organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1385-o1386

Monoclinic modification of N-[(1,1-di­methyl­eth­oxy)carbon­yl]-3-[(R)-prop-2-en-1-ylsulfin­yl]-(R)-alanine ethyl ester at 200 (1) K

aDepartment of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 15 May 2009; accepted 19 May 2009; online 23 May 2009)

In the monoclinic polymorph of the title compound, C13H23NO5S, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into one-dimensional chains along [100]. The atoms of the terminal propenyl group are disordered over two sets of sites with refined occupancies of 0.69 (2) and 0.31 (2).

Related literature

For the crystal structure of the triclinic modification of the title compound at 120 (1) K see the paper which follows: Singh et al. (2009[Singh, S. P., Verdu, M. J., Lough, A. J. & Schwan, A. L. (2009). Acta Cryst. E65, o1387.]). For background information on chiral sulfoxides, see: Rose et al. (2005[Rose, P., Whiteman, M., Moore, P. K. & Zhu, Y. Z. (2005). Nat. Prod. Rep. 22, 351-368.]); Fernandez & Khiar, (2003[Fernandez, I. & Khiar, N. (2003). Chem. Rev. 103, 3651-3705.]); Olbe et al., 2003[Olbe, L., Carlsson, E. & Lindberg, P. (2003). Nat. Rev. Drug. Discov. 2, 132-139.]. For synthetic details, see: O'Donnell & Schwan (2003[O'Donnell, J. S. & Schwan, A. L. (2003). Tetrahedron Lett. 44, 6293-6296.]). For related crystal structures see: Allain et al. (1980[Allain, A., Kubiak, M., Jezowska-Trzebiatowska, B., Kozlowskai, H. & Glowiak, T. (1980). Inorg. Chim. Acta, 46, 127-133.]); Nakamura et al. (1996[Nakamura, S., Goto, K., Kondo, M., Naito, S., Bando, M., Kido, M. & Shishido, K. (1996). Bioorg. Med. Chem. Lett. 6, 937-940.]). For temperature-dependent phase trans­ition in cysteine, see: Paukov et al. (2007[Paukov, I. E., Kovalevskaya, Y. A., Drebushchak, V. A., Drebushchak, T. N. & Boldyreva, E. V. (2007). J. Phys. Chem. B, 111, 9186-9188.]), Kolesov et al. (2008[Kolesov, B. A., Minkov, V. S., Boldyreva, E. V. & Drebushchak, T. N. (2008). J. Phys. Chem. B, 112, 12827-12839.]).

[Scheme 1]

Experimental

Crystal data
  • C13H23NO5S

  • Mr = 305.38

  • Monoclinic, P 21

  • a = 5.1859 (6) Å

  • b = 11.5202 (18) Å

  • c = 14.009 (2) Å

  • β = 96.396 (8)°

  • V = 831.7 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 200 K

  • 0.38 × 0.12 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.711, Tmax = 0.974

  • 3908 measured reflections

  • 2397 independent reflections

  • 1844 reflections with I > 2σ(I)

  • Rint = 0.070

Refinement
  • R[F2 > 2σ(F2)] = 0.059

  • wR(F2) = 0.164

  • S = 1.05

  • 2397 reflections

  • 196 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.30 e Å−3

  • Δρmin = −0.22 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 898 Friedel pairs

  • Flack parameter: −0.08 (15)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4i 0.88 2.20 2.967 (5) 145
Symmetry code: (i) x+1, y, z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

A number of biologically significant molecules have a chiral sulfoxide functionality in their structure which is important for stereochemically dependent biological actions like metabolism and enzyme inhibition (Rose et al., 2005). Owing to the existence of pharmacological and toxicological differences between stereoisomers, chiral recognition has now become an integral part of drug research and development. Therefore, there has been a great interest in the synthesis of optically pure sulfoxides in recent years (Fernandez & Khiar, 2003). For example, the chiral switch drug esomeprazole [(S) isomer of omeprazole], the first single-optical-isomer gastric proton pump inhibitor (PPI), generally provides better acid control than current racemic PPIs and has a favourable pharmacokinetic profile relative to omeprazole (Olbe et al., 2003). However, only few examples of crystal structures of chirally pure cysteinyl sulfoxides have been reported in the literature (Nakamura et al., 1996). Moreover, temperature dependent phase trasitions in the crystal structures of cysteinyl sulfoxides are unknown till date (Paukov et al., 2007 and Kolesov et al., 2008).

The molecular structure of the title compound, (I), is shown in Fig. 1. In the crystal structure, intermolecular N—H···O hydrogen bonds link molecules into one-dimensional chains along [100] (Table 1, Fig. 2). Data for the title compound (using the same crystal) were also collected at 120 (1) K and the crystal structure solves and refines in the triclinic space group P1 (Singh et al., 2009).

Related literature top

For the crystal structure of the triclinic modification of the title compound at 120 (1) K see the paper which follows: Singh et al. (2009). For background information on chiral sulfoxides, see: Rose et al. (2005); Fernandez & Khiar, (2003); Olbe et al., 2003. For synthetic details, see: O'Donnell & Schwan (2003). For related crystal structures see: Allain et al. (1980); Nakamura et al. (1996). For temperature-dependent phase transition in cysteine, see: Paukov et al. (2007), Kolesov et al. (2008).

Experimental top

The N-protected amino acid derivative 1 (Fig. 3) was synthesized following a reported procedure. N-Boc-Alliin-OEt 2 was also synthesized by following the described procedure for its benzyl analog (O'Donnell and Schwan, 2003). Rerystallization from ethyl acetate and hexanes gave major diastereomer (RC, RS) of 2 as white solid, which was then dissolved in ethyl acetate and hexanes (9:1) and the solvent was allowed to evaporate slowly for several days to give white crystals of the major diastereomer (RC,RS) of 2.

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99; N—H = 0.88 Å and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C). The atoms of the terminal propenyl group are disordered over two sites with refined occupancies of 0.69 (2) and 0.31 (2); the bond lengths in the minor component were restrained to be equal to those of the major component.

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I): displacement elllipsoids are drawn at the 30% probabilty level. The minor disorder component is not shown.
[Figure 2] Fig. 2. Part of the crystal structure of (I) with hydrogen bonds shown as dashed lines.
[Figure 3] Fig. 3. The synthetic scheme.
N-[(1,1-dimethylethoxy)carbonyl]-3-[(R)-prop-2-en-1-ylsulfinyl]- (R)-alanine ethyl ester top
Crystal data top
C13H23NO5SF(000) = 328
Mr = 305.38Dx = 1.219 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 3908 reflections
a = 5.1859 (6) Åθ = 2.9–25.0°
b = 11.5202 (18) ŵ = 0.21 mm1
c = 14.009 (2) ÅT = 200 K
β = 96.396 (8)°Needle, colourless
V = 831.7 (2) Å30.38 × 0.12 × 0.12 mm
Z = 2
Data collection top
Nonius KappaCCD
diffractometer
2397 independent reflections
Radiation source: fine-focus sealed tube1844 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 2.9°
ϕ scans and ω scans with κ offsetsh = 66
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1213
Tmin = 0.711, Tmax = 0.974l = 1416
3908 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.164 w = 1/[σ2(Fo2) + (0.0816P)2 + 0.1385P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.002
2397 reflectionsΔρmax = 0.30 e Å3
196 parametersΔρmin = 0.22 e Å3
4 restraintsAbsolute structure: Flack (1983), 898 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (15)
Crystal data top
C13H23NO5SV = 831.7 (2) Å3
Mr = 305.38Z = 2
Monoclinic, P21Mo Kα radiation
a = 5.1859 (6) ŵ = 0.21 mm1
b = 11.5202 (18) ÅT = 200 K
c = 14.009 (2) Å0.38 × 0.12 × 0.12 mm
β = 96.396 (8)°
Data collection top
Nonius KappaCCD
diffractometer
2397 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1844 reflections with I > 2σ(I)
Tmin = 0.711, Tmax = 0.974Rint = 0.070
3908 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.059H-atom parameters constrained
wR(F2) = 0.164Δρmax = 0.30 e Å3
S = 1.05Δρmin = 0.22 e Å3
2397 reflectionsAbsolute structure: Flack (1983), 898 Friedel pairs
196 parametersAbsolute structure parameter: 0.08 (15)
4 restraints
Special details top

Experimental. Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.4365 (2)0.46507 (13)0.25026 (8)0.0632 (4)
O10.1763 (5)0.4581 (4)0.2851 (3)0.0810 (10)
O20.6209 (19)0.7332 (5)0.4815 (4)0.175 (3)
O30.6089 (8)0.8717 (4)0.3748 (3)0.0850 (11)
O40.0034 (6)0.7655 (3)0.2141 (2)0.0667 (9)
O50.2554 (5)0.8446 (3)0.1080 (2)0.0656 (9)
N10.4391 (7)0.7397 (4)0.2270 (3)0.0576 (10)
H10.57840.74470.19660.069*
C10.6118 (9)0.5732 (4)0.3246 (4)0.0578 (12)
H1A0.64160.54490.39160.069*
H1B0.78280.58710.30150.069*
C20.4583 (9)0.6867 (4)0.3214 (3)0.0594 (12)
H2A0.27800.66740.33510.071*
C30.5757 (12)0.7652 (5)0.4014 (4)0.0775 (16)
C40.7307 (14)0.9553 (8)0.4454 (5)0.1019 (19)
H4A0.61641.02370.44900.122*
H4B0.75740.91890.50970.122*
C50.9780 (13)0.9914 (8)0.4162 (6)0.116 (3)
H5A1.06011.04740.46270.174*
H5B0.95021.02760.35260.174*
H5C1.09090.92350.41350.174*
C60.628 (4)0.3423 (8)0.2976 (17)0.067 (5)0.694 (18)
H6A0.81460.35920.29500.080*0.694 (18)
H6B0.60120.33020.36570.080*0.694 (18)
C70.557 (2)0.2340 (8)0.2422 (9)0.082 (3)0.694 (18)
H70.62990.22470.18330.098*0.694 (18)
C80.406 (2)0.1516 (9)0.2657 (9)0.100 (4)0.694 (18)
H8A0.32850.15650.32380.120*0.694 (18)
H8B0.37400.08610.22490.120*0.694 (18)
C6A0.600 (8)0.3431 (15)0.312 (3)0.057 (13)*0.306 (18)
H6A10.78520.34280.30150.069*0.306 (18)
H6A20.58960.35020.38240.069*0.306 (18)
C7A0.474 (5)0.233 (2)0.2760 (18)0.076 (9)*0.306 (18)
H7A0.30780.21380.29400.091*0.306 (18)
C8A0.582 (6)0.161 (3)0.2209 (17)0.100 (9)*0.306 (18)
H8A10.74830.17860.20210.120*0.306 (18)
H8A20.49500.09210.19940.120*0.306 (18)
C90.2142 (8)0.7809 (4)0.1855 (3)0.0542 (11)
C100.0367 (8)0.8905 (5)0.0423 (4)0.0668 (14)
C110.1753 (10)0.9514 (7)0.0349 (4)0.0905 (18)
H11A0.28171.01500.00560.136*
H11C0.04620.98250.08480.136*
H11D0.28660.89560.06370.136*
C120.1300 (11)0.7915 (5)0.0014 (4)0.0801 (16)
H12C0.20070.74780.04970.120*
H12D0.02410.73990.03670.120*
H12A0.27290.82290.04560.120*
C130.1142 (9)0.9761 (5)0.0933 (4)0.0732 (13)
H13C0.21310.93520.13860.110*
H13D0.23391.01820.04650.110*
H13A0.00531.03120.12840.110*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0581 (6)0.0632 (7)0.0675 (7)0.0011 (7)0.0036 (5)0.0038 (7)
O10.0487 (16)0.079 (2)0.114 (3)0.005 (2)0.0032 (16)0.000 (3)
O20.370 (10)0.077 (3)0.064 (3)0.004 (5)0.035 (4)0.003 (3)
O30.108 (3)0.077 (3)0.070 (2)0.019 (2)0.0107 (19)0.002 (2)
O40.0447 (16)0.076 (2)0.080 (2)0.0025 (17)0.0113 (15)0.0132 (17)
O50.0517 (17)0.083 (2)0.062 (2)0.0055 (17)0.0057 (13)0.0213 (18)
N10.044 (2)0.065 (3)0.064 (2)0.0082 (19)0.0095 (16)0.006 (2)
C10.052 (2)0.059 (3)0.062 (3)0.004 (2)0.004 (2)0.004 (2)
C20.057 (3)0.066 (3)0.056 (3)0.006 (2)0.014 (2)0.008 (2)
C30.102 (4)0.067 (4)0.063 (4)0.022 (3)0.003 (3)0.004 (3)
C40.116 (5)0.100 (5)0.090 (4)0.014 (5)0.011 (3)0.023 (4)
C50.089 (4)0.140 (8)0.115 (5)0.022 (5)0.005 (4)0.028 (5)
C60.056 (6)0.058 (7)0.085 (9)0.004 (4)0.005 (8)0.005 (4)
C70.100 (8)0.062 (7)0.084 (7)0.010 (6)0.015 (6)0.005 (6)
C80.117 (9)0.071 (7)0.105 (8)0.017 (6)0.021 (6)0.007 (6)
C90.047 (3)0.054 (3)0.061 (3)0.001 (2)0.004 (2)0.002 (2)
C100.049 (2)0.078 (4)0.072 (3)0.008 (3)0.001 (2)0.014 (3)
C110.075 (3)0.123 (5)0.073 (3)0.005 (4)0.002 (2)0.033 (4)
C120.079 (3)0.078 (4)0.081 (4)0.012 (3)0.003 (3)0.004 (3)
C130.064 (3)0.061 (3)0.092 (3)0.001 (3)0.002 (2)0.003 (3)
Geometric parameters (Å, º) top
S1—O11.487 (3)C6—H6A0.9900
S1—C11.803 (5)C6—H6B0.9900
S1—C61.813 (6)C7—C81.296 (12)
S1—C6A1.813 (7)C7—H70.9500
O2—C31.179 (7)C8—H8A0.9500
O3—C31.300 (7)C8—H8B0.9500
O3—C41.471 (8)C6A—C7A1.493 (14)
O4—C91.218 (5)C6A—H6A10.9900
O5—C91.347 (6)C6A—H6A20.9900
O5—C101.477 (5)C7A—C8A1.296 (13)
N1—C91.331 (6)C7A—H7A0.9500
N1—C21.450 (6)C8A—H8A10.9500
N1—H10.8800C8A—H8A20.9500
C1—C21.529 (7)C10—C131.491 (8)
C1—H1A0.9900C10—C121.518 (8)
C1—H1B0.9900C10—C111.534 (8)
C2—C31.514 (8)C11—H11A0.9800
C2—H2A1.0000C11—H11C0.9800
C4—C51.450 (10)C11—H11D0.9800
C4—H4A0.9900C12—H12C0.9800
C4—H4B0.9900C12—H12D0.9800
C5—H5A0.9800C12—H12A0.9800
C5—H5B0.9800C13—H13C0.9800
C5—H5C0.9800C13—H13D0.9800
C6—C71.494 (13)C13—H13A0.9800
O1—S1—C1105.4 (2)C8—C7—H7116.5
O1—S1—C6108.6 (9)C6—C7—H7116.5
C1—S1—C696.2 (4)C7—C8—H8A120.0
O1—S1—C6A101.1 (18)C7—C8—H8B120.0
C1—S1—C6A94.6 (9)H8A—C8—H8B120.0
C3—O3—C4119.1 (5)C7A—C6A—S1109.5 (16)
C9—O5—C10121.2 (3)C7A—C6A—H6A1109.8
C9—N1—C2121.1 (4)S1—C6A—H6A1109.8
C9—N1—H1119.5C7A—C6A—H6A2109.8
C2—N1—H1119.5S1—C6A—H6A2109.8
C2—C1—S1110.3 (3)H6A1—C6A—H6A2108.2
C2—C1—H1A109.6C8A—C7A—C6A123 (4)
S1—C1—H1A109.6C8A—C7A—H7A118.6
C2—C1—H1B109.6C6A—C7A—H7A118.6
S1—C1—H1B109.6C7A—C8A—H8A1120.0
H1A—C1—H1B108.1C7A—C8A—H8A2120.0
N1—C2—C3113.9 (4)H8A1—C8A—H8A2120.0
N1—C2—C1111.7 (4)O4—C9—N1125.4 (4)
C3—C2—C1108.9 (4)O4—C9—O5125.0 (4)
N1—C2—H2A107.4N1—C9—O5109.6 (4)
C3—C2—H2A107.4O5—C10—C13110.2 (4)
C1—C2—H2A107.4O5—C10—C12110.3 (4)
O2—C3—O3123.3 (6)C13—C10—C12112.6 (4)
O2—C3—C2122.6 (6)O5—C10—C11102.5 (3)
O3—C3—C2114.0 (5)C13—C10—C11110.3 (5)
C5—C4—O3109.0 (5)C12—C10—C11110.5 (5)
C5—C4—H4A109.9C10—C11—H11A109.5
O3—C4—H4A109.9C10—C11—H11C109.5
C5—C4—H4B109.9H11A—C11—H11C109.5
O3—C4—H4B109.9C10—C11—H11D109.5
H4A—C4—H4B108.3H11A—C11—H11D109.5
C4—C5—H5A109.5H11C—C11—H11D109.5
C4—C5—H5B109.5C10—C12—H12C109.5
H5A—C5—H5B109.5C10—C12—H12D109.5
C4—C5—H5C109.5H12C—C12—H12D109.5
H5A—C5—H5C109.5C10—C12—H12A109.5
H5B—C5—H5C109.5H12C—C12—H12A109.5
C7—C6—S1111.5 (7)H12D—C12—H12A109.5
C7—C6—H6A109.3C10—C13—H13C109.5
S1—C6—H6A109.3C10—C13—H13D109.5
C7—C6—H6B109.3H13C—C13—H13D109.5
S1—C6—H6B109.3C10—C13—H13A109.5
H6A—C6—H6B108.0H13C—C13—H13A109.5
C8—C7—C6126.9 (18)H13D—C13—H13A109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.882.202.967 (5)145
Symmetry code: (i) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H23NO5S
Mr305.38
Crystal system, space groupMonoclinic, P21
Temperature (K)200
a, b, c (Å)5.1859 (6), 11.5202 (18), 14.009 (2)
β (°) 96.396 (8)
V3)831.7 (2)
Z2
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.38 × 0.12 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.711, 0.974
No. of measured, independent and
observed [I > 2σ(I)] reflections
3908, 2397, 1844
Rint0.070
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.164, 1.05
No. of reflections2397
No. of parameters196
No. of restraints4
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.30, 0.22
Absolute structureFlack (1983), 898 Friedel pairs
Absolute structure parameter0.08 (15)

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O4i0.882.202.967 (5)145
Symmetry code: (i) x+1, y, z.
 

Acknowledgements

The authors wish to acknowledge NSERC Canada and the University of Toronto for funding and the donors of the American Chemical Society Petroleum Research Fund for partial support of this research

References

First citationAllain, A., Kubiak, M., Jezowska-Trzebiatowska, B., Kozlowskai, H. & Glowiak, T. (1980). Inorg. Chim. Acta, 46, 127–133.  CSD CrossRef CAS Web of Science Google Scholar
First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFernandez, I. & Khiar, N. (2003). Chem. Rev. 103, 3651–3705.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationKolesov, B. A., Minkov, V. S., Boldyreva, E. V. & Drebushchak, T. N. (2008). J. Phys. Chem. B, 112, 12827–12839.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationNakamura, S., Goto, K., Kondo, M., Naito, S., Bando, M., Kido, M. & Shishido, K. (1996). Bioorg. Med. Chem. Lett. 6, 937–940.  CSD CrossRef CAS Web of Science Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationO'Donnell, J. S. & Schwan, A. L. (2003). Tetrahedron Lett. 44, 6293–6296.  Web of Science CrossRef CAS Google Scholar
First citationOlbe, L., Carlsson, E. & Lindberg, P. (2003). Nat. Rev. Drug. Discov. 2, 132–139.  Web of Science CrossRef PubMed CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationPaukov, I. E., Kovalevskaya, Y. A., Drebushchak, V. A., Drebushchak, T. N. & Boldyreva, E. V. (2007). J. Phys. Chem. B, 111, 9186–9188.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRose, P., Whiteman, M., Moore, P. K. & Zhu, Y. Z. (2005). Nat. Prod. Rep. 22, 351–368.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. P., Verdu, M. J., Lough, A. J. & Schwan, A. L. (2009). Acta Cryst. E65, o1387.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 65| Part 6| June 2009| Pages o1385-o1386
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds