organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-(4-{3-[1-(3-Bromo­prop­yl)-3,3-di­methyl-2,3-di­hydro-1H-indol-2-yl­­idene]prop-1-en­yl}-3-cyano-5,5-di­methyl-2,5-di­hydro­furan-2-yl­­idene)malono­nitrile

aIndustrial Research Limited, PO Box 31-310, Lower Hutt, New Zealand
*Correspondence e-mail: g.gainsford@irl.cri.nz

(Received 11 May 2009; accepted 11 May 2009; online 20 May 2009)

The backbone of the title mol­ecule, C26H25BrN4O, is approximately planar: the dihedral angle between the planes of the indoline ring system and the furan ring is 7.68 (14)°. In the crystal, layers lying parallel to (10[\overline{2}]) occur, with the mol­ecules inter­acting via weak C—H⋯N(cyano) and C—H⋯Br bonds and short N(cyano)⋯Br contacts [3.345 (4) Å].

Related literature

For general background to zwitterionic dyes and their applications, see: Dalton (2002[Dalton, L. (2002). Polymers for Photonics Applications 1, Advances in Polymer Science, edited by K. S. Lee, pp. 1-86, Berlin/Heidelberg: Springer-Verlag.]); Gainsford et al. (2007[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633-o637.], 2008[Gainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616-o619.]); Kay et al. (2004[Kay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater Chem. 14, 1321-1330.]). For related structures, see: Li et al. (2005[Li, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093-o2095.]); Marder et al. (1993[Marder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524-2526.]); Mushkalo & Sogulayaev (1986[Mushkalo, I. L. & Sogulayaev, Yu. A. (1986). Sov. Progr. Chem. 52, 509-513.]); Wang et al. (2007[Wang, H., Lu, Z., Lord, S. J., Willets, K. A., Bertke, J. A., Bunge, S. F., Moerner, W. E. & Twieg, R. J. (2007). Tetrahedron, 63, 103-114.]). For a description of the Cambridge Stuctural Database, see: Allen (2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]).

[Scheme 1]

Experimental

Crystal data
  • C26H25BrN4O

  • Mr = 489.41

  • Monoclinic, P 21 /c

  • a = 10.2349 (4) Å

  • b = 9.4017 (4) Å

  • c = 24.4524 (10) Å

  • β = 96.175 (2)°

  • V = 2339.29 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.78 mm−1

  • T = 122 K

  • 0.85 × 0.36 × 0.10 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.549, Tmax = 0.746 (expected range = 0.616–0.837)

  • 56895 measured reflections

  • 6791 independent reflections

  • 5482 reflections with I > 2σ(I)

  • Rint = 0.044

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.156

  • S = 1.19

  • 6791 reflections

  • 293 parameters

  • H-atom parameters constrained

  • Δρmax = 3.08 e Å−3

  • Δρmin = −0.60 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C9—H9B⋯N1i 0.98 2.59 3.449 (5) 147
C23—H23B⋯Br1ii 0.98 2.99 3.962 (4) 171
C26—H26B⋯Br1iii 0.99 2.95 3.815 (4) 147
Symmetry codes: (i) x, y-1, z; (ii) x, y+1, z; (iii) -x+2, -y, -z+1.

Data collection: APEX2 (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT and SADABS (Bruker, 2005[Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

The X-ray crystallographic and structural properties of zwitterionic dyes and their precursors have been a subject of some interest to us (Gainsford et al., 2007, 2008) due to their potential application in a number of photonic and optoelectronic devices (Dalton, 2002; Kay et al., 2004). The title compound was unintentionally synthesized en route to 2-{3-Cyano-4-[2-(10,10-dimethyl-6,7,8,10-tetrahydro-pyrido[1,2-a] indol-9-yl)-vinyl]-5,5-dimethyl-5H-furan-2-ylidene}-malononitrile. Compound REFCODES are from the C.S.D. (Version 5.30, with February 2009 updates; Allen, 2002)

The asymmetric unit contents are shown in Figure 1. The 5-membered ring plane of atoms O1,C4—C7 (hereafter "CDFP", [3-Cyano-5,5-Dimethyl-2,5-dihydrofuran-2-ylidene]propanedinitrile) can also be regarded as planar in this case (r.m.s. deviations 0.024 (3) Å). The dicyano group (N1,C1,C2,C3,N2) is planar (r.m.s.d. 0.008 (3) Å) but twisted by 6.6 (2)° with respect to the "CDFP" group; this is similar to the twist in related compound NOJKUT (Gainsford et al., 2008) of 5.69 (17)°. The fused indolylidene system (atoms N4, C14 to C21) is also essentially planar (r.m.s.d. 0.017 (3) Å) and makes a dihedral angle with the "CDFP" ring of 7.68 (14)°. This reflects a twist in the C11–C14 polyene chain beginning at C11: the plane through C11–C14 subtends 5.4 (3)° with the "CDFP" plane. There is considerable delocalization of charge along the polyene /"CDFP" chain with a bond length alternation (BLA) value (Marder et al., 1993) of 0.012Å compared with the free "CDFP" value of 0.108Å (Li et al., 2005) and 0.060Å in GIMQAV (Gainsford et al., 2007).

The almost planar molecules are arranged into nearly coplanar layers parallel to the (1,0,-2) plane with only CH···N(cyano), C–H···Br and N(cyano)···Br contacts. The (methyl)CH···N(cyano) contact (Table 1) is similar to that observed in several structures (Allen, 2002), where the methyl group is constrained by other interactions e.g. in JETGEV (Wang et al. 2007; N···H 2.57 Å, C–H···N 157°) the cyano nitrogen involved is bifurcated by a polyene C–H···N interation (H···N 2.72 Å, C–H···N 157°). Here the distance to the equivalent polyene H (H11) is 2.75 Å, with C–H···N 161°. In NOJKUT, a similar interaction is observed: H···N 2.45 Å, C–H···N 156°. The bromine atoms provide weak linking interactions: N2···Br1 3.345 (4)Å (Br1 at x - 1,1/2 - y,z - 1/2) and two C–H···Br interactions (Table 1). A final interaction is noted for completeness that would complete a weak interacting chain (N2···H23C(C23)H23B···Br1···N2) with H23C···N2 (N2 at 1 - x, y - 1/2,1/2 - z) and provide a weak interplanar link (see also Figure 2).

Related literature top

For general background to zwitterionic dyes and their applications, see: Dalton (2002); Gainsford et al. (2007, 2008); Kay et al. (2004). For related structures, see: Li et al. (2005); Marder et al. (1993); Mushkalo & Sogulayaev (1986); Wang et al. (2007). For a description of the Cambridge Stuctural Database, see: Allen (2002).

Experimental top

A mixture of 1 g (2.77 mmol) of 1-(3-bromopropyl)-2,3,3-trimethyl-3H-indolium bromide (Mushkalo & Sogulayaev, 1986), 883 mg (2.21 mmol) of {4-(2-acetanilidoethenyl)-3-cyano-5,5-dimethyl-2(5H)-furanylidene} propanedinitrile (compound 11a; Kay et al., 2004) and triethylamine as a catalyst in 30 ml me thanol was refluxed for 3 h. After cooling to room temperature, the precipitate was filtered and washed with copious quantities of hot water, followed by small portions of cold methanol to afford the target molecule as a red-purple powder (720 mg, 67%). Platy crystals, of limited quality, were grown from a 2:1 dichloromethane/hexanes mixture. Mp: 264–266 °C; 1H NMR (500 MHz, CDCl3) δ 1.61 (6 H, s, 2 x CH3), 1.72 (6 H, s, 2 x CH3), 2.34 (2 H, qn, CH2), 3.50 (2 H, t, J 5.7 Hz, CH2), 4.06 (2 H, t, J 7.2 Hz, CH2), 5.78 (1 H, d, J 12.9 Hz, CH), 5.85 (1 H, d, J 12.9 Hz, CH), 7.04 (1 H, d, J 7.8 Hz, ArH), 7.16–7.21 (1 H, m, ArH), 7.31–7.37 (2 H, m, ArH), 8.78 (1H, br s, ArH); 13C NMR (125 MHz, CDCl3) δ 26.4, 27.7, 29.8, 29.9, 41.8, 48.9, 95.7, 99.9, 107.3, 109.3, 112.9, 113.8, 122.4, 124.6, 128.6, 140.4, 142.0, 147.3, 172.7, 177.4.

Refinement top

The final residual map peak is 1.19Å from Br1. On the basis of average I/σ(I) analysis, data was excluded for θ > 30°. Four reflections affected by the backstop and 19 others which were clearly outlier data presumably affected by residual material (with Fo >>Fc and Δ(Fo2)/σ(Fo2) > 4.9) were omitted from the refinements (using OMIT). All methyl and tertiary H atoms were refined with Uiso 1.5 & 1.2 times respectively that of the Ueq of their parent atom. All H atoms bound to carbon were constrained to their expected geometries (C—H 0.95, 0.98 & 1.00 Å).

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT and SADABS (Bruker, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Molecular structure of the asymmetric unit (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the unit cell. Contact atoms are shown as balls; not all interactions and labels are shown for clarity (see text). Symmetry (i) x - 1,1/2 - y, z - 1/2 (ii) x, 1 + y, z (iii) 1 - x, y - 1/2,1/2 - z.
2-(4-{3-[1-(3-Bromopropyl)-3,3-dimethyl-2,3-dihydro-1H-indol-2- ylidene]prop-1-enyl}-3-cyano-5,5-dimethyl-2,5-dihydrofuran-2- ylidene)malononitrile top
Crystal data top
C26H25BrN4OF(000) = 1008
Mr = 489.41Dx = 1.390 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 9973 reflections
a = 10.2349 (4) Åθ = 2.3–29.3°
b = 9.4017 (4) ŵ = 1.78 mm1
c = 24.4524 (10) ÅT = 122 K
β = 96.175 (2)°Block, red
V = 2339.29 (17) Å30.85 × 0.36 × 0.10 mm
Z = 4
Data collection top
Bruker APEXII CCD
diffractometer
6791 independent reflections
Radiation source: fine-focus sealed tube5482 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
Detector resolution: 8.333 pixels mm-1θmax = 30.0°, θmin = 2.5°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(Blessing, 1995)
k = 1313
Tmin = 0.549, Tmax = 0.746l = 3434
56895 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 1.19 w = 1/[σ2(Fo2) + (0.0596P)2 + 4.5665P]
where P = (Fo2 + 2Fc2)/3
6791 reflections(Δ/σ)max = 0.001
293 parametersΔρmax = 3.08 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
C26H25BrN4OV = 2339.29 (17) Å3
Mr = 489.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2349 (4) ŵ = 1.78 mm1
b = 9.4017 (4) ÅT = 122 K
c = 24.4524 (10) Å0.85 × 0.36 × 0.10 mm
β = 96.175 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
6791 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
5482 reflections with I > 2σ(I)
Tmin = 0.549, Tmax = 0.746Rint = 0.044
56895 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 1.19Δρmax = 3.08 e Å3
6791 reflectionsΔρmin = 0.60 e Å3
293 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br11.04264 (4)0.19667 (4)0.464951 (13)0.03123 (11)
O10.4789 (2)0.4651 (2)0.11618 (9)0.0259 (5)
N10.5733 (4)0.9332 (3)0.18253 (17)0.0487 (9)
N20.3317 (4)0.7471 (5)0.04014 (15)0.0487 (9)
N30.7924 (3)0.6919 (3)0.24466 (12)0.0302 (6)
N41.0399 (2)0.1410 (3)0.36430 (10)0.0183 (4)
C10.5374 (4)0.8345 (4)0.15816 (16)0.0330 (7)
C20.4909 (3)0.7121 (3)0.12784 (14)0.0258 (6)
C30.4020 (3)0.7300 (4)0.07938 (15)0.0317 (7)
C40.6310 (3)0.3831 (3)0.18773 (11)0.0186 (5)
C50.5308 (3)0.3319 (3)0.14217 (12)0.0210 (6)
C60.5325 (3)0.5769 (3)0.14380 (12)0.0210 (5)
C70.6286 (3)0.5313 (3)0.18679 (12)0.0195 (5)
C80.5913 (3)0.2449 (4)0.09903 (13)0.0263 (6)
H8A0.52380.22250.06880.040*
H8B0.62740.15640.11560.040*
H8C0.66190.29970.08490.040*
C90.4168 (3)0.2573 (4)0.16424 (16)0.0308 (7)
H9A0.37570.32150.18900.046*
H9B0.44860.17200.18450.046*
H9C0.35200.23000.13360.046*
C100.7165 (3)0.6235 (3)0.21904 (12)0.0213 (5)
C110.7057 (3)0.2857 (3)0.22079 (12)0.0208 (5)
H110.69350.18770.21230.025*
C120.7964 (3)0.3200 (3)0.26505 (12)0.0213 (6)
H120.80670.41700.27550.026*
C130.8724 (3)0.2188 (3)0.29458 (12)0.0209 (5)
H130.85880.12240.28380.025*
C140.9674 (3)0.2454 (3)0.33870 (11)0.0182 (5)
C151.1325 (3)0.1961 (3)0.40603 (11)0.0201 (5)
C161.2270 (3)0.1236 (3)0.43992 (12)0.0214 (5)
H161.23630.02330.43770.026*
C171.3078 (3)0.2043 (4)0.47734 (13)0.0280 (6)
H171.37400.15830.50120.034*
C181.2933 (3)0.3511 (4)0.48045 (14)0.0293 (7)
H181.35000.40400.50630.035*
C191.1968 (3)0.4214 (4)0.44613 (13)0.0267 (6)
H191.18600.52150.44850.032*
C201.1171 (3)0.3418 (3)0.40854 (12)0.0203 (5)
C211.0071 (3)0.3868 (3)0.36571 (11)0.0193 (5)
C221.0602 (3)0.4925 (3)0.32554 (14)0.0272 (6)
H22A1.12780.44590.30640.041*
H22B1.09840.57480.34600.041*
H22C0.98820.52410.29860.041*
C230.8931 (3)0.4525 (4)0.39357 (13)0.0263 (6)
H23A0.82240.48060.36540.039*
H23B0.92480.53630.41480.039*
H23C0.85960.38230.41820.039*
C241.0321 (3)0.0092 (3)0.34754 (12)0.0206 (5)
H24A1.11170.05920.36430.025*
H24B1.03170.01470.30710.025*
C250.9108 (3)0.0860 (3)0.36403 (12)0.0237 (6)
H25A0.83160.03890.34550.028*
H25B0.91160.18490.35020.028*
C260.8990 (3)0.0903 (4)0.42482 (13)0.0281 (6)
H26A0.81430.13490.43110.034*
H26B0.89900.00820.43920.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0428 (2)0.02650 (17)0.02325 (16)0.00417 (14)0.00169 (12)0.00277 (13)
O10.0256 (10)0.0217 (10)0.0283 (11)0.0037 (8)0.0076 (8)0.0013 (9)
N10.061 (2)0.0208 (15)0.061 (2)0.0085 (15)0.0063 (18)0.0004 (15)
N20.0389 (18)0.065 (2)0.0400 (19)0.0197 (17)0.0053 (15)0.0059 (17)
N30.0309 (14)0.0266 (14)0.0326 (14)0.0013 (11)0.0015 (11)0.0061 (12)
N40.0171 (10)0.0198 (11)0.0173 (11)0.0004 (9)0.0010 (8)0.0007 (9)
C10.0345 (17)0.0250 (16)0.0390 (19)0.0095 (13)0.0019 (14)0.0068 (14)
C20.0247 (14)0.0243 (15)0.0280 (15)0.0087 (12)0.0012 (11)0.0049 (12)
C30.0285 (16)0.0319 (18)0.0348 (18)0.0122 (13)0.0032 (13)0.0056 (14)
C40.0176 (12)0.0212 (13)0.0169 (12)0.0015 (10)0.0013 (9)0.0016 (10)
C50.0188 (12)0.0187 (13)0.0242 (14)0.0030 (10)0.0044 (10)0.0021 (10)
C60.0196 (12)0.0221 (14)0.0210 (13)0.0046 (10)0.0017 (10)0.0015 (11)
C70.0198 (12)0.0193 (13)0.0193 (13)0.0032 (10)0.0012 (10)0.0007 (10)
C80.0299 (16)0.0261 (15)0.0221 (14)0.0014 (12)0.0016 (12)0.0022 (12)
C90.0172 (13)0.0291 (16)0.046 (2)0.0003 (12)0.0014 (13)0.0062 (14)
C100.0228 (13)0.0179 (13)0.0232 (14)0.0042 (10)0.0034 (10)0.0013 (11)
C110.0215 (13)0.0190 (13)0.0212 (13)0.0018 (10)0.0016 (10)0.0005 (10)
C120.0209 (13)0.0216 (14)0.0210 (13)0.0000 (10)0.0004 (10)0.0001 (10)
C130.0226 (13)0.0192 (13)0.0200 (13)0.0012 (10)0.0021 (10)0.0001 (10)
C140.0178 (12)0.0204 (13)0.0165 (12)0.0000 (10)0.0018 (10)0.0025 (10)
C150.0159 (11)0.0288 (14)0.0155 (12)0.0019 (11)0.0017 (9)0.0028 (11)
C160.0188 (12)0.0238 (14)0.0212 (13)0.0010 (10)0.0002 (10)0.0026 (11)
C170.0198 (13)0.0391 (18)0.0237 (14)0.0021 (13)0.0043 (11)0.0043 (13)
C180.0241 (14)0.0344 (17)0.0271 (15)0.0080 (13)0.0074 (12)0.0015 (13)
C190.0272 (14)0.0232 (15)0.0283 (15)0.0074 (12)0.0040 (12)0.0001 (12)
C200.0194 (12)0.0221 (13)0.0188 (13)0.0042 (10)0.0008 (10)0.0024 (10)
C210.0201 (12)0.0191 (13)0.0179 (12)0.0038 (10)0.0011 (10)0.0024 (10)
C220.0296 (15)0.0215 (14)0.0296 (15)0.0067 (12)0.0014 (12)0.0065 (12)
C230.0253 (14)0.0252 (15)0.0278 (15)0.0004 (12)0.0009 (11)0.0057 (12)
C240.0237 (13)0.0194 (13)0.0184 (13)0.0011 (10)0.0012 (10)0.0014 (10)
C250.0253 (14)0.0222 (14)0.0227 (14)0.0060 (11)0.0021 (11)0.0002 (11)
C260.0278 (15)0.0312 (17)0.0261 (15)0.0029 (13)0.0061 (12)0.0006 (13)
Geometric parameters (Å, º) top
Br1—C261.953 (3)C13—H130.9500
O1—C61.336 (4)C14—C211.520 (4)
O1—C51.476 (3)C15—C201.382 (4)
N1—C11.142 (5)C15—C161.383 (4)
N2—C31.147 (5)C16—C171.390 (4)
N3—C101.142 (4)C16—H160.9500
N4—C141.344 (4)C17—C181.392 (5)
N4—C151.414 (4)C17—H170.9500
N4—C241.470 (4)C18—C191.393 (4)
C1—C21.423 (5)C18—H180.9500
C2—C61.383 (4)C19—C201.382 (4)
C2—C31.424 (5)C19—H190.9500
C4—C71.394 (4)C20—C211.513 (4)
C4—C111.395 (4)C21—C221.537 (4)
C4—C51.510 (4)C21—C231.542 (4)
C5—C91.510 (4)C22—H22A0.9800
C5—C81.519 (4)C22—H22B0.9800
C6—C71.426 (4)C22—H22C0.9800
C7—C101.424 (4)C23—H23A0.9800
C8—H8A0.9800C23—H23B0.9800
C8—H8B0.9800C23—H23C0.9800
C8—H8C0.9800C24—C251.528 (4)
C9—H9A0.9800C24—H24A0.9900
C9—H9B0.9800C24—H24B0.9900
C9—H9C0.9800C25—C261.505 (4)
C11—C121.386 (4)C25—H25A0.9900
C11—H110.9500C25—H25B0.9900
C12—C131.383 (4)C26—H26A0.9900
C12—H120.9500C26—H26B0.9900
C13—C141.395 (4)
C6—O1—C5109.9 (2)C15—C16—C17117.0 (3)
C14—N4—C15111.2 (2)C15—C16—H16121.5
C14—N4—C24124.2 (2)C17—C16—H16121.5
C15—N4—C24124.4 (2)C16—C17—C18121.2 (3)
N1—C1—C2179.2 (4)C16—C17—H17119.4
C6—C2—C1121.4 (3)C18—C17—H17119.4
C6—C2—C3119.5 (3)C17—C18—C19120.7 (3)
C1—C2—C3119.1 (3)C17—C18—H18119.7
N2—C3—C2178.6 (4)C19—C18—H18119.7
C7—C4—C11132.4 (3)C20—C19—C18118.3 (3)
C7—C4—C5107.3 (2)C20—C19—H19120.9
C11—C4—C5120.3 (3)C18—C19—H19120.9
O1—C5—C4103.4 (2)C15—C20—C19120.3 (3)
O1—C5—C9107.0 (2)C15—C20—C21109.1 (2)
C4—C5—C9112.0 (3)C19—C20—C21130.6 (3)
O1—C5—C8108.2 (2)C20—C21—C14101.6 (2)
C4—C5—C8112.9 (2)C20—C21—C22109.6 (2)
C9—C5—C8112.7 (3)C14—C21—C22112.6 (2)
O1—C6—C2118.9 (3)C20—C21—C23110.4 (2)
O1—C6—C7110.4 (2)C14—C21—C23111.2 (2)
C2—C6—C7130.6 (3)C22—C21—C23111.1 (3)
C4—C7—C10126.2 (3)C21—C22—H22A109.5
C4—C7—C6108.8 (3)C21—C22—H22B109.5
C10—C7—C6124.7 (3)H22A—C22—H22B109.5
C5—C8—H8A109.5C21—C22—H22C109.5
C5—C8—H8B109.5H22A—C22—H22C109.5
H8A—C8—H8B109.5H22B—C22—H22C109.5
C5—C8—H8C109.5C21—C23—H23A109.5
H8A—C8—H8C109.5C21—C23—H23B109.5
H8B—C8—H8C109.5H23A—C23—H23B109.5
C5—C9—H9A109.5C21—C23—H23C109.5
C5—C9—H9B109.5H23A—C23—H23C109.5
H9A—C9—H9B109.5H23B—C23—H23C109.5
C5—C9—H9C109.5N4—C24—C25113.6 (2)
H9A—C9—H9C109.5N4—C24—H24A108.8
H9B—C9—H9C109.5C25—C24—H24A108.8
N3—C10—C7176.1 (3)N4—C24—H24B108.8
C12—C11—C4125.4 (3)C25—C24—H24B108.8
C12—C11—H11117.3H24A—C24—H24B107.7
C4—C11—H11117.3C26—C25—C24115.3 (2)
C13—C12—C11122.7 (3)C26—C25—H25A108.5
C13—C12—H12118.7C24—C25—H25A108.5
C11—C12—H12118.7C26—C25—H25B108.5
C12—C13—C14125.9 (3)C24—C25—H25B108.5
C12—C13—H13117.0H25A—C25—H25B107.5
C14—C13—H13117.0C25—C26—Br1112.0 (2)
N4—C14—C13122.2 (3)C25—C26—H26A109.2
N4—C14—C21109.2 (2)Br1—C26—H26A109.2
C13—C14—C21128.6 (3)C25—C26—H26B109.2
C20—C15—C16122.5 (3)Br1—C26—H26B109.2
C20—C15—N4108.9 (2)H26A—C26—H26B107.9
C16—C15—N4128.5 (3)
C6—O1—C5—C43.6 (3)C12—C13—C14—C212.0 (5)
C6—O1—C5—C9114.8 (3)C14—N4—C15—C201.6 (3)
C6—O1—C5—C8123.5 (3)C24—N4—C15—C20176.2 (2)
C7—C4—C5—O11.8 (3)C14—N4—C15—C16177.6 (3)
C11—C4—C5—O1177.6 (3)C24—N4—C15—C163.0 (4)
C7—C4—C5—C9113.0 (3)C20—C15—C16—C170.1 (4)
C11—C4—C5—C967.6 (3)N4—C15—C16—C17179.0 (3)
C7—C4—C5—C8118.5 (3)C15—C16—C17—C180.2 (5)
C11—C4—C5—C860.9 (4)C16—C17—C18—C190.3 (5)
C5—O1—C6—C2176.3 (3)C17—C18—C19—C200.8 (5)
C5—O1—C6—C74.1 (3)C16—C15—C20—C190.5 (4)
C1—C2—C6—O1175.3 (3)N4—C15—C20—C19179.7 (3)
C3—C2—C6—O16.1 (5)C16—C15—C20—C21179.2 (3)
C1—C2—C6—C75.1 (5)N4—C15—C20—C210.0 (3)
C3—C2—C6—C7173.4 (3)C18—C19—C20—C150.9 (5)
C11—C4—C7—C106.0 (5)C18—C19—C20—C21178.7 (3)
C5—C4—C7—C10173.3 (3)C15—C20—C21—C141.4 (3)
C11—C4—C7—C6179.7 (3)C19—C20—C21—C14178.3 (3)
C5—C4—C7—C60.5 (3)C15—C20—C21—C22120.6 (3)
O1—C6—C7—C42.9 (3)C19—C20—C21—C2259.1 (4)
C2—C6—C7—C4177.6 (3)C15—C20—C21—C23116.7 (3)
O1—C6—C7—C10171.0 (3)C19—C20—C21—C2363.6 (4)
C2—C6—C7—C108.6 (5)N4—C14—C21—C202.3 (3)
C7—C4—C11—C123.6 (5)C13—C14—C21—C20177.8 (3)
C5—C4—C11—C12177.2 (3)N4—C14—C21—C22119.4 (3)
C4—C11—C12—C13176.6 (3)C13—C14—C21—C2260.7 (4)
C11—C12—C13—C14178.5 (3)N4—C14—C21—C23115.1 (3)
C15—N4—C14—C13177.6 (3)C13—C14—C21—C2364.8 (4)
C24—N4—C14—C132.9 (4)C14—N4—C24—C2576.2 (3)
C15—N4—C14—C212.5 (3)C15—N4—C24—C25109.9 (3)
C24—N4—C14—C21177.1 (2)N4—C24—C25—C2660.1 (4)
C12—C13—C14—N4178.1 (3)C24—C25—C26—Br163.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N1i0.982.593.449 (5)147
C23—H23B···Br1ii0.982.993.962 (4)171
C26—H26B···Br1iii0.992.953.815 (4)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+2, y, z+1.

Experimental details

Crystal data
Chemical formulaC26H25BrN4O
Mr489.41
Crystal system, space groupMonoclinic, P21/c
Temperature (K)122
a, b, c (Å)10.2349 (4), 9.4017 (4), 24.4524 (10)
β (°) 96.175 (2)
V3)2339.29 (17)
Z4
Radiation typeMo Kα
µ (mm1)1.78
Crystal size (mm)0.85 × 0.36 × 0.10
Data collection
DiffractometerBruker APEXII CCD
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.549, 0.746
No. of measured, independent and
observed [I > 2σ(I)] reflections
56895, 6791, 5482
Rint0.044
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.156, 1.19
No. of reflections6791
No. of parameters293
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.08, 0.60

Computer programs: APEX2 (Bruker, 2005), SAINT (Bruker, 2005), SAINT and SADABS (Bruker, 2005), SHELXS97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997), PLATON (Spek, 2009) and Mercury (Macrae et al., 2006), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9B···N1i0.982.593.449 (5)147
C23—H23B···Br1ii0.982.993.962 (4)171
C26—H26B···Br1iii0.992.953.815 (4)147
Symmetry codes: (i) x, y1, z; (ii) x, y+1, z; (iii) x+2, y, z+1.
 

Acknowledgements

We thank Drs J. Wikaira and C. Fitchett of the University of Canterbury, New Zealand, for their assistance with the data collection.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDalton, L. (2002). Polymers for Photonics Applications 1, Advances in Polymer Science, edited by K. S. Lee, pp. 1–86, Berlin/Heidelberg: Springer-Verlag.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2007). Acta Cryst. C63, o633–o637.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationGainsford, G. J., Bhuiyan, M. D. H. & Kay, A. J. (2008). Acta Cryst. C64, o616–o619.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationKay, A. J., Woolhouse, A. D., Zhao, Y. & Clays, K. (2004). J. Mater Chem. 14, 1321–1330.  Web of Science CrossRef CAS Google Scholar
First citationLi, S.-Y., Song, Y.-Y., You, Z.-L., Wen, Y.-W. & Qin, J.-G. (2005). Acta Cryst. E61, o2093–o2095.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMarder, S. R., Perry, J. W., Tiemann, B. G., Gorman, C. B., Gilmour, S., Biddle, S. L. & Bourhill, G. (1993). J. Am. Chem. Soc. 115, 2524–2526.  CSD CrossRef CAS Web of Science Google Scholar
First citationMushkalo, I. L. & Sogulayaev, Yu. A. (1986). Sov. Progr. Chem. 52, 509–513.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWang, H., Lu, Z., Lord, S. J., Willets, K. A., Bertke, J. A., Bunge, S. F., Moerner, W. E. & Twieg, R. J. (2007). Tetrahedron, 63, 103–114.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds