, C. P., Vicente, R., Manessi-Zoupa, E., Psycharis, V., Escuer, A. & Perlepes, S. P. (2007). J. Mol. Struct. 829, 176–188.  Web of Science CSD CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoumpos, C. C., Gass, I. A., Milios, C. J., Kefalloniti, E., Raptopoulou, C. P., Terzis, A., Lalioti, N., Brechin, E. K. & Perlepes, S. P. (2008). Inorg. Chem. Commun. 11, 196–202.  Web of Science CSD CrossRef CAS Google Scholar
First citationStoumpos, C. C., Lalioti, N., Gass, I. A., Gkotsis, K., Kitos, A. A., Sartzi, H., Milios, C. J., Raptopoulou, C. P., Terzis, A., Brechin, E. K. & Perlepes, S. P. (2009). Polyhedron. doi:10.1016/j.poly.2008.12.001.  Google Scholar
First citationWang, S.-L., Richardson, J. W. Jr, Briggs, S. J., Jacobson, R. A. & Jensen, W. P. (1986). Inorg. Chim. Acta, 111, 67–72.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages m678-m679
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds