organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Cyclo­hexa­naminium tri­chloro­acetate

aDepartment of Chemistry, Government College University, Lahore, Pakistan, and bDepartment of Physics, University of Sargodha, Sargodha, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 9 May 2009; accepted 10 May 2009; online 20 May 2009)

In the crystal of the title compound, C6H14N+·C2Cl3O2, centrosymmetric assemblies of two cyclo­hexa­naminium cations and two trichloro­acetate ions are linked by N—H⋯O hydrogen bonds, thereby forming R44(12) ring motifs. Further N—H⋯O inter­actions link the tetra­mers into chains propagating along the a axis.

Related literature

For related structures, see: Shahwar et al. (2009[Shahwar, D., Tahir, M. N., Ahmad, N., Khan, M. A. & Yasmeen, A. (2009). Acta Cryst. E65, o1312.]); Wang et al. (2005[Wang, J.-P., Cheng, X.-X., Wang, J.-G. & Chen, Q.-H. (2005). Acta Cryst. E61, o4006-o4007.]); Jones & Ahrens (1998[Jones, P. G. & Ahrens, B. (1998). Eur. J. Org. Chem. 8, 1687-1688.]). For reference structural data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For graph-set notation, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C6H14N+·C2Cl3O2

  • Mr = 262.55

  • Monoclinic, P 21 /c

  • a = 6.7217 (4) Å

  • b = 21.2482 (15) Å

  • c = 10.6908 (6) Å

  • β = 126.590 (3)°

  • V = 1225.98 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 296 K

  • 0.25 × 0.18 × 0.12 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.853, Tmax = 0.919

  • 13379 measured reflections

  • 2910 independent reflections

  • 1710 reflections with I > 2σ(I)

  • Rint = 0.038

Refinement
  • R[F2 > 2σ(F2)] = 0.066

  • wR(F2) = 0.215

  • S = 1.05

  • 2910 reflections

  • 139 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.37 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1i 0.85 (6) 1.96 (6) 2.788 (6) 167 (4)
N1—H1B⋯O2ii 0.82 (5) 1.96 (5) 2.770 (5) 168 (4)
N1—H1C⋯O1iii 1.02 (4) 1.83 (4) 2.837 (4) 169 (4)
Symmetry codes: (i) [x-1, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (ii) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (iii) [-x+1, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

In continuation of synthesizing various organic ammonium salts (Shahwar et al., 2009), the title compound (I), (Fig. 1) is being reported. The crystal structures of (II) Cyclohexylammonium dichloroacetate (Wang et al., 2005) and (III) Cyclohexylamine cyclohexylammonium chloride (Jones & Ahrens, 1998) have been reported.

In (I), the bond distance and bond angles are within normal ranges (Allen et al., 1987). In the title compound, two cyclohexanaminium ions and two trichloroacetate ions are interlinked through intermolecular H-bonding of N—H···O type (Table 1) forming ring motifs R44(12) (Bernstein et al., 1995) (Fig. 2). The ring motifs are further connected through the same along the a axis resulting in one-dimensional polymeric chains. The cyclohexanaminium ions are in chair confirmations with N-atoms at a distance of 0.628 (9)Å from the central plane.

Related literature top

For related structures, see: Shahwar et al. (2009); Wang et al. (2005); Jones & Ahrens (1998). For reference structural data, see: Allen et al. (1987). For graph-set notation, see: Bernstein et al. (1995).

Experimental top

A solution of trichloroacetic acid (1.635 g, 0.01 mol) in 20 ml of dichloromethane was prepared. To this solution cyclohexyl amine (1.14 ml, 0.01 mol) was added dropwise and stirred for 30 min. The precipitate were filtered out and recrystallized in hot chloroform to yield colourless rods of (I).

Refinement top

The coordinates of H-atoms attached to N1 and C1 were refined. The other H atoms were positioned geometrically (C—H = 0.97 Å) and refined as riding. The constraint Uiso(H) = 1.2Ueq(carrier) was applied for all H atoms.

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by small spheres of arbitrary radius.
[Figure 2] Fig. 2. The partial packing in (I) showing intermolecular H-bonding between NH3 and trichloroacetate ions and the resulting ring motif.
Cyclohexanaminium trichloroacetate top
Crystal data top
C6H14N+·C2Cl3O2F(000) = 544
Mr = 262.55Dx = 1.422 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2910 reflections
a = 6.7217 (4) Åθ = 2.6–27.9°
b = 21.2482 (15) ŵ = 0.72 mm1
c = 10.6908 (6) ÅT = 296 K
β = 126.590 (3)°Rod, colorless
V = 1225.98 (14) Å30.25 × 0.18 × 0.12 mm
Z = 4
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2910 independent reflections
Radiation source: fine-focus sealed tube1710 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.038
Detector resolution: 7.50 pixels mm-1θmax = 27.9°, θmin = 2.6°
ω scansh = 88
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 2726
Tmin = 0.853, Tmax = 0.919l = 1214
13379 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.215H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1089P)2 + 0.5776P]
where P = (Fo2 + 2Fc2)/3
2910 reflections(Δ/σ)max < 0.001
139 parametersΔρmax = 0.73 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
C6H14N+·C2Cl3O2V = 1225.98 (14) Å3
Mr = 262.55Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.7217 (4) ŵ = 0.72 mm1
b = 21.2482 (15) ÅT = 296 K
c = 10.6908 (6) Å0.25 × 0.18 × 0.12 mm
β = 126.590 (3)°
Data collection top
Bruker Kappa APEXII CCD
diffractometer
2910 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
1710 reflections with I > 2σ(I)
Tmin = 0.853, Tmax = 0.919Rint = 0.038
13379 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0660 restraints
wR(F2) = 0.215H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.73 e Å3
2910 reflectionsΔρmin = 0.37 e Å3
139 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2904 (5)0.05714 (15)0.0547 (4)0.0480 (10)
C10.4574 (6)0.08854 (16)0.2093 (4)0.0463 (10)
C20.7215 (6)0.06696 (19)0.2878 (5)0.0568 (11)
C30.8922 (7)0.0967 (2)0.4465 (5)0.0731 (15)
C40.8100 (8)0.0827 (3)0.5472 (6)0.0816 (18)
C50.5457 (8)0.1032 (2)0.4704 (5)0.0764 (17)
C60.3726 (7)0.0733 (2)0.3100 (5)0.0626 (15)
Cl10.9294 (2)0.30601 (6)0.38465 (15)0.0791 (4)
Cl20.7598 (3)0.28803 (6)0.57059 (16)0.1029 (6)
Cl30.4167 (2)0.28226 (6)0.23280 (17)0.0950 (5)
O10.7893 (5)0.42783 (12)0.4227 (4)0.0711 (9)
O20.4297 (5)0.40429 (14)0.3696 (3)0.0680 (10)
C70.6272 (5)0.39152 (15)0.3948 (3)0.0406 (9)
C80.6778 (7)0.32022 (15)0.3937 (4)0.0488 (10)
H10.432 (7)0.1331 (19)0.186 (4)0.0553*
H1A0.141 (8)0.0678 (19)0.011 (5)0.0575*
H1B0.333 (7)0.0632 (19)0.002 (5)0.0575*
H1C0.285 (7)0.010 (2)0.071 (4)0.0575*
H2A0.729890.021510.298330.0680*
H2B0.774400.078410.224010.0680*
H3A1.058990.080850.496820.0877*
H3B0.895240.141880.434990.0877*
H4A0.918130.104330.646070.0973*
H4B0.824130.037870.567950.0973*
H5A0.534870.148650.460400.0919*
H5B0.495160.090950.535050.0919*
H6A0.205680.089030.259910.0753*
H6B0.370230.028080.320800.0753*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0401 (14)0.0439 (17)0.0601 (19)0.0011 (12)0.0300 (14)0.0040 (13)
C10.0436 (16)0.0341 (17)0.057 (2)0.0007 (13)0.0278 (16)0.0035 (14)
C20.0426 (17)0.063 (2)0.066 (2)0.0015 (16)0.0331 (17)0.0043 (18)
C30.0463 (19)0.084 (3)0.072 (3)0.0074 (19)0.026 (2)0.002 (2)
C40.066 (2)0.093 (4)0.064 (3)0.002 (2)0.027 (2)0.007 (2)
C50.079 (3)0.088 (3)0.068 (3)0.003 (2)0.047 (2)0.010 (2)
C60.0508 (19)0.072 (3)0.074 (3)0.0019 (18)0.042 (2)0.001 (2)
Cl10.0779 (7)0.0700 (7)0.0894 (8)0.0142 (5)0.0499 (7)0.0143 (6)
Cl20.1635 (14)0.0733 (8)0.0817 (9)0.0174 (8)0.0784 (10)0.0311 (6)
Cl30.0748 (7)0.0673 (8)0.0937 (9)0.0196 (5)0.0236 (7)0.0294 (6)
O10.0498 (14)0.0401 (14)0.111 (2)0.0005 (11)0.0413 (15)0.0006 (14)
O20.0564 (15)0.0762 (19)0.0787 (19)0.0110 (13)0.0442 (15)0.0000 (14)
C70.0409 (16)0.0400 (17)0.0342 (15)0.0016 (13)0.0187 (13)0.0004 (12)
C80.0579 (19)0.0354 (17)0.0418 (17)0.0009 (14)0.0236 (16)0.0005 (13)
Geometric parameters (Å, º) top
Cl1—C81.776 (6)C5—C61.523 (6)
Cl2—C81.762 (4)C1—H10.97 (4)
Cl3—C81.758 (4)C2—H2B0.9700
O1—C71.218 (5)C2—H2A0.9700
O2—C71.217 (5)C3—H3A0.9700
N1—C11.492 (5)C3—H3B0.9700
N1—H1A0.85 (6)C4—H4A0.9700
N1—H1C1.02 (4)C4—H4B0.9700
N1—H1B0.82 (5)C5—H5B0.9700
C1—C61.523 (7)C5—H5A0.9700
C1—C21.513 (7)C6—H6B0.9700
C2—C31.508 (6)C6—H6A0.9700
C3—C41.504 (8)C7—C81.554 (5)
C4—C51.510 (9)
C1—N1—H1C109 (2)H3A—C3—H3B108.00
C1—N1—H1A111 (3)C3—C4—H4A109.00
C1—N1—H1B113 (3)C3—C4—H4B109.00
H1B—N1—H1C110 (4)C5—C4—H4A109.00
H1A—N1—H1B112 (5)C5—C4—H4B109.00
H1A—N1—H1C102 (4)H4A—C4—H4B108.00
N1—C1—C2109.8 (3)C4—C5—H5A110.00
N1—C1—C6109.7 (4)C4—C5—H5B109.00
C2—C1—C6110.7 (3)C6—C5—H5A110.00
C1—C2—C3110.6 (4)C6—C5—H5B109.00
C2—C3—C4111.4 (4)H5A—C5—H5B108.00
C3—C4—C5111.6 (4)C1—C6—H6A109.00
C4—C5—C6110.7 (4)C1—C6—H6B110.00
C1—C6—C5110.5 (4)C5—C6—H6A109.00
N1—C1—H1105 (2)C5—C6—H6B110.00
C2—C1—H1114 (3)H6A—C6—H6B108.00
C6—C1—H1108 (3)O1—C7—O2127.7 (3)
C1—C2—H2A110.00O1—C7—C8116.8 (4)
C1—C2—H2B110.00O2—C7—C8115.5 (3)
C3—C2—H2A110.00Cl1—C8—Cl2107.1 (2)
C3—C2—H2B110.00Cl1—C8—Cl3107.2 (2)
H2A—C2—H2B108.00Cl1—C8—C7112.7 (3)
C2—C3—H3A109.00Cl2—C8—Cl3111.3 (2)
C2—C3—H3B109.00Cl2—C8—C7107.5 (2)
C4—C3—H3A109.00Cl3—C8—C7111.1 (3)
C4—C3—H3B109.00
N1—C1—C2—C3178.3 (3)C4—C5—C6—C155.8 (5)
C6—C1—C2—C357.1 (4)O1—C7—C8—Cl115.1 (4)
N1—C1—C6—C5178.2 (3)O1—C7—C8—Cl2102.6 (4)
C2—C1—C6—C556.9 (4)O1—C7—C8—Cl3135.5 (3)
C1—C2—C3—C456.5 (5)O2—C7—C8—Cl1165.9 (2)
C2—C3—C4—C555.9 (6)O2—C7—C8—Cl276.4 (3)
C3—C4—C5—C655.4 (6)O2—C7—C8—Cl345.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (6)1.96 (6)2.788 (6)167 (4)
N1—H1B···O2ii0.82 (5)1.96 (5)2.770 (5)168 (4)
N1—H1C···O1iii1.02 (4)1.83 (4)2.837 (4)169 (4)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC6H14N+·C2Cl3O2
Mr262.55
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)6.7217 (4), 21.2482 (15), 10.6908 (6)
β (°) 126.590 (3)
V3)1225.98 (14)
Z4
Radiation typeMo Kα
µ (mm1)0.72
Crystal size (mm)0.25 × 0.18 × 0.12
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.853, 0.919
No. of measured, independent and
observed [I > 2σ(I)] reflections
13379, 2910, 1710
Rint0.038
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.215, 1.05
No. of reflections2910
No. of parameters139
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.73, 0.37

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1i0.85 (6)1.96 (6)2.788 (6)167 (4)
N1—H1B···O2ii0.82 (5)1.96 (5)2.770 (5)168 (4)
N1—H1C···O1iii1.02 (4)1.83 (4)2.837 (4)169 (4)
Symmetry codes: (i) x1, y+1/2, z1/2; (ii) x, y+1/2, z1/2; (iii) x+1, y1/2, z+1/2.
 

Acknowledgements

NA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing a Scholarship under the Indigenous PhD Program (PIN 042–120599-PS2–156).

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationJones, P. G. & Ahrens, B. (1998). Eur. J. Org. Chem. 8, 1687-1688.  CrossRef Google Scholar
First citationShahwar, D., Tahir, M. N., Ahmad, N., Khan, M. A. & Yasmeen, A. (2009). Acta Cryst. E65, o1312.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, J.-P., Cheng, X.-X., Wang, J.-G. & Chen, Q.-H. (2005). Acta Cryst. E61, o4006–o4007.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds