organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

3-(2-Pyridylamino­carbonyl)propanoic acid

aCollege of Chemistry & Bioengineering, Changsha University of Science & Technology, Changsha 410076, People's Republic of China
*Correspondence e-mail: wang2009chengfeng@126.com

(Received 27 April 2009; accepted 5 May 2009; online 14 May 2009)

In the crystal structure of the title compound, C9H10N2O3, the mol­ecules are linked by inter­molecular O—H⋯N and N—H⋯O hydrogen bonds, resulting in chains propagating in [010]. Weak intra­molecular and inter­molecular C—H⋯O inter­actions are also observed.

Related literature

For background on the pharmaceutical applications of this family of compounds, see: Narendar et al. (2003[Narendar, P., Parthiban, J. & Anbalagan, N. (2003). Biol. Pharm. Bull. 26, 182-187.]); Ravlee et al. (2003[Ravlee, I., Sivakumar, R. & Muruganantham, N. (2003). Chem. Pharm. Bull. 51, 162-170.]).

[Scheme 1]

Experimental

Crystal data
  • C9H10N2O3

  • Mr = 194.19

  • Monoclinic, P 21 /n

  • a = 12.7384 (10) Å

  • b = 5.0485 (5) Å

  • c = 13.8463 (12) Å

  • β = 92.924 (8)°

  • V = 889.29 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 113 K

  • 0.22 × 0.04 × 0.03 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.995, Tmax = 0.996

  • 8079 measured reflections

  • 1972 independent reflections

  • 1297 reflections with I > 2σ(I)

  • Rint = 0.074

Refinement
  • R[F2 > 2σ(F2)] = 0.048

  • wR(F2) = 0.104

  • S = 0.97

  • 1972 reflections

  • 135 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.22 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2i 0.954 (19) 1.744 (19) 2.690 (2) 170.4 (17)
N1—H1A⋯O2ii 0.96 (2) 1.86 (2) 2.824 (2) 176.6 (19)
C6—H6⋯O3 0.95 2.31 2.893 (2) 119
C3—H3A⋯O2ii 0.99 2.60 3.445 (2) 143
C3—H3B⋯O3iii 0.99 2.58 3.408 (2) 141
C7—H7⋯O3iv 0.95 2.56 3.319 (2) 137
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (iii) x, y+1, z; (iv) -x, -y, -z+1.

Data collection: CrystalClear (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku, 2005[Rigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.]).

Supporting information


Comment top

Pyridine derivatives substituted by N-alkylation show useful pharmaceutical properties (Narendar et al., 2003; Ravlee et al., 2003). In this paper, the structure of 4-oxo-4-(pyridin-2-ylamino)butanoic acid (I), is reported which was synthesized by acylating reation of pyridin-2-amine with pyrrolidine-2,5-dione. The pyridin ring system is essentially planar with mean deviations of 0.0013 Å. In addition, there are C—H···O interactions, as shown in Fig. 2 and detailed in Table 1.

Related literature top

For background on the pharmaceutical applications of this family of compounds, see: Narendar et al. (2003); Ravlee et al. (2003).

Experimental top

A solution of pyrrolidine-2,5-dione (1.0 g,10 mmol) in dimethylformamide (15 ml) was stirred at room temperature for 10 min. Pyridin-2-amine (0.94 g, 10 mmol) was added and the mixture was stirred for a further 3 h at 353 K. The resulting mixture was then poured into water (100 ml), yielding a white precipitate. The solid product was filtered off, washed with cold water and recrystallized from methnol, giving crystals of the title compound [yield: 1.17 g (61.4%)]. These were dissolved in mixture of methnol (10 ml) and water (3 ml) and the solution was kept at room temperature for 18 d. Natural evaporation of the solution gave colourless prisms of (I) (m.p. 454–455 K).

Refinement top

The O- and N-bound H atoms were located in a difference map and their positions and Uiso values were freely refined. The C-bound H atoms were geometrically placed (C—H = 0.95–0.99Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2005).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level (arbitrary spheres for H atoms).
[Figure 2] Fig. 2. Part of the crystal structure of (I), with hydrogen bonds shown as dashed lines.
3-(2-Pyridylaminocarbonyl)propanoic acid top
Crystal data top
C9H10N2O3F(000) = 408
Mr = 194.19Dx = 1.450 Mg m3
Monoclinic, P21/nMelting point = 454–455 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71070 Å
a = 12.7384 (10) ÅCell parameters from 2970 reflections
b = 5.0485 (5) Åθ = 2.1–27.2°
c = 13.8463 (12) ŵ = 0.11 mm1
β = 92.924 (8)°T = 113 K
V = 889.29 (14) Å3Prism, colourless
Z = 40.22 × 0.04 × 0.03 mm
Data collection top
Rigaku Saturn
diffractometer
1972 independent reflections
Radiation source: rotating anode1297 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.074
Detector resolution: 14.63 pixels mm-1θmax = 27.2°, θmin = 2.1°
ω and ϕ scansh = 1616
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 66
Tmin = 0.995, Tmax = 0.996l = 1717
8079 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.104 w = 1/[σ2(Fo2) + (0.0361P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.001
1972 reflectionsΔρmax = 0.23 e Å3
135 parametersΔρmin = 0.22 e Å3
1 restraintExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (3)
Crystal data top
C9H10N2O3V = 889.29 (14) Å3
Mr = 194.19Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.7384 (10) ŵ = 0.11 mm1
b = 5.0485 (5) ÅT = 113 K
c = 13.8463 (12) Å0.22 × 0.04 × 0.03 mm
β = 92.924 (8)°
Data collection top
Rigaku Saturn
diffractometer
1972 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
1297 reflections with I > 2σ(I)
Tmin = 0.995, Tmax = 0.996Rint = 0.074
8079 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0481 restraint
wR(F2) = 0.104H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.23 e Å3
1972 reflectionsΔρmin = 0.22 e Å3
135 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.44178 (10)0.2594 (3)0.58044 (9)0.0272 (4)
H10.4642 (15)0.145 (4)0.6323 (13)0.041*
O20.34511 (10)0.4177 (3)0.69759 (9)0.0290 (4)
O30.12611 (10)0.3483 (3)0.52083 (9)0.0284 (4)
N10.08391 (12)0.5393 (3)0.66376 (11)0.0216 (4)
N20.02347 (12)0.4254 (3)0.78432 (11)0.0231 (4)
C10.37059 (14)0.4218 (4)0.61433 (13)0.0221 (4)
C20.32399 (15)0.6117 (4)0.54040 (13)0.0239 (5)
H2A0.30900.51710.47860.029*
H2B0.37530.75410.52880.029*
C30.22283 (14)0.7334 (4)0.57436 (13)0.0227 (5)
H3A0.23670.81940.63800.027*
H3B0.19720.87030.52770.027*
C40.14010 (14)0.5211 (4)0.58271 (13)0.0223 (5)
C50.00578 (14)0.3716 (4)0.69450 (13)0.0214 (5)
C60.04012 (15)0.1661 (4)0.63919 (13)0.0244 (5)
H60.01900.13170.57560.029*
C70.11649 (15)0.0153 (4)0.67911 (14)0.0265 (5)
H70.14840.12610.64310.032*
C80.14707 (15)0.0686 (4)0.77148 (13)0.0276 (5)
H80.19990.03380.79990.033*
C90.09839 (15)0.2750 (4)0.82096 (13)0.0256 (5)
H90.11900.31260.88450.031*
H1A0.1087 (16)0.673 (4)0.7090 (14)0.043 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0313 (8)0.0289 (8)0.0218 (8)0.0121 (7)0.0044 (6)0.0043 (6)
O20.0352 (8)0.0350 (9)0.0172 (7)0.0102 (7)0.0057 (6)0.0054 (6)
O30.0363 (9)0.0269 (8)0.0221 (8)0.0033 (6)0.0026 (6)0.0067 (6)
N10.0237 (9)0.0228 (10)0.0185 (8)0.0006 (7)0.0019 (7)0.0045 (7)
N20.0259 (9)0.0232 (9)0.0202 (8)0.0010 (8)0.0006 (7)0.0007 (7)
C10.0223 (10)0.0217 (11)0.0222 (10)0.0005 (9)0.0007 (8)0.0010 (9)
C20.0282 (11)0.0246 (11)0.0191 (10)0.0051 (9)0.0028 (8)0.0020 (8)
C30.0274 (11)0.0213 (11)0.0191 (10)0.0043 (9)0.0000 (8)0.0009 (8)
C40.0257 (11)0.0208 (11)0.0200 (10)0.0074 (9)0.0031 (8)0.0008 (8)
C50.0234 (11)0.0214 (11)0.0191 (10)0.0037 (9)0.0021 (8)0.0005 (8)
C60.0283 (12)0.0237 (11)0.0207 (10)0.0042 (9)0.0033 (8)0.0034 (8)
C70.0299 (11)0.0235 (12)0.0252 (11)0.0008 (9)0.0063 (9)0.0041 (9)
C80.0320 (12)0.0238 (11)0.0267 (11)0.0057 (9)0.0023 (9)0.0030 (9)
C90.0311 (12)0.0253 (12)0.0203 (10)0.0022 (9)0.0008 (8)0.0008 (9)
Geometric parameters (Å, º) top
O1—C11.326 (2)C2—H2B0.9900
O1—H10.954 (17)C3—C41.512 (3)
O2—C11.214 (2)C3—H3A0.9900
O3—C41.229 (2)C3—H3B0.9900
N1—C41.365 (2)C5—C61.400 (2)
N1—C51.390 (2)C6—C71.373 (3)
N1—H1A0.96 (2)C6—H60.9500
N2—C91.340 (2)C7—C81.382 (2)
N2—C51.344 (2)C7—H70.9500
C1—C21.503 (2)C8—C91.377 (2)
C2—C31.523 (2)C8—H80.9500
C2—H2A0.9900C9—H90.9500
C1—O1—H1107.1 (12)H3A—C3—H3B108.2
C4—N1—C5128.65 (17)O3—C4—N1123.90 (19)
C4—N1—H1A114.5 (12)O3—C4—C3121.78 (18)
C5—N1—H1A116.3 (12)N1—C4—C3114.33 (16)
C9—N2—C5118.17 (16)N2—C5—N1113.37 (16)
O2—C1—O1123.11 (17)N2—C5—C6121.90 (18)
O2—C1—C2122.87 (17)N1—C5—C6124.73 (17)
O1—C1—C2114.02 (16)C7—C6—C5118.38 (18)
C1—C2—C3110.98 (16)C7—C6—H6120.8
C1—C2—H2A109.4C5—C6—H6120.8
C3—C2—H2A109.4C6—C7—C8120.21 (18)
C1—C2—H2B109.4C6—C7—H7119.9
C3—C2—H2B109.4C8—C7—H7119.9
H2A—C2—H2B108.0C9—C8—C7117.82 (18)
C4—C3—C2109.99 (15)C9—C8—H8121.1
C4—C3—H3A109.7C7—C8—H8121.1
C2—C3—H3A109.7N2—C9—C8123.51 (18)
C4—C3—H3B109.7N2—C9—H9118.2
C2—C3—H3B109.7C8—C9—H9118.2
O2—C1—C2—C316.5 (3)C4—N1—C5—N2171.25 (17)
O1—C1—C2—C3163.40 (16)C4—N1—C5—C69.1 (3)
C1—C2—C3—C464.77 (19)N2—C5—C6—C70.6 (3)
C5—N1—C4—O32.5 (3)N1—C5—C6—C7179.81 (16)
C5—N1—C4—C3177.43 (15)C5—C6—C7—C80.5 (3)
C2—C3—C4—O342.8 (2)C6—C7—C8—C90.2 (3)
C2—C3—C4—N1137.14 (15)C5—N2—C9—C80.1 (3)
C9—N2—C5—N1179.95 (15)C7—C8—C9—N20.0 (3)
C9—N2—C5—C60.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.95 (2)1.74 (2)2.690 (2)170 (2)
N1—H1A···O2ii0.96 (2)1.86 (2)2.824 (2)176.6 (19)
C6—H6···O30.952.312.893 (2)119
C3—H3A···O2ii0.992.603.445 (2)143
C3—H3B···O3iii0.992.583.408 (2)141
C7—H7···O3iv0.952.563.319 (2)137
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC9H10N2O3
Mr194.19
Crystal system, space groupMonoclinic, P21/n
Temperature (K)113
a, b, c (Å)12.7384 (10), 5.0485 (5), 13.8463 (12)
β (°) 92.924 (8)
V3)889.29 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.22 × 0.04 × 0.03
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.995, 0.996
No. of measured, independent and
observed [I > 2σ(I)] reflections
8079, 1972, 1297
Rint0.074
(sin θ/λ)max1)0.643
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.104, 0.97
No. of reflections1972
No. of parameters135
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.23, 0.22

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N2i0.954 (19)1.744 (19)2.690 (2)170.4 (17)
N1—H1A···O2ii0.96 (2)1.86 (2)2.824 (2)176.6 (19)
C6—H6···O30.952.312.893 (2)119
C3—H3A···O2ii0.992.603.445 (2)143
C3—H3B···O3iii0.992.583.408 (2)141
C7—H7···O3iv0.952.563.319 (2)137
Symmetry codes: (i) x+1/2, y1/2, z+3/2; (ii) x+1/2, y+1/2, z+3/2; (iii) x, y+1, z; (iv) x, y, z+1.
 

References

First citationNarendar, P., Parthiban, J. & Anbalagan, N. (2003). Biol. Pharm. Bull. 26, 182–187.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRavlee, I., Sivakumar, R. & Muruganantham, N. (2003). Chem. Pharm. Bull. 51, 162–170.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku (2005). CrystalClear and CrystalStructure. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds