organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,4-Bis(4-bromo­phen­yl)-3-aza­bi­cyclo­[3.3.1]nonan-9-one

aDivision of Image Science and Information Engineering, Pukyong National University, Busan 608 739, Republic of Korea, and bDepartment of Chemistry, IIT Madras, Chennai, TamilNadu, India
*Correspondence e-mail: ytjeong@pknu.ac.kr

(Received 7 May 2009; accepted 11 May 2009; online 20 May 2009)

The title compound, C20H19Br2NO, shows a chair–chair conformation for the aza­bicycle with an equatorial disposition of the 4-bromo­phenyl groups [dihedral angle between the aromatic rings = 16.48 (3)°]. In the crystal, a short Br⋯Br contact [3.520 (4) Å] occurs and the structure is further stabilized by N—H⋯O hydrogen bonds and C—H⋯O inter­actions.

Related literature

For general background to the biological properties of 3-aza­bicyclo­nona­nes, see: Jeyaraman & Avila (1981[Jeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149-174.]); Hardick et al. (1996[Hardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860-4866.]); Barker et al. (2005[Barker, D., Lin, D. H.-S., Carland, J. E., Chu, C. P.-Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565-4575.]). For different conformations for the aza­bicycle, see: Parthiban et al. (2008a[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.],b[Parthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.],c[Parthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385.],d[Parthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710.], 2009[Parthiban, P., Ramkumar, V., Kim, M. S., Kabilan, S. & Jeong, Y. T. (2009). Acta Cryst. E65, o609.]); Smith-Verdier et al. (1983[Smith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101-103.]); Padegimas & Kovacic (1972[Padegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672-2676.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C20H19Br2NO

  • Mr = 449.18

  • Triclinic, [P \overline 1]

  • a = 6.9415 (3) Å

  • b = 10.4489 (4) Å

  • c = 13.2888 (5) Å

  • α = 101.542 (2)°

  • β = 100.391 (2)°

  • γ = 94.472 (2)°

  • V = 922.34 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 4.40 mm−1

  • T = 298 K

  • 0.38 × 0.25 × 0.20 mm

Data collection
  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker 1999[Bruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.280, Tmax = 0.415

  • 12376 measured reflections

  • 4036 independent reflections

  • 2805 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.089

  • S = 1.02

  • 4036 reflections

  • 221 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.85 e Å−3

  • Δρmin = −0.92 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.80 (3) 2.42 (3) 3.191 (3) 162 (3)
C16—H16⋯O1ii 0.93 2.53 3.242 (3) 133
Symmetry codes: (i) x+1, y, z; (ii) -x, -y+1, -z+1.

Data collection: SMART (Bruker–Nonius, 2004[Bruker-Nonius (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker–Nonius, 2004[Bruker-Nonius (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus (Bruker–Nonius, 2004[Bruker-Nonius (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

3-Azabicyclononanes are important class of heterocycles due to their broad spectrum of biological activities (Jeyaraman & Avila, 1981; Hardick et al., 1996; Barker et al., 2005). Owing to the diverse possibilities in conformations, viz., chair-chair (Parthiban et al., 2008a,b,c,d, 2009), chair-boat (Smith-Verdier et al., 1983) and boat-boat (Padegimas & Kovacic, 1972) for the azabicycle, the present crystal study was undertaken to explore the conformation, stereochemistry and bonding of the title compound, (I).

The analysis of torsion angles, asymmetry parameters and least-squares plane calculation of the title compound shows that the piperidine ring adopts near ideal chair conformation with the deviation of ring atoms N1 and C8 from the C1/C2/C6/C7 plane by 0.636 (3) and -0.730 (3) Å. respectively; the q2 and q3 are 0.057 (3)Å and -0.610 (3) Å. The total puckering amplitude, QT = 0.613 (3)Å and θ = 174.5 (3)°. (Cremer & Pople, 1975).

The cyclohexane ring deviates from the ideal chair conformation by the deviation of ring atoms C8 and C4 from the C2/C3/C5/C6 plane by -0.693 (4)Å and 0.547 (3) Å, respectively. Total puckering amplitude, QT = 0.546 (3) Å, q2 = 0.109 (4) Å, q3 = -0.535 (4)Å and θ =168.6 (4)° (Cremer & Pople, 1975).

Hence, the title compound C20 H19 Br2 N O, exists in twin-chair conformation with equatorial orientation of 4-bromophenyl groups on the heterocycle and are orientated at an angle of 16.48 (3)° to each other. the torsion angle of C8—C2—C1—C9 and C8—C6—C7—C15 are -177.26 (3) and -178.37 (4) °, respectively.

An interesting feature of the crystal structure is a weak intermolecular Br···Br [3.520 (4) Å; symmetry code: 1 - x, 1 - y, - z] interaction which is shorter than the sum of the van der Waals radius of Br atoms. The crystal structure is further stabilized by N—H···O interaction and C—H···O interaction, where the oxygen atom bonds with both C18 and N1 forming a bifurcated bond (Table 1).

Related literature top

For general background to the biological properties of 3-azabicyclononanes, see: Jeyaraman & Avila (1981); Hardick et al. (1996); Barker et al. (2005). For different conformations for the azabicycle, see: Parthiban et al. (2008a,b,c,d, 2009); Smith-Verdier et al. (1983); Padegimas & Kovacic (1972). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

To a warm solution of 0.075 mol ammonium acetate in 50 ml absolute ethanol, 0.1 mol of para-bromobenzaldehyde and 0.05 mol of cyclohexanone were added. The mixture was gently warmed on a hot plate with stirring till the yellow color formed during the mixing of the reactants and stirring is continued over night at room temparature. At the end, the white crude azabicyclic ketone was separated by filtration and washed with 1:5 ethanol-ether mixture. Colourless blocks of (I) were recrystallised from ethanol.

Refinement top

The N-bound H atom was located in a difference map and refined isotropically. Other hydrogen atoms were geometrically placed (C—H = 0.93–0.98Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker–Nonius, 2004); cell refinement: SAINT-Plus (Bruker–Nonius, 2004); data reduction: SAINT-Plus (Bruker–Nonius, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular sturcture of (I) with non-hydrogen atoms represented as 30% probability ellipsoids.
[Figure 2] Fig. 2. N—H···O interaction and Br—Br interactions (dashed lines) in the crystal of (I).
2,4-Bis(4-bromophenyl)-3-azabicyclo[3.3.1]nonan-9-one top
Crystal data top
C20H19Br2NOZ = 2
Mr = 449.18F(000) = 448
Triclinic, P1Dx = 1.617 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9415 (3) ÅCell parameters from 4458 reflections
b = 10.4489 (4) Åθ = 2.3–23.7°
c = 13.2888 (5) ŵ = 4.40 mm1
α = 101.542 (2)°T = 298 K
β = 100.391 (2)°Block, colourless
γ = 94.472 (2)°0.38 × 0.25 × 0.20 mm
V = 922.34 (6) Å3
Data collection top
Bruker SMART CCD
diffractometer
4036 independent reflections
Radiation source: fine-focus sealed tube2805 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
ϕ and ω scansθmax = 28.3°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Bruker 1999)
h = 99
Tmin = 0.280, Tmax = 0.415k = 1310
12376 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0266P)2 + 1.1237P]
where P = (Fo2 + 2Fc2)/3
4036 reflections(Δ/σ)max = 0.001
221 parametersΔρmax = 0.85 e Å3
0 restraintsΔρmin = 0.92 e Å3
Crystal data top
C20H19Br2NOγ = 94.472 (2)°
Mr = 449.18V = 922.34 (6) Å3
Triclinic, P1Z = 2
a = 6.9415 (3) ÅMo Kα radiation
b = 10.4489 (4) ŵ = 4.40 mm1
c = 13.2888 (5) ÅT = 298 K
α = 101.542 (2)°0.38 × 0.25 × 0.20 mm
β = 100.391 (2)°
Data collection top
Bruker SMART CCD
diffractometer
4036 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker 1999)
2805 reflections with I > 2σ(I)
Tmin = 0.280, Tmax = 0.415Rint = 0.024
12376 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.85 e Å3
4036 reflectionsΔρmin = 0.92 e Å3
221 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)

are estimated using the full covariance matrix. The cell e.s.d.'s are taken

into account individually in the estimation of e.s.d.'s in distances, angles

and torsion angles; correlations between e.s.d.'s in cell parameters are only

used when they are defined by crystal symmetry. An approximate (isotropic)

treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.51212 (7)0.32865 (4)0.04459 (3)0.07124 (16)
Br20.76344 (6)0.92093 (4)0.40986 (3)0.06669 (15)
C10.2024 (4)0.1542 (3)0.2864 (2)0.0314 (6)
H10.19880.14110.35710.038*
C20.0130 (4)0.1605 (3)0.2300 (2)0.0354 (7)
H20.09430.07920.22910.043*
C30.0360 (5)0.1813 (3)0.1177 (2)0.0469 (8)
H3A0.02420.11360.07710.056*
H3B0.17540.17060.08640.056*
C40.0554 (5)0.3150 (4)0.1097 (3)0.0539 (9)
H4A0.19740.31580.11990.065*
H4B0.00800.32870.03990.065*
C50.0073 (5)0.4269 (3)0.1896 (3)0.0492 (8)
H5A0.12790.44270.16690.059*
H5B0.09210.50610.19150.059*
C60.0320 (4)0.4019 (3)0.3006 (2)0.0381 (7)
H60.02040.47220.34460.046*
C70.2472 (4)0.3925 (3)0.3542 (2)0.0328 (6)
H70.24490.37820.42470.039*
C80.0841 (4)0.2732 (3)0.2963 (2)0.0359 (7)
C90.2870 (4)0.0391 (3)0.2290 (2)0.0317 (6)
C100.4256 (4)0.0528 (3)0.1678 (2)0.0365 (7)
H100.47210.13630.16180.044*
C110.4958 (4)0.0566 (3)0.1153 (2)0.0405 (7)
H110.59200.04640.07610.049*
C120.4230 (5)0.1791 (3)0.1214 (2)0.0410 (7)
C130.2850 (5)0.1960 (3)0.1810 (3)0.0509 (9)
H130.23590.28000.18460.061*
C140.2202 (5)0.0867 (3)0.2355 (3)0.0458 (8)
H140.12950.09780.27760.055*
C150.3781 (4)0.5192 (3)0.3658 (2)0.0324 (6)
C160.3485 (4)0.6307 (3)0.4353 (2)0.0385 (7)
H160.25010.62480.47390.046*
C170.4611 (4)0.7499 (3)0.4489 (2)0.0427 (7)
H170.43790.82380.49510.051*
C180.6087 (4)0.7574 (3)0.3925 (2)0.0402 (7)
C190.6428 (4)0.6494 (3)0.3236 (3)0.0438 (8)
H190.74290.65550.28620.053*
C200.5260 (4)0.5304 (3)0.3101 (2)0.0395 (7)
H200.54800.45720.26280.047*
N10.3217 (3)0.2793 (2)0.2964 (2)0.0328 (5)
O10.2151 (3)0.2611 (2)0.34451 (19)0.0541 (6)
H1A0.434 (5)0.275 (3)0.322 (2)0.039 (9)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.1029 (3)0.0451 (3)0.0682 (3)0.0312 (2)0.0296 (2)0.0015 (2)
Br20.0736 (3)0.0415 (2)0.0772 (3)0.01884 (18)0.0181 (2)0.0021 (2)
C10.0309 (13)0.0280 (16)0.0342 (15)0.0023 (11)0.0088 (11)0.0031 (13)
C20.0268 (13)0.0318 (17)0.0449 (17)0.0002 (11)0.0073 (12)0.0034 (14)
C30.0399 (17)0.053 (2)0.0409 (17)0.0099 (15)0.0012 (14)0.0005 (16)
C40.0465 (18)0.075 (3)0.0428 (18)0.0069 (17)0.0072 (15)0.0215 (19)
C50.0419 (17)0.042 (2)0.061 (2)0.0033 (14)0.0021 (15)0.0169 (18)
C60.0304 (14)0.0334 (18)0.0474 (17)0.0084 (12)0.0075 (13)0.0002 (14)
C70.0303 (14)0.0303 (17)0.0354 (15)0.0046 (11)0.0072 (12)0.0004 (13)
C80.0250 (13)0.0402 (19)0.0393 (16)0.0052 (12)0.0051 (12)0.0018 (14)
C90.0292 (13)0.0279 (17)0.0355 (15)0.0033 (11)0.0039 (11)0.0035 (13)
C100.0367 (15)0.0267 (17)0.0438 (17)0.0008 (12)0.0095 (13)0.0032 (14)
C110.0420 (16)0.039 (2)0.0412 (17)0.0065 (14)0.0151 (13)0.0026 (15)
C120.0487 (17)0.0314 (19)0.0393 (16)0.0148 (14)0.0050 (14)0.0009 (14)
C130.061 (2)0.0243 (19)0.069 (2)0.0026 (15)0.0199 (18)0.0094 (17)
C140.0490 (18)0.035 (2)0.060 (2)0.0049 (14)0.0265 (16)0.0117 (16)
C150.0301 (14)0.0289 (17)0.0346 (15)0.0053 (11)0.0031 (12)0.0013 (13)
C160.0368 (15)0.0357 (19)0.0388 (16)0.0010 (13)0.0090 (13)0.0019 (14)
C170.0474 (17)0.0328 (19)0.0413 (17)0.0047 (14)0.0062 (14)0.0048 (14)
C180.0405 (16)0.0307 (18)0.0441 (17)0.0013 (13)0.0001 (13)0.0062 (15)
C190.0384 (16)0.041 (2)0.0535 (19)0.0016 (14)0.0173 (14)0.0080 (16)
C200.0381 (15)0.0325 (18)0.0466 (17)0.0059 (13)0.0133 (13)0.0005 (14)
N10.0245 (12)0.0277 (15)0.0420 (14)0.0035 (10)0.0055 (10)0.0013 (11)
O10.0373 (12)0.0599 (16)0.0651 (15)0.0028 (10)0.0245 (11)0.0019 (13)
Geometric parameters (Å, º) top
Br1—C121.899 (3)C7—H70.9800
Br2—C181.896 (3)C8—O11.216 (3)
C1—N11.461 (4)C9—C101.384 (4)
C1—C91.510 (4)C9—C141.384 (4)
C1—C21.560 (4)C10—C111.386 (4)
C1—H10.9800C10—H100.9300
C2—C81.497 (4)C11—C121.362 (4)
C2—C31.532 (4)C11—H110.9300
C2—H20.9800C12—C131.372 (5)
C3—C41.519 (5)C13—C141.377 (5)
C3—H3A0.9700C13—H130.9300
C3—H3B0.9700C14—H140.9300
C4—C51.516 (5)C15—C201.381 (4)
C4—H4A0.9700C15—C161.388 (4)
C4—H4B0.9700C16—C171.379 (4)
C5—C61.531 (5)C16—H160.9300
C5—H5A0.9700C17—C181.380 (4)
C5—H5B0.9700C17—H170.9300
C6—C81.498 (4)C18—C191.369 (4)
C6—C71.554 (4)C19—C201.392 (4)
C6—H60.9800C19—H190.9300
C7—N11.461 (4)C20—H200.9300
C7—C151.511 (4)N1—H1A0.80 (3)
N1—C1—C9112.3 (2)O1—C8—C2123.9 (3)
N1—C1—C2109.5 (2)O1—C8—C6124.0 (3)
C9—C1—C2110.5 (2)C2—C8—C6112.0 (2)
N1—C1—H1108.1C10—C9—C14118.0 (3)
C9—C1—H1108.1C10—C9—C1123.1 (3)
C2—C1—H1108.1C14—C9—C1118.8 (3)
C8—C2—C3109.2 (3)C9—C10—C11120.7 (3)
C8—C2—C1105.7 (2)C9—C10—H10119.7
C3—C2—C1115.4 (2)C11—C10—H10119.7
C8—C2—H2108.8C12—C11—C10119.6 (3)
C3—C2—H2108.8C12—C11—H11120.2
C1—C2—H2108.8C10—C11—H11120.2
C4—C3—C2114.2 (3)C11—C12—C13121.0 (3)
C4—C3—H3A108.7C11—C12—Br1119.4 (2)
C2—C3—H3A108.7C13—C12—Br1119.6 (2)
C4—C3—H3B108.7C12—C13—C14119.0 (3)
C2—C3—H3B108.7C12—C13—H13120.5
H3A—C3—H3B107.6C14—C13—H13120.5
C5—C4—C3112.7 (3)C13—C14—C9121.5 (3)
C5—C4—H4A109.1C13—C14—H14119.2
C3—C4—H4A109.1C9—C14—H14119.2
C5—C4—H4B109.1C20—C15—C16117.9 (3)
C3—C4—H4B109.1C20—C15—C7123.3 (3)
H4A—C4—H4B107.8C16—C15—C7118.8 (2)
C4—C5—C6114.0 (3)C17—C16—C15121.8 (3)
C4—C5—H5A108.7C17—C16—H16119.1
C6—C5—H5A108.7C15—C16—H16119.1
C4—C5—H5B108.7C16—C17—C18118.8 (3)
C6—C5—H5B108.7C16—C17—H17120.6
H5A—C5—H5B107.6C18—C17—H17120.6
C8—C6—C5108.9 (3)C19—C18—C17121.1 (3)
C8—C6—C7106.3 (2)C19—C18—Br2119.8 (2)
C5—C6—C7115.2 (2)C17—C18—Br2119.1 (2)
C8—C6—H6108.8C18—C19—C20119.3 (3)
C5—C6—H6108.8C18—C19—H19120.4
C7—C6—H6108.8C20—C19—H19120.4
N1—C7—C15112.1 (2)C15—C20—C19121.1 (3)
N1—C7—C6110.0 (2)C15—C20—H20119.4
C15—C7—C6111.1 (2)C19—C20—H20119.4
N1—C7—H7107.8C1—N1—C7113.8 (2)
C15—C7—H7107.8C1—N1—H1A110 (2)
C6—C7—H7107.8C7—N1—H1A111 (2)
N1—C1—C2—C858.5 (3)C1—C9—C10—C11178.8 (3)
C9—C1—C2—C8177.2 (2)C9—C10—C11—C122.1 (5)
N1—C1—C2—C362.2 (3)C10—C11—C12—C131.8 (5)
C9—C1—C2—C362.1 (3)C10—C11—C12—Br1177.4 (2)
C8—C2—C3—C451.9 (3)C11—C12—C13—C140.1 (5)
C1—C2—C3—C466.9 (4)Br1—C12—C13—C14179.4 (3)
C2—C3—C4—C545.1 (4)C12—C13—C14—C91.8 (5)
C3—C4—C5—C645.8 (4)C10—C9—C14—C131.5 (5)
C4—C5—C6—C853.2 (3)C1—C9—C14—C13176.9 (3)
C4—C5—C6—C766.0 (4)N1—C7—C15—C2012.5 (4)
C8—C6—C7—N156.8 (3)C6—C7—C15—C20111.0 (3)
C5—C6—C7—N163.8 (3)N1—C7—C15—C16167.8 (3)
C8—C6—C7—C15178.4 (2)C6—C7—C15—C1668.6 (3)
C5—C6—C7—C1561.0 (3)C20—C15—C16—C170.4 (4)
C3—C2—C8—O1122.1 (3)C7—C15—C16—C17179.2 (3)
C1—C2—C8—O1113.2 (3)C15—C16—C17—C180.9 (5)
C3—C2—C8—C660.8 (3)C16—C17—C18—C190.6 (5)
C1—C2—C8—C663.9 (3)C16—C17—C18—Br2179.6 (2)
C5—C6—C8—O1121.4 (3)C17—C18—C19—C200.1 (5)
C7—C6—C8—O1113.9 (3)Br2—C18—C19—C20178.9 (2)
C5—C6—C8—C261.4 (3)C16—C15—C20—C190.4 (4)
C7—C6—C8—C263.2 (3)C7—C15—C20—C19180.0 (3)
N1—C1—C9—C1017.2 (4)C18—C19—C20—C150.6 (5)
C2—C1—C9—C10105.4 (3)C9—C1—N1—C7178.3 (2)
N1—C1—C9—C14164.3 (3)C2—C1—N1—C758.5 (3)
C2—C1—C9—C1473.0 (3)C15—C7—N1—C1178.2 (2)
C14—C9—C10—C110.4 (4)C6—C7—N1—C157.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.80 (3)2.42 (3)3.191 (3)162 (3)
C16—H16···O1ii0.932.533.242 (3)133
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formulaC20H19Br2NO
Mr449.18
Crystal system, space groupTriclinic, P1
Temperature (K)298
a, b, c (Å)6.9415 (3), 10.4489 (4), 13.2888 (5)
α, β, γ (°)101.542 (2), 100.391 (2), 94.472 (2)
V3)922.34 (6)
Z2
Radiation typeMo Kα
µ (mm1)4.40
Crystal size (mm)0.38 × 0.25 × 0.20
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker 1999)
Tmin, Tmax0.280, 0.415
No. of measured, independent and
observed [I > 2σ(I)] reflections
12376, 4036, 2805
Rint0.024
(sin θ/λ)max1)0.668
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.089, 1.02
No. of reflections4036
No. of parameters221
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.92

Computer programs: SMART (Bruker–Nonius, 2004), SAINT-Plus (Bruker–Nonius, 2004), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.80 (3)2.42 (3)3.191 (3)162 (3)
C16—H16···O1ii0.932.533.242 (3)133
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+1.
 

Acknowledgements

The authors acknowledge the Department of Chemistry, IIT Madras, for the X-ray data collection.

References

First citationBarker, D., Lin, D. H.-S., Carland, J. E., Chu, C. P.-Y., Chebib, M., Brimble, M. A., Savage, G. P. & McLeod, M. D. (2005). Bioorg. Med. Chem. 13, 4565–4575.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (1999). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker–Nonius (2004). SMART and SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationHardick, D. J., Blagbrough, I. S., Cooper, G., Potter, B. V. L., Critchley, T. & Wonnacott, S. (1996). J. Med. Chem. 39, 4860–4866.  CrossRef CAS PubMed Web of Science Google Scholar
First citationJeyaraman, R. & Avila, S. (1981). Chem. Rev. 81, 149–174.  CrossRef CAS Web of Science Google Scholar
First citationPadegimas, S. J. & Kovacic, P. (1972). J. Org. Chem. 37, 2672–2676.  CrossRef CAS Web of Science Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Kabilan, S. & Jeong, Y. T. (2009). Acta Cryst. E65, o609.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008a). Acta Cryst. E64, o1586.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Lim, K. T. & Jeong, Y. T. (2008b). Acta Cryst. E64, o2332.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Kim, M. S., Son, S. M. & Jeong, Y. T. (2008c). Acta Cryst. E64, o2385.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationParthiban, P., Ramkumar, V., Santan, H. D., Kim, J. T. & Jeong, Y. T. (2008d). Acta Cryst. E64, o1710.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSmith-Verdier, P., Florencio, F. & García-Blanco, S. (1983). Acta Cryst. C39, 101–103.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds