organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Acetyl­pyridinium bromanilate

(Received 8 April 2009; accepted 1 May 2009; online 7 May 2009)

In the crystal of the title mol­ecular salt (systematic name: 2-acetyl­pyridinium 2,5-dibromo-4-hydr­oxy-3,6-dioxocyclo­hexa-1,4-dienolate), C7H8NO+·C6HBr2O4, centrosymmetric rings consisting of two cations and two anions are formed, with the components linked by alternating O—H⋯O and N—H⋯O hydrogen bonds. Short O⋯Br contacts [3.243 (2) and 3.359 (2) Å] may help to consolidate the packing.

Related literature

For the structure of bromanilic acid, see: Robl (1987[Robl, C. (1987). Z. Kristallogr. 180, 249-253.]). For related structures, see: Tomura & Yamashita (2000[Tomura, M. & Yamashita, Y. (2000). CrystEngComm, 2, 92-95.]); Zaman et al. (2001[Zaman, Md. B., Tomura, M. & Yamashita, Y. (2001). J. Org. Chem. 66, 5987-5995.], 2004[Zaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585-589.]); Horiuchi et al. (2005[Horiuchi, S., Kumai, R. & Tokura, Y. (2005). J. Am. Chem. Soc. 127, 5010-5011.]).

[Scheme 1]

Experimental

Crystal data
  • C7H8NO+·C6HBr2O4

  • Mr = 419.03

  • Monoclinic, P 21 /c

  • a = 9.1323 (5) Å

  • b = 13.3821 (7) Å

  • c = 12.2287 (7) Å

  • β = 112.396 (2)°

  • V = 1381.74 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.89 mm−1

  • T = 100 K

  • 0.25 × 0.2 × 0.1 mm

Data collection
  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: empirical (using intensity measurements) (CrystalClear; Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.561, Tmax = 1.000 (expected range = 0.311–0.555)

  • 17193 measured reflections

  • 3156 independent reflections

  • 2793 reflections with I > 2σ(I)

  • Rint = 0.036

Refinement
  • R[F2 > 2σ(F2)] = 0.022

  • wR(F2) = 0.050

  • S = 1.04

  • 3156 reflections

  • 219 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1⋯O5 0.78 (3) 2.20 (3) 2.798 (2) 134 (3)
N1—H6⋯O2i 0.91 (3) 1.83 (3) 2.673 (2) 154 (3)
Symmetry code: (i) -x+2, -y+1, -z+1.

Data collection: CrystalClear (Rigaku/MSC, 2008[Rigaku/MSC (2008). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The stucture of the molecular proton-transfer salt of bromanilic acid with 2-acetylpyridine at 100 K is reported (Fig. 1). A proton is transferred from the bromanilic acid molecule to the N atom on the acetylpyridine (Fig. 1). All previously reported structures containing bromanilic acid have shown the tendency for extended chains of molecules to form. In this case, hydrogen-bonded rings are formed between alternating cations and anions (Fig. 2) and these rings are held together to form a three-dimensional structure by one Br···O close contact of 3.243 (2)Å (cf the sum of the van der Waals radii for Br and O of 3.37Å) and one on the limit of the sum of the van der Waals radii of of 3.359 (2)Å (Fig. 3). The deprotonated hydroxyl group on the bromanilic acid molecule is stabilized by forming a moderate hydrogen bond [2.673 (2)Å] with the N atom on the 2-acetylpyridine molecule to which the proton has been transferred, and a short O···Br contact with another bromanilic acid molecule. The C—O bond length to the deprotonated oxygen is notably shortened compared to that to the protonated hydroxyl group [1.253 (2)Å versus 1.322 (2)Å]. The longer of the two O···Br close contacts is to the CO group on the bromanilic acid [CO bond length 1.221 (2)Å].

Related literature top

For the structure of bromanilic acid, see: Robl (1987). For related structures, see: Tomura & Yamashita (2000); Zaman et al. (2001, 2004); Horiuchi et al. (2005).

Experimental top

Red blocks of (I) were grown by slow evaporation of solvent from a 1:1 solution of bromanilic acid and 2-acetylpyridine in methanol.

Refinement top

The H atoms were identified in the difference map, and their positions were freely refined. The O- and N-bonded species were allowed to refine isotropically and the C-bonded H atoms were constrained, with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2008); cell refinement: CrystalClear (Rigaku/MSC, 2008); data reduction: CrystalClear (Rigaku/MSC, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. The hydrogen bonded ring between alternating bromanilic acid and acetylpyridine molecules. The hydrogen bonds are indicated by dashed lines. The * indicates the atoms are related by the symmetry code 2 - x, 1 - y, 1 - z.
[Figure 3] Fig. 3. The short bromine-oxygen close contacts connecting the hydrogen bonded rings. The short contacts and hydrogen bonds are indicated by dashed lines.
2-Acetylpyridinium bromanilate top
Crystal data top
C7H8NO+·C6HBr2O4F(000) = 816
Mr = 419.03Dx = 2.014 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 13698 reflections
a = 9.1323 (5) Åθ = 6.1–55.2°
b = 13.3821 (7) ŵ = 5.89 mm1
c = 12.2287 (7) ÅT = 100 K
β = 112.396 (2)°Block, red
V = 1381.74 (13) Å30.25 × 0.2 × 0.1 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
2793 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: empirical (using intensity measurements)
(CrystalClear; Rigaku/MSC, 2008)
h = 1111
Tmin = 0.561, Tmax = 1.000k = 1717
17193 measured reflectionsl = 1515
3156 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022Hydrogen site location: difference Fourier map
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0229P)2 + 0.7894P]
where P = (Fo2 + 2Fc2)/3
3156 reflections(Δ/σ)max = 0.001
219 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.31 e Å3
Crystal data top
C7H8NO+·C6HBr2O4V = 1381.74 (13) Å3
Mr = 419.03Z = 4
Monoclinic, P21/cMo Kα radiation
a = 9.1323 (5) ŵ = 5.89 mm1
b = 13.3821 (7) ÅT = 100 K
c = 12.2287 (7) Å0.25 × 0.2 × 0.1 mm
β = 112.396 (2)°
Data collection top
Rigaku R-AXIS RAPID IP
diffractometer
3156 independent reflections
Absorption correction: empirical (using intensity measurements)
(CrystalClear; Rigaku/MSC, 2008)
2793 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 1.000Rint = 0.036
17193 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0220 restraints
wR(F2) = 0.050H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.43 e Å3
3156 reflectionsΔρmin = 0.31 e Å3
219 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. The isotropic displacement parameters for the hydrogen atoms involved in hydrogenbonds are refined freely. All other hydrogen atoms are refined against the atoms to which they are bonded.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
H60.611 (3)0.307 (2)0.195 (3)0.041 (8)*
O50.50649 (17)0.44777 (11)0.25644 (13)0.0201 (3)
N10.5396 (2)0.29814 (12)0.11977 (16)0.0152 (3)
C120.4282 (2)0.45501 (15)0.15172 (18)0.0160 (4)
C110.5549 (2)0.22016 (16)0.05849 (19)0.0200 (4)
H50.637 (3)0.1735 (18)0.102 (2)0.024*
C80.3294 (2)0.36207 (16)0.04572 (18)0.0173 (4)
H20.263 (3)0.4122 (18)0.076 (2)0.021*
C100.4555 (3)0.20854 (17)0.0595 (2)0.0223 (5)
H40.468 (3)0.156 (2)0.099 (2)0.027*
C70.4298 (2)0.37017 (14)0.07151 (17)0.0145 (4)
C90.3417 (3)0.28035 (17)0.11190 (19)0.0217 (4)
H30.274 (3)0.2759 (19)0.195 (2)0.026*
C130.3272 (3)0.54328 (17)0.0970 (2)0.0232 (5)
H90.351 (3)0.595 (2)0.152 (2)0.028*
H70.340 (3)0.5618 (19)0.027 (2)0.028*
H80.222 (3)0.5245 (19)0.076 (2)0.028*
H10.663 (4)0.511 (2)0.426 (3)0.050 (10)*
Br10.92699 (2)0.416206 (15)0.738904 (17)0.01764 (6)
Br20.98903 (2)0.811177 (15)0.427719 (17)0.01869 (6)
O11.19471 (16)0.56928 (11)0.79086 (12)0.0180 (3)
O21.22536 (16)0.73058 (10)0.67034 (12)0.0186 (3)
O30.73311 (16)0.64428 (11)0.37219 (12)0.0198 (3)
C50.9790 (2)0.69726 (14)0.51628 (17)0.0150 (4)
O40.70848 (17)0.48853 (11)0.48976 (14)0.0197 (3)
C10.8359 (2)0.54445 (15)0.54043 (18)0.0152 (4)
C60.8462 (2)0.63450 (15)0.46801 (17)0.0149 (4)
C41.1029 (2)0.67882 (14)0.62391 (18)0.0139 (4)
C31.0879 (2)0.58650 (14)0.69581 (17)0.0143 (4)
C20.9474 (2)0.52459 (14)0.64757 (17)0.0145 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O50.0225 (8)0.0205 (7)0.0161 (7)0.0024 (6)0.0059 (6)0.0021 (6)
N10.0126 (8)0.0165 (8)0.0135 (8)0.0001 (6)0.0014 (7)0.0008 (7)
C120.0157 (10)0.0161 (10)0.0184 (10)0.0023 (7)0.0088 (8)0.0005 (8)
C110.0178 (10)0.0179 (10)0.0219 (11)0.0044 (8)0.0048 (9)0.0002 (8)
C80.0129 (10)0.0206 (10)0.0158 (10)0.0007 (8)0.0024 (8)0.0035 (8)
C100.0277 (12)0.0212 (11)0.0185 (11)0.0005 (9)0.0093 (9)0.0056 (9)
C70.0138 (9)0.0143 (9)0.0158 (10)0.0004 (7)0.0062 (8)0.0011 (8)
C90.0242 (11)0.0246 (11)0.0137 (10)0.0027 (9)0.0045 (9)0.0002 (8)
C130.0271 (12)0.0209 (11)0.0249 (12)0.0057 (9)0.0135 (10)0.0023 (9)
Br10.01649 (11)0.01824 (11)0.01617 (11)0.00241 (7)0.00395 (8)0.00493 (7)
Br20.02145 (12)0.01616 (11)0.01540 (11)0.00364 (7)0.00360 (9)0.00339 (7)
O10.0164 (7)0.0188 (7)0.0144 (7)0.0007 (5)0.0011 (6)0.0018 (6)
O20.0172 (7)0.0158 (7)0.0185 (7)0.0026 (5)0.0020 (6)0.0016 (6)
O30.0182 (7)0.0229 (8)0.0137 (7)0.0020 (6)0.0008 (6)0.0032 (6)
C50.0184 (10)0.0128 (9)0.0129 (9)0.0001 (7)0.0051 (8)0.0021 (7)
O40.0168 (8)0.0208 (8)0.0154 (7)0.0058 (6)0.0008 (6)0.0026 (6)
C10.0155 (10)0.0153 (9)0.0154 (10)0.0005 (7)0.0065 (8)0.0014 (8)
C60.0156 (10)0.0165 (10)0.0127 (9)0.0016 (7)0.0057 (8)0.0005 (8)
C40.0147 (10)0.0122 (9)0.0152 (10)0.0003 (7)0.0061 (8)0.0013 (7)
C30.0164 (10)0.0136 (9)0.0145 (10)0.0013 (7)0.0077 (8)0.0015 (7)
C20.0167 (10)0.0130 (9)0.0151 (9)0.0001 (7)0.0075 (8)0.0012 (7)
Geometric parameters (Å, º) top
O5—C121.209 (2)C13—H70.94 (3)
N1—C111.323 (3)C13—H80.93 (3)
N1—C71.353 (2)Br1—C21.8826 (19)
N1—H60.91 (3)Br2—C51.8922 (19)
C12—C131.491 (3)O1—C31.221 (2)
C12—C71.504 (3)O2—C41.253 (2)
C11—C101.390 (3)O3—C61.239 (2)
C11—H50.96 (3)C5—C41.392 (3)
C8—C71.381 (3)C5—C61.407 (3)
C8—C91.390 (3)O4—C11.322 (2)
C8—H20.89 (2)O4—H10.79 (3)
C10—C91.381 (3)C1—C21.344 (3)
C10—H40.88 (3)C1—C61.520 (3)
C9—H30.97 (3)C4—C31.552 (3)
C13—H90.93 (3)C3—C21.451 (3)
C11—N1—C7122.38 (18)H9—C13—H7112 (2)
C11—N1—H6119.2 (18)C12—C13—H8107.8 (16)
C7—N1—H6118.2 (18)H9—C13—H8110 (2)
O5—C12—C13123.61 (19)H7—C13—H8107 (2)
O5—C12—C7118.77 (18)C4—C5—C6123.42 (18)
C13—C12—C7117.62 (18)C4—C5—Br2119.00 (14)
N1—C11—C10120.53 (19)C6—C5—Br2117.57 (14)
N1—C11—H5115.3 (15)C1—O4—H1107 (2)
C10—C11—H5124.2 (15)O4—C1—C2123.31 (19)
C7—C8—C9119.83 (19)O4—C1—C6114.51 (17)
C7—C8—H2117.2 (16)C2—C1—C6122.18 (17)
C9—C8—H2122.9 (16)O3—C6—C5127.49 (19)
C9—C10—C11118.8 (2)O3—C6—C1114.86 (17)
C9—C10—H4122.0 (16)C5—C6—C1117.65 (17)
C11—C10—H4119.1 (16)O2—C4—C5126.44 (18)
N1—C7—C8119.03 (18)O2—C4—C3116.07 (17)
N1—C7—C12116.30 (17)C5—C4—C3117.48 (17)
C8—C7—C12124.67 (18)O1—C3—C2122.78 (18)
C10—C9—C8119.39 (19)O1—C3—C4118.58 (17)
C10—C9—H3120.6 (15)C2—C3—C4118.64 (17)
C8—C9—H3119.9 (15)C1—C2—C3120.51 (18)
C12—C13—H9109.4 (16)C1—C2—Br1121.41 (15)
C12—C13—H7110.4 (16)C3—C2—Br1118.08 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O50.78 (3)2.20 (3)2.798 (2)134 (3)
N1—H6···O2i0.91 (3)1.83 (3)2.673 (2)154 (3)
Symmetry code: (i) x+2, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC7H8NO+·C6HBr2O4
Mr419.03
Crystal system, space groupMonoclinic, P21/c
Temperature (K)100
a, b, c (Å)9.1323 (5), 13.3821 (7), 12.2287 (7)
β (°) 112.396 (2)
V3)1381.74 (13)
Z4
Radiation typeMo Kα
µ (mm1)5.89
Crystal size (mm)0.25 × 0.2 × 0.1
Data collection
DiffractometerRigaku R-AXIS RAPID IP
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(CrystalClear; Rigaku/MSC, 2008)
Tmin, Tmax0.561, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
17193, 3156, 2793
Rint0.036
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.022, 0.050, 1.04
No. of reflections3156
No. of parameters219
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.43, 0.31

Computer programs: CrystalClear (Rigaku/MSC, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H1···O50.78 (3)2.20 (3)2.798 (2)134 (3)
N1—H6···O2i0.91 (3)1.83 (3)2.673 (2)154 (3)
Symmetry code: (i) x+2, y+1, z+1.
 

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1995). International Tables for Crystallography, Vol. C, edited by A. J. C. Wilson, pp. 685–706. Dordrecht: Kluwer Academic Publishers.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHoriuchi, S., Kumai, R. & Tokura, Y. (2005). J. Am. Chem. Soc. 127, 5010–5011.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku/MSC (2008). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationRobl, C. (1987). Z. Kristallogr. 180, 249–253.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTomura, M. & Yamashita, Y. (2000). CrystEngComm, 2, 92–95.  Web of Science CSD CrossRef Google Scholar
First citationZaman, Md. B., Tomura, M. & Yamashita, Y. (2001). J. Org. Chem. 66, 5987–5995.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZaman, Md. B., Udachin, K. A. & Ripmeester, J. A. (2004). Cryst. Growth Des. 4, 585–589.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds