organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

(E)-17β,19-Ep­oxy­methano-17,23,24-tride­methyl-4-nor-5β,18α-olean-3-one oxime

aDepartment of Organic Chemistry, Poznan University of Medical Sciences, ul. Grunwaldzka 6, 60-780 Poznań, Poland, and bInstitute of Organic Chemistry, Ufa Research Center of the Russian Academy of Sciences, 71, prosp. Oktyabrya, 450054 Ufa, Russian Federation
*Correspondence e-mail: akgzella@ump.edu.pl

(Received 21 January 2009; accepted 4 May 2009; online 14 May 2009)

In the penta­cyclic triterpenoide skeleton of the title mol­ecule, C27H43NO2 [systematic name: (3E,3aS,5aR,5bR,7aR,11R,11aR,11bR,13aR,13bR)-5a,5b,10,10,13b-penta­methyl­icosa­hydro-1H-11,7a-(epoxy­methano)cyclo­penta­[a]chrysen-3-one oxime], the five-membered ring A has an envelope conformation, while the six-membered rings BE adopt chair conformations. Rings A and B are cis-fused. The hydroximino group has an E configuration. Strong inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into helical chains.

Related literature

For the syntheses of related compounds, see: Medvedeva et al. (2004[Medvedeva, N. I., Flekhter, O. B., Tretyakova, E. V., Galin, F. Z., Baltina, L. A., Spirikhin, L. V. & Tolstikov, G. A. (2004). Russ. J. Org. Chem. 40, 1092-1097.], 2006[Medvedeva, N. I., Flekhter, O. B., Gzella, A. & Zaprutko, L. (2006). Chem. Nat. Comp. 42, 618-619.]); Gzella et al. (1997[Gzella, A., Zaprutko, L. & Wrzeciono, U. (1997). Acta Cryst. C53, 261-264.], 1998[Gzella, A., Zaprutko, L. & Wrzeciono, U. (1998). Acta Cryst. C54, 1309-1312.]); Zaprutko (1995[Zaprutko, L. (1995). Pol. J. Chem. 69, 1003-1012.], 1997[Zaprutko, L. (1997). Pol. J. Chem. 71, 1499-1501.]). For a description of the Cambridge Structural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For puckering parameters, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]); Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C27H43NO2

  • Mr = 413.62

  • Orthorhombic, P 21 21 21

  • a = 12.5887 (16) Å

  • b = 13.2550 (11) Å

  • c = 14.5355 (12) Å

  • V = 2425.4 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.53 mm−1

  • T = 293 K

  • 0.40 × 0.22 × 0.13 mm

Data collection
  • Kuma Diffraction KM-4 diffractometer

  • Absorption correction: none

  • 4994 measured reflections

  • 2610 independent reflections

  • 2240 reflections with I > 2σ(I)

  • Rint = 0.037

  • 3 standard reflections every 100 reflections intensity decay: 2.3%

Refinement
  • R[F2 > 2σ(F2)] = 0.031

  • wR(F2) = 0.094

  • S = 1.06

  • 2610 reflections

  • 281 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.12 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.87 (3) 1.93 (3) 2.782 (2) 164 (3)
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+2, z+{\script{1\over 2}}].

Data collection: KM-4 Software (Kuma Diffraction, 1996[Kuma Diffraction (1996). KM-4 Software. Kuma Diffraction, Wrocław, Poland.]); cell refinement: KM-4 Software; data reduction: KM-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

One of the steps in our synthesis of the title compound, (E)-17β,19-epoxymethano-17,23,24-tridemethyl-4-nor-5β,18α-olean-3-one oxime (Scheme 1; Fig. 3 - (IV)), from allobetulin (Fig. 3 - (I)) involved ozonolysis of the intermediate δ-apoallobetulin, Fig. 3 - (II), to give 17β,19-epoxymethano-17,23,24-tridemethyl-4-nor-5β,18α-olean-3-one (Fig. 3 - (III)) as the transformation product with a cis-junction between the A/B rings. It should be mentioned that synthetic conversions to new derivatives with altered junction of A/B rings are rarely observed in triterpenoids of the oleanane group [Zaprutko (1995, 1997); Gzella et al. (1997); Gzella et al. (1998); Medvedeva et al. (2004)].

