organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(Di­methyl­amino)pyridinium tribromide: whole mol­ecule disorder of cation and anion

aDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: seikweng@um.edu.my

(Received 5 May 2009; accepted 6 May 2009; online 14 May 2009)

In the title salt, C7H11N2+·Br3, the cation and the near-linear anion [Br—Br—Br = 179.41 (8)°] both show whole-mol­ecule disorder about crystallographic twofold rotation axes. The cation is weakly hydrogen-bonded to the anion by an N—H⋯Br inter­action. The crystal studied was found to be a racemic twin, with a twin component of nearly 50%.

Related literature

The compound is known commercially as 4-(dimethyl­amino)pyridine hydro­bromide perbromide, [C7H10N2]·[HBr]·[Br2]. The 4-dimethyl­amino­pyridinium cation furnishes a number of salts with organic and inorganic acids. For 4-dimethyl­amino­pyridinium bromide, see: Mayr-Stein & Bolte (2000[Mayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19-e20.]). For dimethyl­amino­pyridinium chloride and its dihydrate, see: Bryant & King (1992[Bryant, G. L. & King, J. A. (1992). Acta Cryst. C48, 2036-2039.]); Chao et al. (1977[Chao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820-1823.]).

[Scheme 1]

Experimental

Crystal data
  • C7H11N2+·Br3

  • Mr = 362.91

  • Orthorhombic, P 2221

  • a = 4.1688 (1) Å

  • b = 8.8349 (2) Å

  • c = 14.7255 (4) Å

  • V = 542.35 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 11.11 mm−1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.656, Tmax = 1.000 (expected range = 0.216–0.329)

  • 5156 measured reflections

  • 1256 independent reflections

  • 1114 reflections with I > 2σ(I)

  • Rint = 0.025

Refinement
  • R[F2 > 2σ(F2)] = 0.021

  • wR(F2) = 0.051

  • S = 0.98

  • 1256 reflections

  • 100 parameters

  • 60 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.34 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 480 Friedel pairs

  • Flack parameter: 0.47 (4)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br2 0.88 2.42 3.286 (2) 167

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: X-SEED (Barbour, 2001[Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.]); software used to prepare material for publication: publCIF (Westrip, 2009[Westrip, S. P. (2009). publCIF. In preparation.]).

Supporting information


Related literature top

The compound is known commercially as 4-(dimethylamino)pyridine hydrobromide perbromide, [C7H10N2].[HBr].[Br2]. The 4-dimethylaminopyridinium cation furnishes a number of salts with organic and inorganic acids. For 4-dimethylaminopyridinium bromide, see: Mayr-Stein & Bolte (2000). For dimethylaminopyridinium chloride and its dihydrate, see: Bryant & King (1992); Chao et al. (1977).

Experimental top

Commercially-available 4-dimethylaminopyridine hydrobromide perbromide was recrystallized from ethanol to give colourless blocks of (I).

Refinement top

The Br3 anion lies on a twofold rotation axis, but it was allowed to refine off this symmetry element as a three-atom species.

The cation is disordered about another twofold rotation axis; this was refined as a cation with its atoms of half occupancies. The pyridyl portion was refined as a rigid hexagon of 1.39 Å sides; the pair of N–Cmethyl distances were restrained to within 0.01 Å of each other. The cation was restrained to be nearly planar, and the anisotropic displacement factors were restrained to be nearly isotropic.

The hydrogen atoms were placed at calculated positions (C–H 0.95, N–H 0.88 Å) and refined as riding with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2009).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of [C7H11N2][Br3] at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius.
4-(Dimethylamino)pyridinium tribromide top
Crystal data top
C7H11N2+·Br3F(000) = 344
Mr = 362.91Dx = 2.222 Mg m3
Orthorhombic, P2221Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c 2Cell parameters from 2094 reflections
a = 4.1688 (1) Åθ = 2.7–28.3°
b = 8.8349 (2) ŵ = 11.11 mm1
c = 14.7255 (4) ÅT = 100 K
V = 542.35 (2) Å3Block, colorless
Z = 20.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1256 independent reflections
Radiation source: fine-focus sealed tube1114 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 55
Tmin = 0.656, Tmax = 1.000k = 1111
5156 measured reflectionsl = 1919
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0322P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.98(Δ/σ)max = 0.001
1256 reflectionsΔρmax = 0.42 e Å3
100 parametersΔρmin = 0.34 e Å3
60 restraintsAbsolute structure: Flack (1983), 480 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.47 (4)
Crystal data top
C7H11N2+·Br3V = 542.35 (2) Å3
Mr = 362.91Z = 2
Orthorhombic, P2221Mo Kα radiation
a = 4.1688 (1) ŵ = 11.11 mm1
b = 8.8349 (2) ÅT = 100 K
c = 14.7255 (4) Å0.20 × 0.15 × 0.10 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
1256 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1114 reflections with I > 2σ(I)
Tmin = 0.656, Tmax = 1.000Rint = 0.025
5156 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.051Δρmax = 0.42 e Å3
S = 0.98Δρmin = 0.34 e Å3
1256 reflectionsAbsolute structure: Flack (1983), 480 Friedel pairs
100 parametersAbsolute structure parameter: 0.47 (4)
60 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br10.5290 (6)0.25953 (5)0.23869 (12)0.0155 (3)0.50
Br20.2738 (3)0.27497 (11)0.07779 (5)0.0196 (2)0.50
Br30.7682 (3)0.24565 (11)0.39355 (5)0.01777 (18)0.50
N21.1882 (7)0.2417 (5)0.3550 (3)0.0144 (9)0.50
N10.7232 (7)0.2399 (4)0.10428 (15)0.0209 (11)0.50
H10.62500.23920.05140.025*0.50
C10.7724 (9)0.1050 (3)0.1509 (2)0.0190 (11)0.50
H1A0.70000.01220.12570.023*0.50
C20.9276 (8)0.1061 (3)0.23446 (19)0.0196 (13)0.50
H20.96120.01400.26630.024*0.50
C31.0335 (5)0.2420 (3)0.27138 (13)0.0147 (11)0.50
C40.9844 (9)0.3768 (3)0.2248 (2)0.0195 (12)0.50
H41.05680.46970.25000.023*0.50
C50.8292 (9)0.3757 (3)0.1412 (2)0.0208 (14)0.50
H50.79560.46790.10930.025*0.50
C61.2376 (13)0.1015 (6)0.4024 (3)0.0226 (13)0.50
H6A1.03140.04980.41020.034*0.50
H6B1.38290.03700.36720.034*0.50
H6C1.33210.12200.46200.034*0.50
C71.2983 (11)0.3839 (6)0.3936 (4)0.0223 (14)0.50
H7A1.11300.44790.40770.033*0.50
H7B1.41960.36380.44930.033*0.50
H7C1.43660.43590.34970.033*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0195 (8)0.01421 (16)0.0128 (8)0.0005 (3)0.0021 (5)0.0007 (2)
Br20.0201 (4)0.0274 (5)0.0112 (4)0.0019 (3)0.0015 (3)0.0010 (3)
Br30.0210 (4)0.0207 (4)0.0116 (4)0.0011 (3)0.0007 (3)0.0001 (3)
N20.021 (2)0.0110 (19)0.011 (2)0.001 (2)0.0034 (17)0.005 (2)
N10.023 (3)0.032 (3)0.008 (2)0.007 (3)0.0025 (19)0.001 (2)
C10.019 (3)0.021 (3)0.017 (3)0.001 (2)0.003 (3)0.002 (2)
C20.012 (3)0.0175 (19)0.029 (4)0.0005 (16)0.004 (3)0.003 (2)
C30.019 (2)0.0179 (18)0.008 (3)0.001 (3)0.002 (2)0.0001 (17)
C40.020 (2)0.022 (2)0.016 (3)0.004 (3)0.005 (4)0.0004 (16)
C50.019 (3)0.023 (3)0.020 (3)0.001 (2)0.001 (3)0.001 (3)
C60.032 (3)0.019 (2)0.017 (3)0.000 (3)0.001 (4)0.004 (2)
C70.023 (4)0.023 (3)0.020 (3)0.005 (2)0.008 (3)0.005 (2)
Geometric parameters (Å, º) top
Br1—Br32.492 (3)C2—H20.9500
Br1—Br22.601 (3)C3—C41.3900
N2—C31.390 (5)C4—C51.3900
N2—C61.436 (7)C4—H40.9500
N2—C71.454 (7)C5—H50.9500
N1—C11.3900C6—H6A0.9800
N1—C51.3900C6—H6B0.9800
N1—H10.8800C6—H6C0.9800
C1—C21.3900C7—H7A0.9800
C1—H1A0.9500C7—H7B0.9800
C2—C31.3900C7—H7C0.9800
Br3—Br1—Br2179.41 (8)C5—C4—H4120.0
C3—N2—C6119.9 (4)C3—C4—H4120.0
C3—N2—C7119.4 (4)C4—C5—N1120.0
C6—N2—C7120.7 (4)C4—C5—H5120.0
C1—N1—C5120.0N1—C5—H5120.0
C1—N1—H1120.0N2—C6—H6A109.5
C5—N1—H1120.0N2—C6—H6B109.5
N1—C1—C2120.0H6A—C6—H6B109.5
N1—C1—H1A120.0N2—C6—H6C109.5
C2—C1—H1A120.0H6A—C6—H6C109.5
C1—C2—C3120.0H6B—C6—H6C109.5
C1—C2—H2120.0N2—C7—H7A109.5
C3—C2—H2120.0N2—C7—H7B109.5
N2—C3—C4120.5 (3)H7A—C7—H7B109.5
N2—C3—C2119.5 (3)N2—C7—H7C109.5
C4—C3—C2120.0H7A—C7—H7C109.5
C5—C4—C3120.0H7B—C7—H7C109.5
C5—N1—C1—C20.0C1—C2—C3—N2179.96 (9)
N1—C1—C2—C30.0C1—C2—C3—C40.0
C6—N2—C3—C4179.95 (9)N2—C3—C4—C5179.96 (9)
C7—N2—C3—C40.07 (11)C2—C3—C4—C50.0
C6—N2—C3—C20.08 (13)C3—C4—C5—N10.0
C7—N2—C3—C2179.90 (9)C1—N1—C5—C40.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br20.882.423.286 (2)167

Experimental details

Crystal data
Chemical formulaC7H11N2+·Br3
Mr362.91
Crystal system, space groupOrthorhombic, P2221
Temperature (K)100
a, b, c (Å)4.1688 (1), 8.8349 (2), 14.7255 (4)
V3)542.35 (2)
Z2
Radiation typeMo Kα
µ (mm1)11.11
Crystal size (mm)0.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART APEX CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.656, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5156, 1256, 1114
Rint0.025
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.051, 0.98
No. of reflections1256
No. of parameters100
No. of restraints60
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.42, 0.34
Absolute structureFlack (1983), 480 Friedel pairs
Absolute structure parameter0.47 (4)

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), X-SEED (Barbour, 2001), pubCIF (Westrip, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br20.882.423.286 (2)167
 

Acknowledgements

I thank the University of Malaya for supporting this study.

References

First citationBarbour, L. J. (2001). J. Supramol. Chem. 1, 189–191.  CrossRef CAS Google Scholar
First citationBruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBryant, G. L. & King, J. A. (1992). Acta Cryst. C48, 2036–2039.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationChao, M., Schempp, E. & Rosenstein, D. (1977). Acta Cryst. B33, 1820–1823.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMayr-Stein, R. & Bolte, M. (2000). Acta Cryst. C56, e19–e20.  CSD CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2009). publCIF. In preparation.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds