organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-[(E)-(Di­methyl­amino)methyl­ene­amino]benzo­nitrile

aSchool of Chemical Engineering and Environment, Beijing Institute of Technology, Beijing 100081, People's Republic of China
*Correspondence e-mail: jrli@bit.edu.cn

(Received 1 April 2009; accepted 28 April 2009; online 14 May 2009)

In the title compound, C10H11N3, the amidine unit, including the two methyl substituents, is virtually planar [maximum deviation = 0.016 (5) Å]. The plane of the benzene ring forms a dihedral angle of 46.5 (3)° with the amidine group.

Related literature

For application of formamidines in chemical synthesis, see: Deshpande & Seshadri (1973[Deshpande, M. N. & Seshadri, S. (1973). Indian J. Chem. 11, 538-540.]); Toste et al. (1994[Toste, D., McNulty, J. & Still, W. J. (1994). Synth. Commun. 24, 1617-1624.]).

[Scheme 1]

Experimental

Crystal data
  • C10H11N3

  • Mr = 173.22

  • Monoclinic, P 21 /n

  • a = 7.7468 (15) Å

  • b = 11.212 (2) Å

  • c = 11.042 (2) Å

  • β = 109.67 (3)°

  • V = 903.1 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 113 K

  • 0.20 × 0.18 × 0.14 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]) Tmin = 0.984, Tmax = 0.989

  • 5746 measured reflections

  • 1575 independent reflections

  • 1342 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.035

  • wR(F2) = 0.100

  • S = 1.10

  • 1575 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.19 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Derivatives of formamidine are valuable synthetic intermediates featuring common structural motif found in a variety of compounds with interesting medicinal and biological properties. The formamidine group is a useful primary amine protecting group for its ease of introduction and efficient removal (Toste et al., 1994). The N'-(2-cyanophenyl)-N,N-dimethylformamidine compounds are key intermediates of convenient synthesis of O-aminobenzonitrile, 4-aminoquinazolines and 4-aminoquinazoline-3-oxides (Deshpande et al., 1973).

Related literature top

For application of formamidines in chemical synthesis, see: Deshpande & Seshadri (1973); Toste et al. (1994).

Experimental top

Phosphorus oxychloride (13 mmole) was added dropwise to 8 ml dimethylformamide at 273 K. After stirring for 2–3 min, finely powdered isatin-3-oxime (10 mmol) was added and kept at room temperature for some time. Temperature was then gradually raised to 343 K and the reaction mixture was kept at this temperature for 2hr, then cooled, poured onto crushed ice and filtered. The clear filtrate was basified by sodium carbonate to pH=9 and the solution extracted with toluene, which was then evaporated to obtain crude (E)-N'-(2-cyanophenyl)-N,N-dimethylformamidine. The compound was recrystallizated from ethyl acetate and petroleum ether to give colorless crystals.

m.p. 338–339 K; IR(KBr): 2910 (C—H), 2214.87 (–CN), 1587, 1556 (C—C), 1367 (–CH3) cm-1; 1H-NMR (CDCl3, p.p.m): 3.07–3.09 (6H, m), 6.93–7.02(2H, m), 7.38–7.44 (1H, t), 7.51–7.54 (1H, d), 7.58 (1H, s); ESI: 174.1[M+H]+. Elementary analysis: found N 24.31, C 69.31, H 6.30; calc. 24.26, 69.34, 6.40).

20 mg of the obtained product was dissolved in ethyl acetate (5 ml). Then petroleum ether (2 ml) was added dropwise to the solution. The solution was kept at room temperature for 4 days to give colorless single crystals.

Refinement top

All H atoms were included in calculated positions and refined in the riding model approximation with C—H distances 0.93 (aromatic) or 0.96 Å (methyl), and with Uiso=1.2Ueq or 1.5Ueq(methyl).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of the title compound with displacement ellipsoids drawn at the 30% probability level.
2-[(E)-(Dimethylamino)methyleneamino]benzonitrile top
Crystal data top
C10H11N3F(000) = 368
Mr = 173.22Dx = 1.274 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -p 2ynCell parameters from 2901 reflections
a = 7.7468 (15) Åθ = 1.8–27.9°
b = 11.212 (2) ŵ = 0.08 mm1
c = 11.042 (2) ÅT = 113 K
β = 109.67 (3)°Cube, colorless
V = 903.1 (3) Å30.20 × 0.18 × 0.14 mm
Z = 4
Data collection top
Rigaku Saturn
diffractometer
1575 independent reflections
Radiation source: rotating anode1342 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.027
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 98
Tmin = 0.984, Tmax = 0.989k = 1313
5746 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.0612P)2 + 0.137P]
where P = (Fo2 + 2Fc2)/3
1575 reflections(Δ/σ)max = 0.001
120 parametersΔρmax = 0.19 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C10H11N3V = 903.1 (3) Å3
Mr = 173.22Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.7468 (15) ŵ = 0.08 mm1
b = 11.212 (2) ÅT = 113 K
c = 11.042 (2) Å0.20 × 0.18 × 0.14 mm
β = 109.67 (3)°
Data collection top
Rigaku Saturn
diffractometer
1575 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
1342 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.989Rint = 0.027
5746 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.100H-atom parameters constrained
S = 1.10Δρmax = 0.19 e Å3
1575 reflectionsΔρmin = 0.17 e Å3
120 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.14481 (15)0.99786 (9)0.10732 (10)0.0224 (3)
N20.07129 (13)0.79099 (9)0.36257 (9)0.0164 (3)
N30.06421 (14)0.76114 (9)0.56842 (9)0.0188 (3)
C10.06597 (16)0.90883 (10)0.12357 (11)0.0161 (3)
C20.02451 (15)0.79498 (10)0.13459 (11)0.0149 (3)
C30.04571 (16)0.74551 (11)0.02435 (11)0.0175 (3)
H30.00690.78750.05270.021*
C40.12454 (16)0.63393 (11)0.02985 (12)0.0189 (3)
H40.13800.60050.04350.023*
C50.18342 (16)0.57226 (11)0.14586 (11)0.0177 (3)
H50.23540.49700.14960.021*
C60.16547 (15)0.62165 (10)0.25572 (11)0.0163 (3)
H60.20790.57950.33260.020*
C70.08444 (16)0.73434 (11)0.25378 (11)0.0145 (3)
C80.04348 (16)0.72373 (11)0.45021 (11)0.0170 (3)
H80.00710.64520.42900.020*
C90.02345 (19)0.68383 (12)0.66108 (13)0.0272 (3)
H9A0.02960.61080.61970.041*
H9B0.06150.72310.69410.041*
H9C0.13450.66660.73050.041*
C100.13692 (18)0.87915 (11)0.61196 (12)0.0231 (3)
H10A0.20980.90600.56210.035*
H10B0.21150.87560.70110.035*
H10C0.03740.93370.60140.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0285 (6)0.0188 (6)0.0200 (6)0.0012 (5)0.0085 (5)0.0002 (4)
N20.0166 (5)0.0180 (5)0.0143 (5)0.0000 (4)0.0048 (4)0.0003 (4)
N30.0216 (6)0.0221 (6)0.0146 (6)0.0030 (4)0.0086 (4)0.0022 (4)
C10.0171 (6)0.0187 (6)0.0116 (6)0.0043 (5)0.0038 (5)0.0009 (5)
C20.0126 (6)0.0145 (6)0.0169 (6)0.0025 (5)0.0038 (5)0.0002 (4)
C30.0174 (6)0.0197 (6)0.0138 (6)0.0019 (5)0.0033 (5)0.0018 (5)
C40.0195 (6)0.0207 (6)0.0163 (6)0.0019 (5)0.0057 (5)0.0045 (5)
C50.0156 (6)0.0154 (6)0.0210 (6)0.0001 (5)0.0044 (5)0.0014 (5)
C60.0146 (6)0.0171 (6)0.0154 (6)0.0023 (5)0.0025 (5)0.0027 (5)
C70.0110 (6)0.0171 (6)0.0145 (6)0.0049 (4)0.0029 (5)0.0011 (4)
C80.0145 (6)0.0180 (6)0.0184 (7)0.0018 (5)0.0053 (5)0.0008 (5)
C90.0312 (7)0.0328 (8)0.0228 (7)0.0074 (6)0.0159 (6)0.0092 (6)
C100.0243 (7)0.0269 (7)0.0182 (7)0.0031 (6)0.0071 (5)0.0046 (5)
Geometric parameters (Å, º) top
N1—C11.1522 (15)C4—H40.9300
N2—C81.3007 (15)C5—C61.3825 (16)
N2—C71.3925 (15)C5—H50.9300
N3—C81.3283 (15)C6—C71.4077 (17)
N3—C91.4544 (15)C6—H60.9300
N3—C101.4549 (16)C8—H80.9300
C1—C21.4415 (16)C9—H9A0.9600
C2—C31.3967 (16)C9—H9B0.9600
C2—C71.4137 (17)C9—H9C0.9600
C3—C41.3844 (17)C10—H10A0.9600
C3—H30.9300C10—H10B0.9600
C4—C51.3906 (17)C10—H10C0.9600
C8—N2—C7117.12 (10)C7—C6—H6119.3
C8—N3—C9121.34 (11)N2—C7—C6123.91 (11)
C8—N3—C10121.14 (10)N2—C7—C2119.17 (11)
C9—N3—C10117.46 (10)C6—C7—C2116.79 (10)
N1—C1—C2175.84 (12)N2—C8—N3123.54 (11)
C3—C2—C7121.49 (11)N2—C8—H8118.2
C3—C2—C1118.33 (10)N3—C8—H8118.2
C7—C2—C1120.15 (10)N3—C9—H9A109.5
C4—C3—C2120.01 (11)N3—C9—H9B109.5
C4—C3—H3120.0H9A—C9—H9B109.5
C2—C3—H3120.0N3—C9—H9C109.5
C3—C4—C5119.52 (11)H9A—C9—H9C109.5
C3—C4—H4120.2H9B—C9—H9C109.5
C5—C4—H4120.2N3—C10—H10A109.5
C6—C5—C4120.70 (11)N3—C10—H10B109.5
C6—C5—H5119.7H10A—C10—H10B109.5
C4—C5—H5119.7N3—C10—H10C109.5
C5—C6—C7121.48 (11)H10A—C10—H10C109.5
C5—C6—H6119.3H10B—C10—H10C109.5
C7—C2—C3—C40.94 (17)C5—C6—C7—C20.75 (16)
C1—C2—C3—C4177.12 (10)C3—C2—C7—N2175.72 (9)
C2—C3—C4—C50.49 (17)C1—C2—C7—N26.25 (16)
C3—C4—C5—C60.57 (17)C3—C2—C7—C60.32 (16)
C4—C5—C6—C71.21 (17)C1—C2—C7—C6177.71 (10)
C8—N2—C7—C635.50 (15)C7—N2—C8—N3166.09 (11)
C8—N2—C7—C2148.77 (11)C9—N3—C8—N2177.22 (10)
C5—C6—C7—N2176.58 (10)C10—N3—C8—N25.75 (18)

Experimental details

Crystal data
Chemical formulaC10H11N3
Mr173.22
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)7.7468 (15), 11.212 (2), 11.042 (2)
β (°) 109.67 (3)
V3)903.1 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.20 × 0.18 × 0.14
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.984, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
5746, 1575, 1342
Rint0.027
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.100, 1.10
No. of reflections1575
No. of parameters120
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.17

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

 

Acknowledgements

The authors thank the Beijing Institute of Technology for financial support.

References

First citationDeshpande, M. N. & Seshadri, S. (1973). Indian J. Chem. 11, 538–540.  CAS Google Scholar
First citationRigaku/MSC (2005). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationToste, D., McNulty, J. & Still, W. J. (1994). Synth. Commun. 24, 1617–1624.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds