organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Benzene­sulfonamido)pyridinium nitrate

aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China
*Correspondence e-mail: js_li@yahoo.com.cn

(Received 16 April 2009; accepted 27 April 2009; online 7 May 2009)

In the title compound, C11H11N2O2S+·NO3, the dihedral angle between the benzene and pyridinium rings is 87.59 (8)°. An intra­molecular C—H⋯O inter­action occurs in the cation. In the crystal structure, ion pairs occur, being linked by two strong N—H⋯O inter­actions, forming R22(8) loops. The packing is further stabilized by weak C—H⋯O inter­actions.

Related literature

For the synthesis, see: Li, Yang et al. (2008[Li, J.-S., Yang, D.-W. & Liu, W.-D. (2008). Acta Cryst. E64, o204.]). For related structures, see: Li et al. (2008a[Li, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008a). Acta Cryst. E64, o1459.],b[Li, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008b). Acta Cryst. E64, o1513.]). For background studies of supra­molecular chemistry involving pyridinium rings, see: Li et al. (2007[Li, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. pp. 350-352.]); Li, Fan, Fan et al. (2008[Li, J. S., Fan, M. L., Fan, X. P., Huang, P. M. & Chen, L. G. (2008). Chin. J. Org. Chem. 28, 1954-1958.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N2O2S+·NO3

  • Mr = 297.29

  • Monoclinic, P 21 /n

  • a = 5.3309 (11) Å

  • b = 10.067 (2) Å

  • c = 23.837 (5) Å

  • β = 90.44 (3)°

  • V = 1279.2 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 113 K

  • 0.20 × 0.16 × 0.12 mm

Data collection
  • Rigaku Saturn CCD area-detector diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.947, Tmax = 0.968

  • 9882 measured reflections

  • 2959 independent reflections

  • 2547 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.041

  • wR(F2) = 0.107

  • S = 1.08

  • 2959 reflections

  • 189 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.50 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O5 0.86 (2) 1.91 (2) 2.760 (2) 171 (2)
N2—H2A⋯O3 0.91 (2) 1.84 (2) 2.7417 (18) 173 (2)
C8—H8⋯O2 0.95 2.38 3.009 (2) 123
C3—H3⋯O5i 0.95 2.52 3.432 (2) 162
C10—H10⋯O4ii 0.95 2.53 3.193 (2) 127
C11—H11⋯O3iii 0.95 2.56 3.434 (2) 153
C11—H11⋯O4iii 0.95 2.34 3.223 (2) 154
Symmetry codes: (i) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (ii) x, y+1, z; (iii) -x, -y+1, -z.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Organic pyridinium salts have been widely used as guests for construction of supramolecular complexes. As part of our ongoing studies of host–guest chemistry involving the pyridinium salts (Li et al., 2007; Li, Fan, Fan et al., 2008), the structure of the title compound was determined by X-ray diffraction. For related structures, see: Li et al. (2008a,b).

The title compound, (I), consists of a pyridinium cation and a nitrate anion (Fig. 1). In the cation, the C—N distance [1.378 (2) Å] is short enough to display significant double-bond character (typical C=N = 1.34–1.38 Å), despite the presence of the strong electron-withdrawing sulfonyl group. This could be attributed to the ortho N+ atom in the pyridinium ring. The benzene ring constructs an angle of 87.59 (8)° with the pyridinium ring.

In the crystal structure, two strong N—H···O hydrogen bonds (R22(8)) link the cation and anion, and weak C—H···O interactions (Table 1) help establishing the packing as well as significant ion-dipolar interactions [N2—O2 3.020 at (x - 1, y, z), N2—O3 3.006, N2—O4 3.581, N2—O5 3.377 at (-x + 3/2, y + 3/2, -z + 1/2)]. Besides, one short intramolecular C—H···O contact also occurs in the cation.

Related literature top

For the synthesis, see: Li, Yang et al. (2008). For related structures, see: Li et al. (2008a,b). For background studies of supramolecular chemistry involving pyridinium rings, see: Li et al. (2007); Li, Fan, Fan et al. (2008).

Experimental top

The title compound was prepared according to the reported literature (Li, Yang et al. 2008). Colourless blocks of (I) were obtained by evaporation of a nitric acid solution of the sulfonamide.

Refinement top

The H atoms bound to C were positioned geometrically (C—H = 0.95Å) and refined as riding with Uiso(H) = 1.2 Ueq(C). The N—H hydrogen atoms were refined with their isotropic displacement parameters, and N—H distances are restrained to 0.86 (2) and 0.91 (2) Å, respectively.

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius. Dashed lines indicates H-bonding.
2-(Benzenesulfonamido)pyridinium nitrate top
Crystal data top
C11H11N2O2S+·NO3F(000) = 616
Mr = 297.29Dx = 1.544 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3934 reflections
a = 5.3309 (11) Åθ = 2.6–27.9°
b = 10.067 (2) ŵ = 0.28 mm1
c = 23.837 (5) ÅT = 113 K
β = 90.44 (3)°Block, colourless
V = 1279.2 (5) Å30.20 × 0.16 × 0.12 mm
Z = 4
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2959 independent reflections
Radiation source: rotating anode2547 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.027
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.7°
ω and ϕ scansh = 67
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1310
Tmin = 0.947, Tmax = 0.968l = 2731
9882 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0535P)2 + 0.6301P]
where P = (Fo2 + 2Fc2)/3
2959 reflections(Δ/σ)max = 0.001
189 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.50 e Å3
Crystal data top
C11H11N2O2S+·NO3V = 1279.2 (5) Å3
Mr = 297.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 5.3309 (11) ŵ = 0.28 mm1
b = 10.067 (2) ÅT = 113 K
c = 23.837 (5) Å0.20 × 0.16 × 0.12 mm
β = 90.44 (3)°
Data collection top
Rigaku Saturn CCD area-detector
diffractometer
2959 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
2547 reflections with I > 2σ(I)
Tmin = 0.947, Tmax = 0.968Rint = 0.027
9882 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.39 e Å3
2959 reflectionsΔρmin = 0.50 e Å3
189 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.91800 (7)0.56853 (4)0.160276 (15)0.01836 (13)
O11.0236 (2)0.43908 (12)0.15364 (5)0.0236 (3)
O21.0764 (2)0.68341 (12)0.16025 (5)0.0246 (3)
N10.7169 (3)0.57948 (14)0.10753 (5)0.0202 (3)
N20.3909 (3)0.66605 (13)0.05567 (5)0.0176 (3)
C10.7348 (3)0.57165 (15)0.22140 (6)0.0172 (3)
C20.8103 (3)0.65238 (16)0.26571 (7)0.0228 (3)
H20.95340.70800.26240.027*
C30.6718 (4)0.65010 (17)0.31498 (7)0.0279 (4)
H30.72050.70420.34590.033*
C40.4630 (4)0.56891 (17)0.31892 (7)0.0274 (4)
H40.36740.56870.35240.033*
C50.3915 (3)0.48754 (17)0.27435 (7)0.0256 (4)
H50.24910.43150.27770.031*
C60.5277 (3)0.48821 (16)0.22514 (7)0.0206 (3)
H60.48060.43280.19450.025*
C70.5852 (3)0.69057 (15)0.09074 (6)0.0178 (3)
C80.6390 (3)0.82204 (16)0.10529 (7)0.0212 (3)
H80.77260.84210.13050.025*
C90.4944 (3)0.92219 (16)0.08236 (7)0.0241 (4)
H90.52981.01200.09170.029*
C100.2968 (3)0.89326 (17)0.04570 (7)0.0236 (3)
H100.19830.96250.02980.028*
C110.2475 (3)0.76278 (17)0.03302 (6)0.0209 (3)
H110.11280.74070.00840.025*
H10.666 (4)0.502 (2)0.0974 (9)0.035 (6)*
H2A0.347 (4)0.580 (2)0.0487 (9)0.030 (6)*
N30.3198 (3)0.31725 (13)0.05623 (5)0.0188 (3)
O30.2271 (2)0.41507 (11)0.02985 (5)0.0213 (3)
O40.2173 (3)0.20711 (11)0.05331 (5)0.0280 (3)
O50.5183 (2)0.33211 (12)0.08439 (5)0.0261 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0160 (2)0.0236 (2)0.01549 (19)0.00131 (14)0.00045 (14)0.00020 (13)
O10.0220 (7)0.0279 (6)0.0210 (6)0.0079 (5)0.0009 (5)0.0034 (4)
O20.0190 (6)0.0307 (6)0.0243 (6)0.0058 (5)0.0000 (5)0.0028 (5)
N10.0244 (8)0.0196 (7)0.0166 (6)0.0031 (5)0.0039 (5)0.0009 (5)
N20.0177 (7)0.0199 (7)0.0153 (6)0.0003 (5)0.0005 (5)0.0015 (5)
C10.0167 (8)0.0188 (7)0.0161 (7)0.0027 (5)0.0007 (5)0.0010 (5)
C20.0269 (9)0.0196 (7)0.0219 (8)0.0014 (6)0.0019 (6)0.0011 (6)
C30.0393 (11)0.0256 (8)0.0187 (7)0.0052 (7)0.0012 (7)0.0029 (6)
C40.0302 (10)0.0311 (9)0.0211 (8)0.0080 (7)0.0062 (7)0.0048 (6)
C50.0200 (9)0.0279 (9)0.0290 (8)0.0016 (6)0.0027 (7)0.0066 (7)
C60.0178 (8)0.0215 (8)0.0224 (7)0.0019 (6)0.0030 (6)0.0009 (6)
C70.0173 (8)0.0231 (8)0.0131 (6)0.0006 (6)0.0022 (5)0.0003 (5)
C80.0188 (9)0.0240 (8)0.0207 (7)0.0012 (6)0.0003 (6)0.0023 (6)
C90.0246 (9)0.0210 (8)0.0267 (8)0.0005 (6)0.0030 (7)0.0012 (6)
C100.0229 (9)0.0237 (8)0.0242 (8)0.0037 (6)0.0009 (6)0.0010 (6)
C110.0163 (8)0.0272 (8)0.0191 (7)0.0033 (6)0.0001 (6)0.0014 (6)
N30.0201 (7)0.0198 (6)0.0166 (6)0.0035 (5)0.0004 (5)0.0015 (5)
O30.0238 (7)0.0204 (6)0.0197 (5)0.0027 (4)0.0040 (4)0.0022 (4)
O40.0322 (8)0.0184 (6)0.0334 (7)0.0018 (5)0.0079 (5)0.0002 (5)
O50.0240 (7)0.0254 (6)0.0288 (6)0.0038 (5)0.0106 (5)0.0029 (5)
Geometric parameters (Å, º) top
S1—O11.4288 (12)C4—H40.9500
S1—O21.4322 (12)C5—C61.384 (2)
S1—N11.6498 (15)C5—H50.9500
S1—C11.7607 (16)C6—H60.9500
N1—C71.378 (2)C7—C81.397 (2)
N1—H10.86 (2)C8—C91.380 (2)
N2—C111.348 (2)C8—H80.9500
N2—C71.349 (2)C9—C101.394 (3)
N2—H2A0.91 (2)C9—H90.9500
C1—C21.390 (2)C10—C111.373 (2)
C1—C61.391 (2)C10—H100.9500
C2—C31.392 (2)C11—H110.9500
C2—H20.9500N3—O41.2378 (18)
C3—C41.385 (3)N3—O51.2580 (18)
C3—H30.9500N3—O31.2665 (17)
C4—C51.392 (3)
O1—S1—O2120.24 (8)C6—C5—C4120.12 (17)
O1—S1—N1103.35 (7)C6—C5—H5119.9
O2—S1—N1109.00 (7)C4—C5—H5119.9
O1—S1—C1109.24 (7)C5—C6—C1118.60 (15)
O2—S1—C1108.47 (7)C5—C6—H6120.7
N1—S1—C1105.54 (8)C1—C6—H6120.7
C7—N1—S1127.02 (12)N2—C7—N1114.73 (14)
C7—N1—H1119.6 (16)N2—C7—C8118.83 (15)
S1—N1—H1110.9 (15)N1—C7—C8126.41 (15)
C11—N2—C7123.13 (14)C9—C8—C7118.75 (16)
C11—N2—H2A117.8 (14)C9—C8—H8120.6
C7—N2—H2A118.9 (14)C7—C8—H8120.6
C2—C1—C6122.01 (15)C8—C9—C10120.85 (16)
C2—C1—S1118.68 (13)C8—C9—H9119.6
C6—C1—S1119.21 (12)C10—C9—H9119.6
C1—C2—C3118.62 (16)C11—C10—C9118.72 (16)
C1—C2—H2120.7C11—C10—H10120.6
C3—C2—H2120.7C9—C10—H10120.6
C4—C3—C2119.91 (16)N2—C11—C10119.71 (16)
C4—C3—H3120.0N2—C11—H11120.1
C2—C3—H3120.0C10—C11—H11120.1
C3—C4—C5120.73 (16)O4—N3—O5120.37 (13)
C3—C4—H4119.6O4—N3—O3119.89 (13)
C5—C4—H4119.6O5—N3—O3119.72 (13)
O1—S1—N1—C7171.95 (14)C4—C5—C6—C10.2 (2)
O2—S1—N1—C742.97 (16)C2—C1—C6—C50.9 (2)
C1—S1—N1—C773.37 (15)S1—C1—C6—C5177.27 (12)
O1—S1—C1—C2114.78 (13)C11—N2—C7—N1177.09 (13)
O2—S1—C1—C217.97 (15)C11—N2—C7—C81.2 (2)
N1—S1—C1—C2134.67 (13)S1—N1—C7—N2164.75 (11)
O1—S1—C1—C661.68 (14)S1—N1—C7—C817.1 (2)
O2—S1—C1—C6165.56 (12)N2—C7—C8—C91.3 (2)
N1—S1—C1—C648.86 (14)N1—C7—C8—C9176.77 (15)
C6—C1—C2—C30.7 (2)C7—C8—C9—C100.5 (3)
S1—C1—C2—C3177.06 (13)C8—C9—C10—C110.4 (3)
C1—C2—C3—C40.3 (3)C7—N2—C11—C100.2 (2)
C2—C3—C4—C51.0 (3)C9—C10—C11—N20.5 (2)
C3—C4—C5—C60.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.86 (2)1.91 (2)2.760 (2)171 (2)
N2—H2A···O30.91 (2)1.84 (2)2.7417 (18)173 (2)
C8—H8···O20.952.383.009 (2)123
C3—H3···O5i0.952.523.432 (2)162
C10—H10···O4ii0.952.533.193 (2)127
C11—H11···O3iii0.952.563.434 (2)153
C11—H11···O4iii0.952.343.223 (2)154
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC11H11N2O2S+·NO3
Mr297.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)5.3309 (11), 10.067 (2), 23.837 (5)
β (°) 90.44 (3)
V3)1279.2 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.28
Crystal size (mm)0.20 × 0.16 × 0.12
Data collection
DiffractometerRigaku Saturn CCD area-detector
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.947, 0.968
No. of measured, independent and
observed [I > 2σ(I)] reflections
9882, 2959, 2547
Rint0.027
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.107, 1.08
No. of reflections2959
No. of parameters189
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.39, 0.50

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O50.86 (2)1.91 (2)2.760 (2)171 (2)
N2—H2A···O30.91 (2)1.84 (2)2.7417 (18)173 (2)
C8—H8···O20.952.383.009 (2)123
C3—H3···O5i0.952.523.432 (2)162
C10—H10···O4ii0.952.533.193 (2)127
C11—H11···O3iii0.952.563.434 (2)153
C11—H11···O4iii0.952.343.223 (2)154
Symmetry codes: (i) x+3/2, y+1/2, z+1/2; (ii) x, y+1, z; (iii) x, y+1, z.
 

Acknowledgements

This project was supported by Changsha University of Science and Technology Talent Fund (Project No.1004214)

References

First citationLi, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. pp. 350–352.  CrossRef Google Scholar
First citationLi, J. S., Fan, M. L., Fan, X. P., Huang, P. M. & Chen, L. G. (2008). Chin. J. Org. Chem. 28, 1954–1958.  CAS Google Scholar
First citationLi, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008a). Acta Cryst. E64, o1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008b). Acta Cryst. E64, o1513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-S., Yang, D.-W. & Liu, W.-D. (2008). Acta Cryst. E64, o204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds