metal-organic compounds
Dibromido[(tert-butylamino)dimethyl(piperidin-1-ylmethyl)silane-κ2N,N′]zinc(II)
aAnorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
*Correspondence e-mail: mail@carsten-strohmann.de
The title compound, [ZnBr2(C12H28N2Si)], is an example of a neutral coordination compound of a bidentate ligand to a metal centre with the Zn atom being coordinated by two Br and two N atoms, yielding a slightly distorted tetrahedral coordination environment.
Related literature
For the synthesis and structure of cis-(2-amino-1,1-dimethylethylamine)dichloropalladium(II) ethanol hemisolvate, see: Farrugia et al. (2001). For niobium and tantalum complexes of silylamides, see: Herrmann et al. (1992). For the synthesis and structure of tBu2Si=N-SiCltBu2, see: Lerner et al. (2005); for syntheses, structures and properties of chiral zinc halide catalysts, see: Mimoun et al. (1999). For the structure and reactivity of lithiated benzylsilanes, see: Ott et al. (2008). For syntheses and structures of bis{[diphenyl(piperidinomethyl)silyl]methyl}cadmium and -magnesium, see: Strohmann & Schildbach (2002). For a highly diastereomerically enriched, silyl-substituted alkyl lithium, see: Strohmann et al. (2005). For the synthesis and structure of a monolithiated allylsilane and its related 1,3-dilithiated allylsilane, see: Strohmann et al. (2006). For the synthesis and structure of a lithiated [(benzylsilyl)methyl]amine, see: Strohmann et al. (2002).
Experimental
Crystal data
|
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.
Supporting information
10.1107/S1600536809018364/fi2078sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809018364/fi2078Isup2.hkl
To 0.38 g (1.7 mmol) dry zinc(II) bromide dissolved in 10 ml dry acetonitrile, 0.38 g (1.7 mmol) N-tert-butyl-1,1-dimethyl-1-(piperidin-1-ylmethyl)silanamine were added and stored at room temperature. After 24 h a colourless crystalline solid of the title compound suitable for single-crystal x-ray studies had formed.
The H atoms were refined in their ideal geometric positions using the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and of Uiso(H) = 1.2Ueq(C) for all other H atoms except atom H1n (bonded to N1) which was refined freely.
Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell
CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED (Oxford Diffraction, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).Fig. 1. Plot of the asymmetric unit of the title compound with displacement ellipsoids drawn at the 50% probability level. |
[ZnBr2(C12H28N2Si)] | F(000) = 912 |
Mr = 453.64 | Dx = 1.716 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9282 reflections |
a = 12.0284 (4) Å | θ = 2.4–29.1° |
b = 10.6505 (3) Å | µ = 6.01 mm−1 |
c = 14.5633 (5) Å | T = 123 K |
β = 109.752 (4)° | Block, colourless |
V = 1755.91 (10) Å3 | 0.40 × 0.20 × 0.20 mm |
Z = 4 |
Oxford Diffraction Xcalibur S diffractometer | 2673 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.034 |
Graphite monochromator | θmax = 26.0°, θmin = 2.4° |
ω scans | h = −14→14 |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | k = −13→13 |
Tmin = 0.698, Tmax = 1.000 | l = −17→17 |
17826 measured reflections | 1 standard reflections every 50 reflections |
3440 independent reflections | intensity decay: none |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.020 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | w = 1/[σ2(Fo2) + (0.012P)2] where P = (Fo2 + 2Fc2)/3 |
3440 reflections | (Δ/σ)max = 0.002 |
172 parameters | Δρmax = 0.56 e Å−3 |
0 restraints | Δρmin = −0.43 e Å−3 |
[ZnBr2(C12H28N2Si)] | V = 1755.91 (10) Å3 |
Mr = 453.64 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 12.0284 (4) Å | µ = 6.01 mm−1 |
b = 10.6505 (3) Å | T = 123 K |
c = 14.5633 (5) Å | 0.40 × 0.20 × 0.20 mm |
β = 109.752 (4)° |
Oxford Diffraction Xcalibur S diffractometer | 2673 reflections with I > 2σ(I) |
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2006) | Rint = 0.034 |
Tmin = 0.698, Tmax = 1.000 | 1 standard reflections every 50 reflections |
17826 measured reflections | intensity decay: none |
3440 independent reflections |
R[F2 > 2σ(F2)] = 0.020 | 0 restraints |
wR(F2) = 0.035 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.04 | Δρmax = 0.56 e Å−3 |
3440 reflections | Δρmin = −0.43 e Å−3 |
172 parameters |
Experimental. CrysAlis RED, Oxford Diffraction Ltd. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Br1 | 0.034333 (19) | 0.34304 (2) | 0.425367 (16) | 0.02008 (7) | |
Br2 | 0.36966 (2) | 0.21717 (2) | 0.546307 (18) | 0.02735 (7) | |
C1 | 0.43775 (18) | 0.4264 (2) | 0.80678 (16) | 0.0251 (6) | |
H1A | 0.4537 | 0.3636 | 0.7637 | 0.038* | |
H1B | 0.4397 | 0.3863 | 0.8679 | 0.038* | |
H1C | 0.4980 | 0.4924 | 0.8209 | 0.038* | |
C2 | 0.2739 (2) | 0.6418 (2) | 0.80978 (17) | 0.0296 (6) | |
H2A | 0.3418 | 0.6969 | 0.8175 | 0.044* | |
H2B | 0.2703 | 0.6207 | 0.8742 | 0.044* | |
H2C | 0.2011 | 0.6850 | 0.7714 | 0.044* | |
C3 | 0.16458 (18) | 0.3884 (2) | 0.74214 (15) | 0.0168 (5) | |
H3A | 0.1720 | 0.3654 | 0.8098 | 0.020* | |
H3B | 0.0894 | 0.4349 | 0.7138 | 0.020* | |
C4 | 0.03415 (18) | 0.2212 (2) | 0.65665 (15) | 0.0178 (5) | |
H4A | −0.0202 | 0.2816 | 0.6117 | 0.021* | |
H4B | 0.0116 | 0.2148 | 0.7159 | 0.021* | |
C5 | 0.0203 (2) | 0.0941 (2) | 0.60787 (16) | 0.0234 (6) | |
H5A | 0.0380 | 0.1013 | 0.5465 | 0.028* | |
H5B | −0.0625 | 0.0656 | 0.5912 | 0.028* | |
C6 | 0.10247 (19) | −0.0026 (2) | 0.67401 (17) | 0.0246 (6) | |
H6A | 0.0809 | −0.0159 | 0.7331 | 0.029* | |
H6B | 0.0954 | −0.0837 | 0.6394 | 0.029* | |
C7 | 0.22848 (19) | 0.0459 (2) | 0.70248 (17) | 0.0215 (6) | |
H7A | 0.2824 | −0.0132 | 0.7490 | 0.026* | |
H7B | 0.2522 | 0.0504 | 0.6437 | 0.026* | |
C8 | 0.23979 (19) | 0.1747 (2) | 0.74873 (15) | 0.0176 (5) | |
H8A | 0.2232 | 0.1680 | 0.8107 | 0.021* | |
H8B | 0.3222 | 0.2043 | 0.7646 | 0.021* | |
C9 | 0.32287 (19) | 0.5977 (2) | 0.56932 (16) | 0.0198 (5) | |
C10 | 0.2842 (2) | 0.5668 (2) | 0.46137 (16) | 0.0271 (6) | |
H10A | 0.3038 | 0.4793 | 0.4529 | 0.041* | |
H10B | 0.3250 | 0.6223 | 0.4295 | 0.041* | |
H10C | 0.1987 | 0.5790 | 0.4320 | 0.041* | |
C11 | 0.2945 (2) | 0.7356 (2) | 0.58157 (17) | 0.0275 (6) | |
H11A | 0.2090 | 0.7489 | 0.5533 | 0.041* | |
H11B | 0.3349 | 0.7893 | 0.5481 | 0.041* | |
H11C | 0.3214 | 0.7569 | 0.6511 | 0.041* | |
C12 | 0.45464 (18) | 0.5736 (2) | 0.61593 (17) | 0.0283 (6) | |
H12A | 0.4815 | 0.6038 | 0.6835 | 0.042* | |
H12B | 0.4973 | 0.6182 | 0.5792 | 0.042* | |
H12C | 0.4701 | 0.4833 | 0.6152 | 0.042* | |
H1N | 0.1857 (18) | 0.544 (2) | 0.5961 (15) | 0.024 (7)* | |
N1 | 0.25541 (17) | 0.51356 (18) | 0.61717 (13) | 0.0169 (5) | |
N2 | 0.15788 (14) | 0.26976 (16) | 0.68447 (12) | 0.0126 (4) | |
Si | 0.29025 (5) | 0.49627 (6) | 0.74618 (5) | 0.01692 (15) | |
Zn | 0.20862 (2) | 0.32732 (2) | 0.565755 (18) | 0.01447 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Br1 | 0.01765 (13) | 0.02519 (15) | 0.01490 (13) | −0.00001 (11) | 0.00222 (10) | 0.00006 (11) |
Br2 | 0.02695 (14) | 0.02831 (15) | 0.03360 (15) | 0.01126 (12) | 0.01917 (12) | 0.00731 (13) |
C1 | 0.0218 (14) | 0.0238 (15) | 0.0254 (15) | −0.0039 (11) | 0.0025 (12) | 0.0022 (12) |
C2 | 0.0291 (15) | 0.0299 (16) | 0.0306 (16) | −0.0056 (12) | 0.0112 (13) | −0.0105 (12) |
C3 | 0.0175 (13) | 0.0198 (14) | 0.0152 (13) | 0.0025 (11) | 0.0081 (11) | −0.0013 (11) |
C4 | 0.0144 (12) | 0.0245 (14) | 0.0156 (13) | −0.0032 (11) | 0.0062 (11) | 0.0008 (11) |
C5 | 0.0199 (14) | 0.0276 (16) | 0.0214 (14) | −0.0114 (12) | 0.0052 (12) | −0.0033 (12) |
C6 | 0.0311 (15) | 0.0174 (14) | 0.0265 (15) | −0.0076 (12) | 0.0115 (13) | −0.0007 (11) |
C7 | 0.0254 (14) | 0.0150 (14) | 0.0252 (14) | 0.0025 (11) | 0.0099 (12) | 0.0047 (11) |
C8 | 0.0152 (12) | 0.0183 (14) | 0.0175 (13) | 0.0015 (11) | 0.0030 (10) | 0.0054 (11) |
C9 | 0.0178 (13) | 0.0194 (14) | 0.0220 (14) | −0.0037 (11) | 0.0065 (11) | 0.0027 (11) |
C10 | 0.0347 (16) | 0.0228 (15) | 0.0268 (15) | −0.0032 (12) | 0.0144 (13) | 0.0059 (12) |
C11 | 0.0279 (15) | 0.0201 (15) | 0.0353 (16) | −0.0060 (12) | 0.0118 (13) | −0.0006 (12) |
C12 | 0.0176 (14) | 0.0345 (17) | 0.0342 (16) | −0.0016 (12) | 0.0106 (13) | 0.0053 (12) |
N1 | 0.0135 (11) | 0.0187 (12) | 0.0190 (11) | −0.0038 (9) | 0.0064 (10) | −0.0013 (9) |
N2 | 0.0101 (10) | 0.0145 (11) | 0.0121 (10) | −0.0007 (8) | 0.0023 (8) | −0.0006 (8) |
Si | 0.0168 (4) | 0.0177 (4) | 0.0158 (4) | −0.0018 (3) | 0.0049 (3) | −0.0033 (3) |
Zn | 0.01415 (14) | 0.01651 (15) | 0.01335 (15) | 0.00006 (12) | 0.00541 (12) | −0.00062 (12) |
Br1—Zn | 2.3887 (4) | C7—C8 | 1.513 (3) |
Br2—Zn | 2.3622 (3) | C7—H7A | 0.9900 |
C1—Si | 1.850 (2) | C7—H7B | 0.9900 |
C1—H1A | 0.9800 | C8—N2 | 1.500 (2) |
C1—H1B | 0.9800 | C8—H8A | 0.9900 |
C1—H1C | 0.9800 | C8—H8B | 0.9900 |
C2—Si | 1.850 (2) | C9—C10 | 1.517 (3) |
C2—H2A | 0.9800 | C9—C12 | 1.520 (3) |
C2—H2B | 0.9800 | C9—N1 | 1.526 (3) |
C2—H2C | 0.9800 | C9—C11 | 1.532 (3) |
C3—N2 | 1.504 (3) | C10—H10A | 0.9800 |
C3—Si | 1.884 (2) | C10—H10B | 0.9800 |
C3—H3A | 0.9900 | C10—H10C | 0.9800 |
C3—H3B | 0.9900 | C11—H11A | 0.9800 |
C4—N2 | 1.496 (2) | C11—H11B | 0.9800 |
C4—C5 | 1.512 (3) | C11—H11C | 0.9800 |
C4—H4A | 0.9900 | C12—H12A | 0.9800 |
C4—H4B | 0.9900 | C12—H12B | 0.9800 |
C5—C6 | 1.524 (3) | C12—H12C | 0.9800 |
C5—H5A | 0.9900 | N1—Si | 1.7909 (19) |
C5—H5B | 0.9900 | N1—Zn | 2.1276 (19) |
C6—C7 | 1.520 (3) | N1—H1N | 0.85 (2) |
C6—H6A | 0.9900 | N2—Zn | 2.1096 (16) |
C6—H6B | 0.9900 | ||
Si—C1—H1A | 109.5 | C10—C9—C12 | 109.55 (19) |
Si—C1—H1B | 109.5 | C10—C9—N1 | 108.78 (18) |
H1A—C1—H1B | 109.5 | C12—C9—N1 | 109.40 (18) |
Si—C1—H1C | 109.5 | C10—C9—C11 | 109.01 (19) |
H1A—C1—H1C | 109.5 | C12—C9—C11 | 110.46 (19) |
H1B—C1—H1C | 109.5 | N1—C9—C11 | 109.62 (17) |
Si—C2—H2A | 109.5 | C9—C10—H10A | 109.5 |
Si—C2—H2B | 109.5 | C9—C10—H10B | 109.5 |
H2A—C2—H2B | 109.5 | H10A—C10—H10B | 109.5 |
Si—C2—H2C | 109.5 | C9—C10—H10C | 109.5 |
H2A—C2—H2C | 109.5 | H10A—C10—H10C | 109.5 |
H2B—C2—H2C | 109.5 | H10B—C10—H10C | 109.5 |
N2—C3—Si | 114.88 (13) | C9—C11—H11A | 109.5 |
N2—C3—H3A | 108.5 | C9—C11—H11B | 109.5 |
Si—C3—H3A | 108.5 | H11A—C11—H11B | 109.5 |
N2—C3—H3B | 108.5 | C9—C11—H11C | 109.5 |
Si—C3—H3B | 108.5 | H11A—C11—H11C | 109.5 |
H3A—C3—H3B | 107.5 | H11B—C11—H11C | 109.5 |
N2—C4—C5 | 112.22 (17) | C9—C12—H12A | 109.5 |
N2—C4—H4A | 109.2 | C9—C12—H12B | 109.5 |
C5—C4—H4A | 109.2 | H12A—C12—H12B | 109.5 |
N2—C4—H4B | 109.2 | C9—C12—H12C | 109.5 |
C5—C4—H4B | 109.2 | H12A—C12—H12C | 109.5 |
H4A—C4—H4B | 107.9 | H12B—C12—H12C | 109.5 |
C4—C5—C6 | 111.29 (19) | C9—N1—Si | 124.57 (15) |
C4—C5—H5A | 109.4 | C9—N1—Zn | 120.32 (13) |
C6—C5—H5A | 109.4 | Si—N1—Zn | 102.34 (9) |
C4—C5—H5B | 109.4 | C9—N1—H1N | 102.9 (15) |
C6—C5—H5B | 109.4 | Si—N1—H1N | 105.6 (14) |
H5A—C5—H5B | 108.0 | Zn—N1—H1N | 96.6 (16) |
C7—C6—C5 | 108.47 (18) | C4—N2—C8 | 108.62 (16) |
C7—C6—H6A | 110.0 | C4—N2—C3 | 107.58 (15) |
C5—C6—H6A | 110.0 | C8—N2—C3 | 108.60 (16) |
C7—C6—H6B | 110.0 | C4—N2—Zn | 114.54 (13) |
C5—C6—H6B | 110.0 | C8—N2—Zn | 113.37 (12) |
H6A—C6—H6B | 108.4 | C3—N2—Zn | 103.75 (12) |
C8—C7—C6 | 111.13 (18) | N1—Si—C1 | 112.86 (10) |
C8—C7—H7A | 109.4 | N1—Si—C2 | 114.35 (10) |
C6—C7—H7A | 109.4 | C1—Si—C2 | 110.18 (11) |
C8—C7—H7B | 109.4 | N1—Si—C3 | 97.42 (9) |
C6—C7—H7B | 109.4 | C1—Si—C3 | 113.57 (10) |
H7A—C7—H7B | 108.0 | C2—Si—C3 | 107.88 (10) |
N2—C8—C7 | 113.13 (18) | N2—Zn—N1 | 95.62 (7) |
N2—C8—H8A | 109.0 | N2—Zn—Br2 | 115.47 (5) |
C7—C8—H8A | 109.0 | N1—Zn—Br2 | 112.03 (5) |
N2—C8—H8B | 109.0 | N2—Zn—Br1 | 107.97 (5) |
C7—C8—H8B | 109.0 | N1—Zn—Br1 | 106.69 (5) |
H8A—C8—H8B | 107.8 | Br2—Zn—Br1 | 116.759 (13) |
Experimental details
Crystal data | |
Chemical formula | [ZnBr2(C12H28N2Si)] |
Mr | 453.64 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 123 |
a, b, c (Å) | 12.0284 (4), 10.6505 (3), 14.5633 (5) |
β (°) | 109.752 (4) |
V (Å3) | 1755.91 (10) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 6.01 |
Crystal size (mm) | 0.40 × 0.20 × 0.20 |
Data collection | |
Diffractometer | Oxford Diffraction Xcalibur S diffractometer |
Absorption correction | Multi-scan (CrysAlis RED; Oxford Diffraction, 2006) |
Tmin, Tmax | 0.698, 1.000 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 17826, 3440, 2673 |
Rint | 0.034 |
(sin θ/λ)max (Å−1) | 0.617 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.020, 0.035, 1.04 |
No. of reflections | 3440 |
No. of parameters | 172 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.56, −0.43 |
Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997).
Acknowledgements
This work was supported by the Deutsche Forschungsgemeinschaft. The authors also acknowledge Wacker Chemie AG and Chemetall for providing special chemicals.
References
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Farrugia, L. J., Cross, R. J. & Barley, H. R. L. (2001). Acta Cryst. E57, o992–o993. Web of Science CSD CrossRef IUCr Journals Google Scholar
Herrmann, W. A., Dyckhoff, F. & Herdtweck, E. (1992). Chem. Ber. 125, 2651–2656. CrossRef CAS Web of Science Google Scholar
Lerner, H.-W., Wiberg, N. & Bats, J. W. (2005). J. Organomet. Chem. 690, 3898–3907. Web of Science CSD CrossRef CAS Google Scholar
Mimoun, H., de Saint Laumer, J. Y., Giannini, L., Scopelliti, R. & Floriani, C. (1999). J. Am. Chem. Soc. 121, 6158–6166. Web of Science CSD CrossRef CAS Google Scholar
Ott, H., Däschlein, C., Leusser, D., Schildbach, D., Seibel, T., Stalke, D. & Strohmann, C. (2008). J. Am. Chem. Soc. 130, 11901–11911. Web of Science CSD CrossRef PubMed CAS Google Scholar
Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England. Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Strohmann, C., Abele, B. C., Lehmen, K. & Schildbach, D. (2005). Angew. Chem. Int. Ed. 117, 3196–3199. CrossRef Google Scholar
Strohmann, C., Lehmen, K. & Dilsky, S. (2006). J. Am. Chem. Soc. 128, 8102–8103. Web of Science CSD CrossRef PubMed CAS Google Scholar
Strohmann, C., Lehmen, K., Wild, K. & Schildbach, D. (2002). Organometallics, 21, 3079–3081. Web of Science CSD CrossRef CAS Google Scholar
Strohmann, C. & Schildbach, D. (2002). Acta Cryst. C58, m447–m449. Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
The title compound, the adduct of the silazane ligand and zinc bromide crystallized from acetonitrile in the monoclinic crystal system, space group P21/c. The H atom H1n was refined freely. It is connected to N1 with a bond length of 0.853 (21) Å which is in the expected range for N—H bonds. Additionally, H1N is forming a weak intermolecular hydrogen bond to Br1i (i: –x, –y + 1, –z + 1). The H1···Br1i distance (2.828 (22) Å) and the N1—H1N—Br1i angle (166.1 (20) Å) are in the typical ranges of such hydrogen bonds (Farrugia et al., 2001). With a value of 1.791 (2) Å, the Si—N bond length is in the upper range of other known systems and is very close to the sum of the covalent radii of silicon and nitrogen (1.86 Å) (Lerner et al., 2005; Herrmann et al., 1992). The bond lengths of 2.128 (2) Å for N1—Zn and 2.110 (2) Å for N2—Zn are similar to other reported dative zinc-nitrogen bonds (Mimoun et al., 1999). The structure of the title compound is a neutral coordination compound of a bidentate ligand and zinc(II) bromide forming a five-membered ring with a typical envelope conformation similar to other known metalla heterocycles (Strohmann et al. 2002, 2005, 2006; Strohmann & Schildbach 2002; Ott et al. 2008). The tip of the envelope is formed by the Si atom with a distance of 0.8312 (7) Å to a least-squares plane through Zn, N1, N2, C3 and Si. The title compound may be regarded as a comparative model structure for a deprotonation transition state as the silazane ligand can also be deprotonated by more reactive organozinc reagents. Thereby new metal silazane compounds are formed which themselves are interesting as deprotonation or alkylation reagents in organic synthesis.