The X-ray structure determination of the title compound was carried out in order to confirm its spatial structure that had been proposed on the basis of spectroscopic data by Medvedeva et al. (2004).

The results obtained for the title compound confirm the cis-junction of A/B rings. The corresponding interplanar angle between the least-squares planes of the A/B rings is 71.85 (8)°. The H atom at the C5 asymmetric centre exhibits β-orientation and occupies a pseudo-axial position with respect to the A ring and an equatorial position to the B ring [the angles of the H5—C5 bond vector to the Cremer & Pople A and B ring plane normals are 9.60 (9) and 64.05 (7)°, respectively (Cremer & Pople, 1975; Spek, 2009)]. The torsion angle H5—C5—C10—C25 of 38° reveals a halfway conformation between synperiplanar and synclinal for bonds H5—C5 and C10—C25.

In the molecule the six-membered rings BE of the pentacyclic ring system are trans-fused as in allobetuline. The dihedral angles between the least-squares planes of these rings are B/C 7.09 (10), C/D 0.80 (10), D/E 14.95 (9)°.

In the title structure, each of the six-membered rings BE has a differently distorted chair conformation, whereas both five-membered rings, i.e. the carbocyclic ring A and the heterocyclic ring C17\C18\C19\O2\C28 including epoxymethylene group, assume envelope conformations. The respective puckering parameters (Cremer & Pople, 1975) are Q = 0.373 (2) Å, Φ = 147.1 (4)° and Q = 0.470 (2)Å, Φ = 253.2 (2)°.

The hydroximino function in C3 position has the E configuration. The value of the torsion angle O1—N1—C3—C5 is -179.80 (18)°.

The molecular packing is stabilized by O1—H···O2i hydrogen bonds (Tab. 1). The hydroxyl hydrogen is donated to the remote-ring epoxy O atom from the neighbour molecule. These hydrogen bonds link the molecules into helical chains which proceed in the c direction (Fig. 2).

Related literature top

For the syntheses of related compounds, see: Medvedeva et al. (2004, 2006); Zaprutko (1995, 1997). For related literature, see: Allen (2002); Cremer & Pople (1975); Gzella et al. (1997, 1998).

Experimental top

The title compound was obtained according to the procedure described by Medvedeva et al. (2004). Single colourless needle-crystals suitable for analysis were grown from ethanol by slow evaporation at room temperature.

Refinement top

All the hydrogens were discernible in the difference electron density map. Except for the hydroxyl H atom that was refined freely the remaining hydrogens were situated into the idealized positions and were refined within the riding model approximation: Cmethyl—H = 0.96, Cmethylene—H 0.97, Cmethine= 0.98 Å. Uiso(H) = 1.2 UeqCmethylene/Cmethine; Uiso(H) = 1.5Ueq(Cmethyl). The methyl group was allowed to rotate during refinement. The absolute configuration of the title structure is known by reference to the known chirality of the enantiopure allobetulin employed as the initial reagent used in the synthesis as well as to the chirality of the other oleanane derivatives [see: CSD, Cambridge; Allen (2002)].

Computing details top

Data collection: KM-4 Software (Kuma Diffraction, 1996); cell refinement: KM-4 Software (Kuma Diffraction, 1996); data reduction: KM-4 Software (Kuma Diffraction, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The title molecule showing the atomic labeling scheme. The displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. The hydrogen bonding (dashed lines) in the title structure. Symmetry code: (i) 0.5-x, 2-y, 1/2+z. The H atoms not involved in hydrogen bonds have been omitted for clarity.
(3E,3aS,5aR,5bR,7aR,11R,11aR, 11bR,13aR,13bR)-5a,5b,10,10,13b- pentamethylicosahydro-1H-11,7a- (epoxymethano)cyclopenta[a]chrysen-3-one oxime top
Crystal data top
C27H43NO2Dx = 1.133 Mg m3
Mr = 413.62Melting point = 468–470 K
Orthorhombic, P212121Cu Kα radiation, λ = 1.54178 Å
Hall symbol: P 2ac 2abCell parameters from 54 reflections
a = 12.5887 (16) Åθ = 14.5–28.5°
b = 13.2550 (11) ŵ = 0.53 mm1
c = 14.5355 (12) ÅT = 293 K
V = 2425.4 (4) Å3Needle, colourless
Z = 40.40 × 0.22 × 0.13 mm
F(000) = 912
Data collection top
Kuma Diffraction KM-4
diffractometer
Rint = 0.037
Radiation source: fine-focus sealed tubeθmax = 70.1°, θmin = 4.5°
Graphite monochromatorh = 1515
ω/2θ scansk = 016
4994 measured reflectionsl = 017
2610 independent reflections3 standard reflections every 100 reflections
2240 reflections with I > 2σ(I) intensity decay: 2.3%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0523P)2 + 0.1689P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2610 reflectionsΔρmax = 0.12 e Å3
281 parametersΔρmin = 0.12 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
163 constraintsExtinction coefficient: 0.0011 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
C27H43NO2V = 2425.4 (4) Å3
Mr = 413.62Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 12.5887 (16) ŵ = 0.53 mm1
b = 13.2550 (11) ÅT = 293 K
c = 14.5355 (12) Å0.40 × 0.22 × 0.13 mm
Data collection top
Kuma Diffraction KM-4
diffractometer
Rint = 0.037
4994 measured reflections3 standard reflections every 100 reflections
2610 independent reflections intensity decay: 2.3%
2240 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0310 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.12 e Å3
2610 reflectionsΔρmin = 0.12 e Å3
281 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.50319 (13)0.77700 (17)0.33765 (13)0.0806 (5)
H10.491 (2)0.762 (2)0.395 (2)0.100 (10)*
O20.06258 (10)1.29692 (10)0.00744 (9)0.0561 (3)
N10.40209 (14)0.75851 (15)0.29992 (12)0.0620 (5)
C10.43803 (18)0.79829 (17)0.05510 (15)0.0631 (5)
H1A0.45120.73430.02480.076*
H1B0.46660.85190.01700.076*
C20.49002 (17)0.7997 (2)0.15037 (16)0.0680 (6)
H2A0.54840.75210.15370.082*
H2B0.51620.86660.16540.082*
C30.40138 (16)0.76952 (16)0.21323 (14)0.0561 (5)
C50.30026 (17)0.75334 (15)0.16039 (14)0.0576 (5)
H50.29660.68170.14410.069*
C60.19970 (17)0.77938 (18)0.21268 (15)0.0658 (6)
H6A0.13840.75870.17690.079*
H6B0.19850.74250.27030.079*
C70.19268 (16)0.89107 (17)0.23218 (13)0.0591 (5)
H7A0.25130.91030.27180.071*
H7B0.12720.90460.26520.071*
C80.19556 (13)0.95683 (15)0.14448 (11)0.0455 (4)
C90.29594 (14)0.92829 (13)0.08732 (11)0.0427 (4)
H90.35620.95140.12450.051*
C100.31736 (16)0.81371 (14)0.07022 (13)0.0526 (4)
C110.30140 (16)0.99102 (13)0.00084 (11)0.0475 (4)
H11A0.36570.97400.03410.057*
H11B0.24130.97430.03970.057*
C120.30058 (14)1.10370 (13)0.01892 (12)0.0457 (4)
H12A0.29661.14020.03880.055*
H12B0.36671.12210.04880.055*
C130.20788 (13)1.13561 (13)0.08002 (11)0.0415 (4)
H130.14261.12000.04620.050*
C140.20485 (13)1.07304 (15)0.17054 (10)0.0456 (4)
C150.10814 (16)1.10874 (19)0.22730 (13)0.0629 (6)
H15A0.04371.09220.19400.075*
H15B0.10671.07220.28510.075*
C160.10920 (18)1.2219 (2)0.24743 (13)0.0690 (6)
H16A0.04341.23990.27810.083*
H16B0.16711.23650.28940.083*
C170.12164 (15)1.28729 (17)0.16219 (13)0.0558 (5)
C180.20859 (14)1.24982 (14)0.09614 (12)0.0476 (4)
H180.27861.27140.11800.057*
C190.17728 (14)1.31005 (14)0.01104 (14)0.0503 (4)
H190.21031.28090.04390.060*
C200.20282 (19)1.42351 (16)0.01733 (18)0.0691 (6)
C210.1451 (2)1.46632 (19)0.1015 (2)0.0814 (8)
H21A0.17741.53040.11770.098*
H21B0.07181.47940.08490.098*
C220.14688 (19)1.3980 (2)0.18554 (18)0.0773 (7)
H22A0.09541.42240.22990.093*
H22B0.21651.40160.21390.093*
C250.2534 (2)0.76839 (18)0.00933 (16)0.0742 (7)
H25A0.27740.70080.02090.111*
H25B0.26340.80860.06360.111*
H25C0.17940.76730.00660.111*
C260.09170 (15)0.93677 (17)0.09073 (15)0.0596 (5)
H26A0.08620.86610.07700.089*
H26B0.09240.97460.03440.089*
H26C0.03200.95720.12740.089*
C270.30490 (15)1.09487 (17)0.22921 (12)0.0561 (5)
H27A0.36661.06940.19810.084*
H27B0.29811.06240.28790.084*
H27C0.31201.16630.23800.084*
C280.02439 (14)1.28226 (19)0.09950 (14)0.0597 (5)
H28A0.01031.21720.10510.072*
H28B0.02611.33460.11570.072*
C290.3229 (2)1.43864 (18)0.0252 (2)0.0896 (9)
H29A0.33951.50880.01750.134*
H29B0.35811.40000.02160.134*
H29C0.34651.41660.08470.134*
C300.1626 (2)1.47527 (18)0.0701 (2)0.0876 (8)
H30A0.17191.54690.06460.131*
H30B0.08861.46030.07840.131*
H30C0.20201.45100.12220.131*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0541 (8)0.1201 (15)0.0675 (10)0.0019 (9)0.0063 (8)0.0231 (10)
O20.0432 (6)0.0761 (8)0.0490 (7)0.0101 (6)0.0029 (5)0.0061 (7)
N10.0510 (9)0.0778 (12)0.0573 (9)0.0013 (8)0.0003 (8)0.0150 (9)
C10.0741 (13)0.0589 (11)0.0564 (11)0.0148 (11)0.0171 (10)0.0079 (9)
C20.0541 (11)0.0841 (15)0.0657 (13)0.0125 (11)0.0103 (10)0.0207 (11)
C30.0550 (11)0.0573 (11)0.0558 (11)0.0022 (9)0.0036 (9)0.0129 (9)
C50.0644 (11)0.0537 (10)0.0547 (10)0.0088 (9)0.0001 (10)0.0128 (9)
C60.0531 (11)0.0814 (14)0.0629 (12)0.0158 (11)0.0009 (10)0.0286 (11)
C70.0456 (9)0.0859 (14)0.0458 (9)0.0003 (10)0.0111 (8)0.0187 (9)
C80.0357 (8)0.0656 (11)0.0354 (8)0.0061 (8)0.0018 (7)0.0076 (7)
C90.0423 (8)0.0524 (9)0.0333 (7)0.0045 (7)0.0039 (7)0.0028 (7)
C100.0635 (11)0.0504 (9)0.0440 (9)0.0045 (9)0.0029 (9)0.0037 (8)
C110.0561 (10)0.0525 (9)0.0341 (8)0.0009 (8)0.0106 (8)0.0016 (7)
C120.0455 (8)0.0504 (9)0.0413 (8)0.0016 (8)0.0123 (8)0.0026 (7)
C130.0346 (7)0.0561 (9)0.0337 (7)0.0005 (7)0.0040 (7)0.0027 (7)
C140.0352 (8)0.0693 (11)0.0324 (7)0.0020 (8)0.0033 (7)0.0014 (7)
C150.0471 (10)0.1020 (17)0.0395 (9)0.0119 (10)0.0126 (8)0.0045 (10)
C160.0566 (11)0.1094 (18)0.0408 (9)0.0257 (12)0.0037 (9)0.0167 (11)
C170.0433 (9)0.0761 (13)0.0481 (10)0.0139 (9)0.0016 (8)0.0173 (10)
C180.0354 (8)0.0603 (11)0.0472 (9)0.0046 (7)0.0007 (8)0.0105 (8)
C190.0428 (9)0.0542 (9)0.0539 (10)0.0089 (7)0.0016 (8)0.0039 (8)
C200.0627 (12)0.0550 (11)0.0897 (15)0.0113 (10)0.0011 (13)0.0083 (11)
C210.0754 (15)0.0661 (14)0.103 (2)0.0176 (12)0.0056 (14)0.0248 (14)
C220.0650 (13)0.0908 (17)0.0761 (15)0.0210 (12)0.0096 (12)0.0400 (14)
C250.1048 (18)0.0607 (14)0.0572 (12)0.0073 (12)0.0101 (13)0.0062 (11)
C260.0426 (9)0.0751 (13)0.0609 (11)0.0125 (9)0.0076 (9)0.0090 (11)
C270.0492 (10)0.0764 (13)0.0427 (9)0.0034 (10)0.0086 (8)0.0082 (9)
C280.0413 (9)0.0864 (14)0.0514 (10)0.0148 (10)0.0010 (8)0.0128 (10)
C290.0691 (14)0.0581 (12)0.142 (3)0.0061 (11)0.0053 (17)0.0063 (15)
C300.1021 (19)0.0549 (12)0.106 (2)0.0156 (13)0.0037 (17)0.0115 (13)
Geometric parameters (Å, º) top
O1—N11.407 (2)C14—C271.548 (2)
O1—H10.88 (3)C15—C161.529 (4)
O2—C281.435 (2)C15—H15A0.9700
O2—C191.455 (2)C15—H15B0.9700
N1—C31.268 (3)C16—C171.520 (3)
C1—C21.532 (3)C16—H16A0.9700
C1—C101.548 (3)C16—H16B0.9700
C1—H1A0.9700C17—C281.528 (3)
C1—H1B0.9700C17—C181.538 (2)
C2—C31.497 (3)C17—C221.540 (3)
C2—H2A0.9700C18—C191.524 (3)
C2—H2B0.9700C18—H180.9800
C3—C51.502 (3)C19—C201.541 (3)
C5—C61.516 (3)C19—H190.9800
C5—C101.551 (3)C20—C291.529 (3)
C5—H50.9800C20—C301.531 (4)
C6—C71.510 (3)C20—C211.532 (3)
C6—H6A0.9700C21—C221.520 (4)
C6—H6B0.9700C21—H21A0.9700
C7—C81.545 (2)C21—H21B0.9700
C7—H7A0.9700C22—H22A0.9700
C7—H7B0.9700C22—H22B0.9700
C8—C261.546 (2)C25—H25A0.9600
C8—C91.559 (2)C25—H25B0.9600
C8—C141.591 (3)C25—H25C0.9600
C9—C111.529 (2)C26—H26A0.9600
C9—C101.562 (3)C26—H26B0.9600
C9—H90.9800C26—H26C0.9600
C10—C251.532 (3)C27—H27A0.9600
C11—C121.521 (2)C27—H27B0.9600
C11—H11A0.9700C27—H27C0.9600
C11—H11B0.9700C28—H28A0.9700
C12—C131.526 (2)C28—H28B0.9700
C12—H12A0.9700C29—H29A0.9600
C12—H12B0.9700C29—H29B0.9600
C13—C181.532 (2)C29—H29C0.9600
C13—C141.556 (2)C30—H30A0.9600
C13—H130.9800C30—H30B0.9600
C14—C151.545 (2)C30—H30C0.9600
N1—O1—H1100 (2)C16—C15—H15B108.9
C28—O2—C19108.36 (14)C14—C15—H15B108.9
C3—N1—O1111.93 (18)H15A—C15—H15B107.7
C2—C1—C10106.80 (16)C17—C16—C15113.84 (16)
C2—C1—H1A110.4C17—C16—H16A108.8
C10—C1—H1A110.4C15—C16—H16A108.8
C2—C1—H1B110.4C17—C16—H16B108.8
C10—C1—H1B110.4C15—C16—H16B108.8
H1A—C1—H1B108.6H16A—C16—H16B107.7
C3—C2—C1103.30 (18)C16—C17—C28112.25 (19)
C3—C2—H2A111.1C16—C17—C18113.46 (16)
C1—C2—H2A111.1C28—C17—C18100.60 (14)
C3—C2—H2B111.1C16—C17—C22112.64 (18)
C1—C2—H2B111.1C28—C17—C22109.79 (18)
H2A—C2—H2B109.1C18—C17—C22107.37 (18)
N1—C3—C2129.2 (2)C19—C18—C13113.07 (14)
N1—C3—C5119.83 (19)C19—C18—C1798.82 (14)
C2—C3—C5110.97 (17)C13—C18—C17114.23 (16)
C3—C5—C6114.75 (17)C19—C18—H18110.1
C3—C5—C10103.94 (16)C13—C18—H18110.1
C6—C5—C10114.97 (17)C17—C18—H18110.1
C3—C5—H5107.6O2—C19—C18102.90 (15)
C6—C5—H5107.6O2—C19—C20109.03 (15)
C10—C5—H5107.6C18—C19—C20114.15 (17)
C7—C6—C5111.48 (16)O2—C19—H19110.2
C7—C6—H6A109.3C18—C19—H19110.2
C5—C6—H6A109.3C20—C19—H19110.2
C7—C6—H6B109.3C29—C20—C30109.3 (2)
C5—C6—H6B109.3C29—C20—C21111.1 (2)
H6A—C6—H6B108.0C30—C20—C21109.90 (19)
C6—C7—C8113.39 (17)C29—C20—C19109.80 (17)
C6—C7—H7A108.9C30—C20—C19108.6 (2)
C8—C7—H7A108.9C21—C20—C19108.1 (2)
C6—C7—H7B108.9C22—C21—C20114.47 (19)
C8—C7—H7B108.9C22—C21—H21A108.6
H7A—C7—H7B107.7C20—C21—H21A108.6
C7—C8—C26107.47 (15)C22—C21—H21B108.6
C7—C8—C9108.78 (15)C20—C21—H21B108.6
C26—C8—C9111.99 (14)H21A—C21—H21B107.6
C7—C8—C14110.59 (15)C21—C22—C17112.79 (19)
C26—C8—C14110.43 (15)C21—C22—H22A109.0
C9—C8—C14107.59 (14)C17—C22—H22A109.0
C11—C9—C8110.56 (14)C21—C22—H22B109.0
C11—C9—C10112.80 (14)C17—C22—H22B109.0
C8—C9—C10117.42 (14)H22A—C22—H22B107.8
C11—C9—H9104.9C10—C25—H25A109.5
C8—C9—H9104.9C10—C25—H25B109.5
C10—C9—H9104.9H25A—C25—H25B109.5
C25—C10—C1110.89 (19)C10—C25—H25C109.5
C25—C10—C5111.27 (16)H25A—C25—H25C109.5
C1—C10—C5100.84 (16)H25B—C25—H25C109.5
C25—C10—C9114.24 (17)C8—C26—H26A109.5
C1—C10—C9108.67 (16)C8—C26—H26B109.5
C5—C10—C9110.08 (15)H26A—C26—H26B109.5
C12—C11—C9112.05 (14)C8—C26—H26C109.5
C12—C11—H11A109.2H26A—C26—H26C109.5
C9—C11—H11A109.2H26B—C26—H26C109.5
C12—C11—H11B109.2C14—C27—H27A109.5
C9—C11—H11B109.2C14—C27—H27B109.5
H11A—C11—H11B107.9H27A—C27—H27B109.5
C11—C12—C13112.78 (14)C14—C27—H27C109.5
C11—C12—H12A109.0H27A—C27—H27C109.5
C13—C12—H12A109.0H27B—C27—H27C109.5
C11—C12—H12B109.0O2—C28—C17106.37 (15)
C13—C12—H12B109.0O2—C28—H28A110.5
H12A—C12—H12B107.8C17—C28—H28A110.5
C12—C13—C18111.00 (14)O2—C28—H28B110.5
C12—C13—C14111.29 (14)C17—C28—H28B110.5
C18—C13—C14113.42 (14)H28A—C28—H28B108.6
C12—C13—H13106.9C20—C29—H29A109.5
C18—C13—H13106.9C20—C29—H29B109.5
C14—C13—H13106.9H29A—C29—H29B109.5
C15—C14—C27106.84 (14)C20—C29—H29C109.5
C15—C14—C13107.91 (15)H29A—C29—H29C109.5
C27—C14—C13110.26 (15)H29B—C29—H29C109.5
C15—C14—C8111.46 (16)C20—C30—H30A109.5
C27—C14—C8111.84 (15)C20—C30—H30B109.5
C13—C14—C8108.46 (13)H30A—C30—H30B109.5
C16—C15—C14113.33 (18)C20—C30—H30C109.5
C16—C15—H15A108.9H30A—C30—H30C109.5
C14—C15—H15A108.9H30B—C30—H30C109.5
C10—C1—C2—C324.3 (2)C26—C8—C14—C1557.27 (18)
O1—N1—C3—C21.0 (4)C9—C8—C14—C15179.76 (13)
O1—N1—C3—C5179.80 (18)C7—C8—C14—C2757.97 (18)
C1—C2—C3—N1179.6 (2)C26—C8—C14—C27176.80 (14)
C1—C2—C3—C51.5 (2)C9—C8—C14—C2760.70 (17)
N1—C3—C5—C631.2 (3)C7—C8—C14—C13179.78 (14)
C2—C3—C5—C6147.80 (19)C26—C8—C14—C1361.40 (17)
N1—C3—C5—C10157.6 (2)C9—C8—C14—C1361.10 (16)
C2—C3—C5—C1021.4 (2)C27—C14—C15—C1662.1 (2)
C3—C5—C6—C766.3 (2)C13—C14—C15—C1656.4 (2)
C10—C5—C6—C754.2 (2)C8—C14—C15—C16175.40 (15)
C5—C6—C7—C858.2 (2)C14—C15—C16—C1753.3 (2)
C6—C7—C8—C2667.6 (2)C15—C16—C17—C2868.0 (2)
C6—C7—C8—C953.8 (2)C15—C16—C17—C1845.2 (2)
C6—C7—C8—C14171.76 (16)C15—C16—C17—C22167.46 (18)
C7—C8—C9—C11179.45 (15)C12—C13—C18—C1971.70 (19)
C26—C8—C9—C1160.81 (19)C14—C13—C18—C19162.14 (14)
C14—C8—C9—C1160.72 (17)C12—C13—C18—C17176.31 (14)
C7—C8—C9—C1048.1 (2)C14—C13—C18—C1750.1 (2)
C26—C8—C9—C1070.6 (2)C16—C17—C18—C19164.25 (17)
C14—C8—C9—C10167.91 (14)C28—C17—C18—C1944.17 (19)
C2—C1—C10—C25154.75 (18)C22—C17—C18—C1970.62 (18)
C2—C1—C10—C536.8 (2)C16—C17—C18—C1343.9 (2)
C2—C1—C10—C978.9 (2)C28—C17—C18—C1376.1 (2)
C3—C5—C10—C25152.20 (18)C22—C17—C18—C13169.06 (16)
C6—C5—C10—C2581.5 (2)C28—O2—C19—C1828.72 (19)
C3—C5—C10—C134.5 (2)C28—O2—C19—C2092.8 (2)
C6—C5—C10—C1160.79 (18)C13—C18—C19—O275.99 (17)
C3—C5—C10—C980.1 (2)C17—C18—C19—O245.17 (17)
C6—C5—C10—C946.1 (2)C13—C18—C19—C20166.02 (16)
C11—C9—C10—C2548.7 (2)C17—C18—C19—C2072.81 (19)
C8—C9—C10—C2581.7 (2)O2—C19—C20—C29177.7 (2)
C11—C9—C10—C175.7 (2)C18—C19—C20—C2963.3 (3)
C8—C9—C10—C1153.95 (15)O2—C19—C20—C3062.9 (2)
C11—C9—C10—C5174.71 (16)C18—C19—C20—C30177.28 (18)
C8—C9—C10—C544.4 (2)O2—C19—C20—C2156.3 (2)
C8—C9—C11—C1256.7 (2)C18—C19—C20—C2158.1 (2)
C10—C9—C11—C12169.56 (16)C29—C20—C21—C2280.1 (3)
C9—C11—C12—C1352.8 (2)C30—C20—C21—C22158.8 (2)
C11—C12—C13—C18178.59 (15)C19—C20—C21—C2240.4 (3)
C11—C12—C13—C1454.06 (19)C20—C21—C22—C1745.1 (3)
C12—C13—C14—C15179.09 (15)C16—C17—C22—C21172.49 (18)
C18—C13—C14—C1554.9 (2)C28—C17—C22—C2146.6 (2)
C12—C13—C14—C2764.56 (18)C18—C17—C22—C2161.9 (2)
C18—C13—C14—C2761.45 (19)C19—O2—C28—C170.2 (2)
C12—C13—C14—C858.21 (17)C16—C17—C28—O2149.50 (17)
C18—C13—C14—C8175.78 (14)C18—C17—C28—O228.6 (2)
C7—C8—C14—C1561.56 (19)C22—C17—C28—O284.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (3)1.93 (3)2.782 (2)164 (3)
Symmetry code: (i) x+1/2, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC27H43NO2
Mr413.62
Crystal system, space groupOrthorhombic, P212121
Temperature (K)293
a, b, c (Å)12.5887 (16), 13.2550 (11), 14.5355 (12)
V3)2425.4 (4)
Z4
Radiation typeCu Kα
µ (mm1)0.53
Crystal size (mm)0.40 × 0.22 × 0.13
Data collection
DiffractometerKuma Diffraction KM-4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4994, 2610, 2240
Rint0.037
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.031, 0.094, 1.06
No. of reflections2610
No. of parameters281
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.12, 0.12

Computer programs: KM-4 Software (Kuma Diffraction, 1996), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.87 (3)1.93 (3)2.782 (2)164 (3)
Symmetry code: (i) x+1/2, y+2, z+1/2.
 

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationGzella, A., Zaprutko, L. & Wrzeciono, U. (1997). Acta Cryst. C53, 261–264.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationGzella, A., Zaprutko, L. & Wrzeciono, U. (1998). Acta Cryst. C54, 1309–1312.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKuma Diffraction (1996). KM-4 Software. Kuma Diffraction, Wrocław, Poland.  Google Scholar
First citationMedvedeva, N. I., Flekhter, O. B., Gzella, A. & Zaprutko, L. (2006). Chem. Nat. Comp. 42, 618–619.  Web of Science CrossRef CAS Google Scholar
First citationMedvedeva, N. I., Flekhter, O. B., Tretyakova, E. V., Galin, F. Z., Baltina, L. A., Spirikhin, L. V. & Tolstikov, G. A. (2004). Russ. J. Org. Chem. 40, 1092–1097.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZaprutko, L. (1995). Pol. J. Chem. 69, 1003–1012.  CAS Google Scholar
First citationZaprutko, L. (1997). Pol. J. Chem. 71, 1499–1501.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds