organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(Benzene­sulfonamido)pyridinium perchlorate

aSchool of Chemistry and Biological Engineering, Changsha University of Science & Technology, Changsha 410004, People's Republic of China, and bHunan Provincial Research Center of Biodiesel Engineering and Technology, Changsha 410004, People's Republic of China
*Correspondence e-mail: lixun0806@yahoo.com.cn

(Received 10 May 2009; accepted 20 May 2009; online 29 May 2009)

In the title compound, C11H11N2O2S+·ClO4, the dihedral angle between the benzene and pyridinium rings is 87.33 (10)°. An intra­molecular N—H⋯O inter­action, with an S=O-bonded O atom as receptor, occurs in the cation. In the crystal structure, ion pairs occur, being linked by strong N—H⋯O hydrogen bonds. The perchlorate anion plays a further role in the mol­ecular packing by accepting several weak C—H⋯O inter­actions.

Related literature

For the synthesis, see: Li, Yang et al. (2008[Li, J.-S., Yang, D.-W. & Liu, W.-D. (2008). Acta Cryst. E64, o204.]). For a related structure containing the same cation, see: Li & Li (2009[Li, J.-S. & Li, X. (2009). Acta Cryst. E65, o1228.]). For related structures, see: Li et al. (2008a[Li, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008a). Acta Cryst. E64, o1459.],b[Li, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008b). Acta Cryst. E64, o1513.]). For applications of pyridinium salts, see: Li et al. (2007[Li, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. pp. 350-352.]); Li, Fan et al. (2008[Li, J. S., Fan, M. L., Fan, X. P., Huang, P. M. & Chen, L. G. (2008). Chin. J. Org. Chem. 28, 1954-1958.]); Miyashita et al. (1977[Miyashita, M., Yoshikoshi, A. & Grieco, P. A. (1977). J. Org. Chem. 42, 3772-3774.]); Ganeshpure et al. (2007[Ganeshpure, P. A. & Das, J. (2007). React. Kin. Catal. Lett. 92, 69-74.]).

[Scheme 1]

Experimental

Crystal data
  • C11H11N2O2S+·ClO4

  • Mr = 334.73

  • Triclinic, [P \overline 1]

  • a = 5.6594 (11) Å

  • b = 7.5996 (15) Å

  • c = 16.157 (3) Å

  • α = 83.21 (3)°

  • β = 83.70 (3)°

  • γ = 73.84 (3)°

  • V = 660.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.48 mm−1

  • T = 113 K

  • 0.20 × 0.10 × 0.08 mm

Data collection
  • Rigaku Saturn CCD diffractometer

  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]) Tmin = 0.911, Tmax = 0.963

  • 5339 measured reflections

  • 3051 independent reflections

  • 2473 reflections with I > 2σ(I)

  • Rint = 0.024

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.092

  • S = 1.07

  • 3051 reflections

  • 198 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.42 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O1 0.82 (2) 2.01 (2) 2.694 (2) 141 (2)
N2—H2A⋯O4 0.81 (2) 2.02 (2) 2.808 (2) 165 (2)
C1—H1⋯O3i 0.95 2.37 3.301 (3) 166
C3—H3⋯O5ii 0.95 2.44 3.303 (3) 151
C7—H7⋯O4iii 0.95 2.53 3.417 (2) 156
C8—H8⋯O3iii 0.95 2.58 3.251 (3) 128
Symmetry codes: (i) x+1, y+1, z; (ii) -x+1, -y, -z+1; (iii) x+1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005[Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.]).

Supporting information


Comment top

Organic pyridinium salts have been used as not only supramolecular guests (Li et al., 2007; Li, Fan, Fan et al., 2008), but also catalysts and/or media for esterification (Ganeshpure et al.2007; Miyashita et al. 1977). To seek a new pyridinium catalyst for biodiesel transformation, the title compound, (I), was synthesized and further determined by X-ray diffraction.

The title compound, (I), consists of a pyridinium cation and a perchlorate anion (Fig. 1). In the cation, the distance [1.383 (2) Å] between the pyridinum C atom and its connected amino N atom is slightly longer than the nitrate [1.378 (2) Å] (Li et al. 2009), also showing some conjugation of amino group with pyridinium ring. The benzene ring constructs an angle of 87.33 (10)° with the pyridinium ring, similar to the nitrate [87.59 (8)°]. The cation structure is stabilized by an intramolecular N—H···O hydrogen bond (Table 1), with S=O oxygen as H-bonding receptor, different from by C—H···O interaction in the nitrate.

Like the nitrate, in the crystal structure, a strong N—H···O hydrogen bond link the cation and anion (Table 1). The anion ClO4 plays a great important role in the molecular packing via weak C—H···O interactions (Table 1).

Related literature top

For the synthesis, see: Li, Yang et al. (2008). For a related structure containing the same cation, see: Li & Li (2009). For related structures, see: Li et al. (2008a,b). For applications of pyridinium salts, see: Li et al. (2007); Li, Fan et al. (2008); Miyashita et al. (1977); Ganeshpure et al. (2007).

Experimental top

The title compound was prepared according to the reported literature (Li, Yang et al. 2008). Colourless needles of (I) were obtained by evaporation of a perchloric acid solution of the sulfonamide.

Refinement top

The H atoms bound to C were positioned geometrically (C—H = 0.95 Å)and refined as riding with Uiso(H) = 1.2 Ueq(C)]. The N—H hydrogen atoms were refined with their isotropic displacement parameters, and N—H distances are restrained to 0.82 (2) and 0.81 (2) Å, respectively.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level and H atoms shown as small spheres of arbitrary radius. Dashed lines indicate hydrogen bonds.
2-(Benzenesulfonamido)pyridinium perchlorate top
Crystal data top
C11H11N2O2S+·ClO4Z = 2
Mr = 334.73F(000) = 344
Triclinic, P1Dx = 1.683 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.6594 (11) ÅCell parameters from 2172 reflections
b = 7.5996 (15) Åθ = 2.8–27.9°
c = 16.157 (3) ŵ = 0.48 mm1
α = 83.21 (3)°T = 113 K
β = 83.70 (3)°Needle, colourless
γ = 73.84 (3)°0.20 × 0.10 × 0.08 mm
V = 660.6 (2) Å3
Data collection top
Rigaku Saturn CCD
diffractometer
3051 independent reflections
Radiation source: rotating anode2473 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.024
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.8°
ω and ϕ scansh = 77
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
k = 79
Tmin = 0.911, Tmax = 0.963l = 1921
5339 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0383P)2 + 0.3333P]
where P = (Fo2 + 2Fc2)/3
3051 reflections(Δ/σ)max = 0.001
198 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
C11H11N2O2S+·ClO4γ = 73.84 (3)°
Mr = 334.73V = 660.6 (2) Å3
Triclinic, P1Z = 2
a = 5.6594 (11) ÅMo Kα radiation
b = 7.5996 (15) ŵ = 0.48 mm1
c = 16.157 (3) ÅT = 113 K
α = 83.21 (3)°0.20 × 0.10 × 0.08 mm
β = 83.70 (3)°
Data collection top
Rigaku Saturn CCD
diffractometer
3051 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2473 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.963Rint = 0.024
5339 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.32 e Å3
3051 reflectionsΔρmin = 0.42 e Å3
198 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22811 (8)0.24398 (6)0.16564 (3)0.01285 (12)
O10.3752 (3)0.36817 (19)0.13565 (8)0.0188 (3)
O20.0260 (2)0.2927 (2)0.14890 (8)0.0195 (3)
N10.5339 (3)0.3703 (2)0.28668 (10)0.0146 (3)
N20.2351 (3)0.2162 (2)0.26820 (9)0.0142 (3)
C10.6774 (3)0.4261 (3)0.33434 (12)0.0178 (4)
H10.77750.50300.30960.021*
C20.6782 (4)0.3717 (3)0.41768 (12)0.0202 (4)
H20.78150.40720.45130.024*
C30.5244 (4)0.2628 (3)0.45284 (12)0.0214 (4)
H30.52080.22550.51110.026*
C40.3781 (4)0.2091 (3)0.40365 (11)0.0167 (4)
H40.27290.13530.42760.020*
C50.3861 (3)0.2644 (3)0.31822 (11)0.0133 (4)
C60.3713 (3)0.0251 (2)0.13242 (11)0.0122 (3)
C70.6069 (3)0.0679 (3)0.15558 (11)0.0167 (4)
H70.68740.01720.19150.020*
C80.7216 (4)0.2369 (3)0.12480 (11)0.0185 (4)
H80.88230.30310.13970.022*
C90.6018 (4)0.3089 (3)0.07244 (12)0.0179 (4)
H90.68180.42410.05140.021*
C100.3665 (4)0.2150 (3)0.05020 (12)0.0193 (4)
H100.28650.26590.01420.023*
C110.2487 (3)0.0472 (3)0.08060 (11)0.0157 (4)
H110.08690.01750.06630.019*
H1A0.536 (4)0.398 (3)0.2358 (15)0.022 (6)*
H2A0.152 (4)0.150 (3)0.2905 (14)0.019 (6)*
Cl10.06395 (8)0.20083 (6)0.34300 (3)0.01538 (12)
O30.0680 (3)0.3209 (2)0.28027 (10)0.0267 (3)
O40.0763 (2)0.01507 (19)0.31513 (9)0.0209 (3)
O50.3112 (3)0.1954 (2)0.35352 (9)0.0243 (3)
O60.0508 (3)0.2619 (3)0.42029 (10)0.0415 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0155 (2)0.0101 (2)0.0123 (2)0.00192 (17)0.00278 (15)0.00055 (15)
O10.0296 (8)0.0140 (7)0.0144 (6)0.0102 (6)0.0003 (5)0.0011 (5)
O20.0169 (7)0.0168 (7)0.0220 (7)0.0020 (6)0.0067 (5)0.0018 (5)
N10.0152 (8)0.0138 (8)0.0152 (8)0.0041 (6)0.0009 (6)0.0024 (6)
N20.0156 (8)0.0148 (8)0.0139 (7)0.0075 (7)0.0006 (6)0.0008 (6)
C10.0127 (9)0.0145 (10)0.0268 (10)0.0023 (7)0.0014 (7)0.0081 (8)
C20.0169 (9)0.0203 (10)0.0245 (10)0.0014 (8)0.0065 (7)0.0104 (8)
C30.0230 (10)0.0221 (11)0.0165 (9)0.0006 (9)0.0036 (7)0.0052 (8)
C40.0190 (9)0.0148 (10)0.0152 (8)0.0032 (8)0.0002 (7)0.0017 (7)
C50.0122 (8)0.0097 (9)0.0166 (8)0.0003 (7)0.0012 (6)0.0029 (7)
C60.0149 (9)0.0099 (9)0.0119 (8)0.0035 (7)0.0007 (6)0.0004 (6)
C70.0171 (9)0.0160 (10)0.0173 (9)0.0032 (8)0.0056 (7)0.0020 (7)
C80.0179 (9)0.0169 (10)0.0170 (9)0.0010 (8)0.0017 (7)0.0002 (7)
C90.0246 (10)0.0108 (9)0.0171 (9)0.0043 (8)0.0017 (7)0.0009 (7)
C100.0241 (10)0.0181 (10)0.0187 (9)0.0088 (8)0.0029 (7)0.0049 (7)
C110.0152 (9)0.0167 (10)0.0159 (8)0.0051 (8)0.0032 (7)0.0005 (7)
Cl10.0175 (2)0.0130 (2)0.0159 (2)0.00511 (18)0.00268 (16)0.00102 (16)
O30.0278 (8)0.0179 (8)0.0367 (8)0.0036 (7)0.0096 (6)0.0113 (6)
O40.0163 (7)0.0104 (7)0.0344 (8)0.0002 (6)0.0049 (6)0.0012 (6)
O50.0179 (7)0.0235 (8)0.0331 (8)0.0049 (6)0.0116 (6)0.0018 (6)
O60.0476 (11)0.0515 (12)0.0251 (8)0.0225 (10)0.0047 (7)0.0133 (8)
Geometric parameters (Å, º) top
S1—O21.4296 (14)C4—H40.9500
S1—O11.4352 (15)C6—C111.391 (3)
S1—N21.6488 (16)C6—C71.393 (3)
S1—C61.7540 (19)C7—C81.391 (3)
N1—C51.338 (2)C7—H70.9500
N1—C11.356 (2)C8—C91.384 (3)
N1—H1A0.82 (2)C8—H80.9500
N2—C51.383 (2)C9—C101.388 (3)
N2—H2A0.81 (2)C9—H90.9500
C1—C21.361 (3)C10—C111.384 (3)
C1—H10.9500C10—H100.9500
C2—C31.395 (3)C11—H110.9500
C2—H20.9500Cl1—O61.4315 (16)
C3—C41.376 (3)Cl1—O31.4358 (15)
C3—H30.9500Cl1—O51.4403 (15)
C4—C51.394 (2)Cl1—O41.4594 (15)
O2—S1—O1119.45 (9)N2—C5—C4119.97 (17)
O2—S1—N2106.71 (9)C11—C6—C7121.88 (18)
O1—S1—N2106.24 (9)C11—C6—S1118.51 (14)
O2—S1—C6108.52 (9)C7—C6—S1119.56 (14)
O1—S1—C6110.07 (9)C8—C7—C6118.41 (18)
N2—S1—C6104.81 (9)C8—C7—H7120.8
C5—N1—C1122.75 (17)C6—C7—H7120.8
C5—N1—H1A116.0 (17)C9—C8—C7120.05 (18)
C1—N1—H1A121.3 (17)C9—C8—H8120.0
C5—N2—S1129.79 (14)C7—C8—H8120.0
C5—N2—H2A116.6 (16)C8—C9—C10120.91 (19)
S1—N2—H2A112.8 (16)C8—C9—H9119.5
N1—C1—C2119.98 (19)C10—C9—H9119.5
N1—C1—H1120.0C11—C10—C9119.91 (18)
C2—C1—H1120.0C11—C10—H10120.0
C1—C2—C3118.80 (18)C9—C10—H10120.0
C1—C2—H2120.6C10—C11—C6118.83 (18)
C3—C2—H2120.6C10—C11—H11120.6
C4—C3—C2120.39 (18)C6—C11—H11120.6
C4—C3—H3119.8O6—Cl1—O3109.89 (11)
C2—C3—H3119.8O6—Cl1—O5110.65 (10)
C3—C4—C5119.16 (19)O3—Cl1—O5110.12 (10)
C3—C4—H4120.4O6—Cl1—O4109.52 (11)
C5—C4—H4120.4O3—Cl1—O4108.72 (9)
N1—C5—N2121.08 (16)O5—Cl1—O4107.89 (9)
N1—C5—C4118.89 (17)
O2—S1—N2—C5141.28 (17)O1—S1—C6—C11118.07 (15)
O1—S1—N2—C512.81 (19)N2—S1—C6—C11128.06 (15)
C6—S1—N2—C5103.73 (18)O2—S1—C6—C7168.22 (15)
C5—N1—C1—C21.1 (3)O1—S1—C6—C759.37 (17)
N1—C1—C2—C31.7 (3)N2—S1—C6—C754.50 (17)
C1—C2—C3—C41.1 (3)C11—C6—C7—C80.7 (3)
C2—C3—C4—C50.2 (3)S1—C6—C7—C8176.66 (14)
C1—N1—C5—N2177.48 (17)C6—C7—C8—C90.0 (3)
C1—N1—C5—C40.2 (3)C7—C8—C9—C100.3 (3)
S1—N2—C5—N19.9 (3)C8—C9—C10—C110.1 (3)
S1—N2—C5—C4172.85 (14)C9—C10—C11—C60.8 (3)
C3—C4—C5—N10.8 (3)C7—C6—C11—C101.1 (3)
C3—C4—C5—N2178.17 (17)S1—C6—C11—C10176.28 (14)
O2—S1—C6—C1114.34 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.82 (2)2.01 (2)2.694 (2)141 (2)
N2—H2A···O40.81 (2)2.02 (2)2.808 (2)165 (2)
C1—H1···O3i0.952.373.301 (3)166
C3—H3···O5ii0.952.443.303 (3)151
C7—H7···O4iii0.952.533.417 (2)156
C8—H8···O3iii0.952.583.251 (3)128
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC11H11N2O2S+·ClO4
Mr334.73
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)5.6594 (11), 7.5996 (15), 16.157 (3)
α, β, γ (°)83.21 (3), 83.70 (3), 73.84 (3)
V3)660.6 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.48
Crystal size (mm)0.20 × 0.10 × 0.08
Data collection
DiffractometerRigaku Saturn CCD
diffractometer
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.911, 0.963
No. of measured, independent and
observed [I > 2σ(I)] reflections
5339, 3051, 2473
Rint0.024
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.07
No. of reflections3051
No. of parameters198
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.32, 0.42

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008), CrystalStructure (Rigaku/MSC, 2005).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O10.82 (2)2.01 (2)2.694 (2)141 (2)
N2—H2A···O40.81 (2)2.02 (2)2.808 (2)165 (2)
C1—H1···O3i0.952.373.301 (3)166
C3—H3···O5ii0.952.443.303 (3)151
C7—H7···O4iii0.952.533.417 (2)156
C8—H8···O3iii0.952.583.251 (3)128
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y, z+1; (iii) x+1, y, z.
 

References

First citationGaneshpure, P. A. & Das, J. (2007). React. Kin. Catal. Lett. 92, 69–74.  Web of Science CrossRef CAS Google Scholar
First citationLi, J. S., Chen, L. G., Zhang, Y. Y., Xu, Y. J., Deng, Y. & Huang, P. M. (2007). J. Chem. Res. pp. 350–352.  CrossRef Google Scholar
First citationLi, J. S., Fan, M. L., Fan, X. P., Huang, P. M. & Chen, L. G. (2008). Chin. J. Org. Chem. 28, 1954–1958.  CAS Google Scholar
First citationLi, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008a). Acta Cryst. E64, o1459.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-S., Fan, M.-L., Li, W.-S. & Liu, W.-D. (2008b). Acta Cryst. E64, o1513.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-S. & Li, X. (2009). Acta Cryst. E65, o1228.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationLi, J.-S., Yang, D.-W. & Liu, W.-D. (2008). Acta Cryst. E64, o204.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMiyashita, M., Yoshikoshi, A. & Grieco, P. A. (1977). J. Org. Chem. 42, 3772–3774.  CrossRef CAS Web of Science Google Scholar
First citationRigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds