organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Triclinic modification of N-[(1,1-di­methyl­eth­oxy)carbon­yl]-3-[(R)-prop-2-en-1-ylsulfin­yl]-(R)-alanine ethyl ester at 120 (1) K

aDepartment of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1, and bDepartment of Chemistry, University of Toronto, Toronto, Ontario, Canada M5S 3H6
*Correspondence e-mail: alough@chem.utoronto.ca

(Received 15 May 2009; accepted 19 May 2009; online 23 May 2009)

There are two independent mol­ecules in the asymmetric unit of the title compound, C13H23NO5S. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into two independent one-dimensional chains along [100]. The crystal studied was found to be a non-merohedral twin with a ratio of 0.615 (6):0.385 (1) for the refined components. At 200 (1) K [Singh et al. (2009[Singh, S. P., Verdu, M. J., Lough, A. J. & Schwan, A. L. (2009). Acta Cryst. E65, o1385-o1386.]). Acta Cryst. E65, o1385–o1386] the crystal structure of the title compound contains one disordered mol­ecule in the asymmetric unit of a monoclinic unit cell.

Related literature

For the crystal structure of the monlinic modification of the title compound at 200 (1) K and background information, see the preceding paper: Singh et al. (2009[Singh, S. P., Verdu, M. J., Lough, A. J. & Schwan, A. L. (2009). Acta Cryst. E65, o1385-o1386.]).

[Scheme 1]

Experimental

Crystal data
  • C13H23NO5S

  • Mr = 305.38

  • Triclinic, P 1

  • a = 5.1483 (5) Å

  • b = 11.6600 (15) Å

  • c = 13.6510 (19) Å

  • α = 88.884 (6)°

  • β = 82.681 (8)°

  • γ = 87.306 (8)°

  • V = 811.81 (17) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 120 K

  • 0.38 × 0.12 × 0.12 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-38.]) Tmin = 0.561, Tmax = 0.975

  • 4279 measured reflections

  • 4279 independent reflections

  • 3526 reflections with I > 2σ(I)

  • Rint = 0.12

Refinement
  • R[F2 > 2σ(F2)] = 0.093

  • wR(F2) = 0.261

  • S = 1.08

  • 4279 reflections

  • 362 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.50 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 1709 Friedel pairs

  • Flack parameter: −0.12 (18)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1A—H1AC⋯O4Ai 0.88 2.19 2.913 (9) 139
N1B—H1BC⋯O4Bii 0.88 2.20 2.904 (9) 137
Symmetry codes: (i) x-1, y, z; (ii) x+1, y, z.

Data collection: COLLECT (Nonius, 2002[Nonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO-SMN; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

For background information on the title compound see the previous paper (Singh et al., 2009).

The asymmetric unit of the title compound is shown in Fig. 1. It contains two indpendent moleclues [A and B] which have essentially the same conformation apart from the orientation of the propenyl groups (see Fig. 3). This difference is reflected in the the values of the S1—C6—C7—C8 torsion angles for molecules A and B which are -89.5 (13) and 112.2 (13)°, respectively. Data for the title compound were also collected at 200 (1) K and the crystal structure solves and refines in the monoclinic space group P21 (Singh et al., 2009) with one molecule in the asymmetric unit and a disordered propenyl group. The torsion angles for the S1—C6—C7—C8 sequence of atoms in the major and minor components of the disorder are -99 (1) and 107 (3). The same crystal was used for both determinations. In the crystal structure, intermolecular hydrogen bonds link molecules into two independent one-dimensional chains along [100] (Table 1, Fig. 2).

Related literature top

For the crystal structure of the monlinic modification of the title compound at 200 (1) K and background information, see the preceding paper: Singh et al. (2009).

Experimental top

For the synthetic procedure, see: Singh et al. (2009).

Refinement top

Hydrogen atoms were placed in calculated positions with C—H = 0.95–0.99; N—H = 0.88 Å and refined as riding with Uiso(H) = 1.2Ueq(C, N) or 1.5Ueq(methyl C). The crystal is a non-merohedral twin: an analysis using PLATON (Spek, 2009) gave the twin law -1 0 0, -0.205 1 - 0.023, 0 0 - 1 with the ratio of twin components being 0.615 (6):0.385 (1).

Computing details top

Data collection: COLLECT (Nonius, 2002); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The asymmetric of (I): displacement elllipsoids are drawn at the 30% probabilty level.
[Figure 2] Fig. 2. Part of the crystal structure of (I) showing hydrogen bonds as dashed lines.
[Figure 3] Fig. 3. Overlay of both independent molecules of the title compound. Molecule A is drawn in black.
N-[(1,1-dimethylethoxy)carbonyl]-3-[(R)-prop-2-en-1-ylsulfinyl]- (R)-alanine ethyl ester top
Crystal data top
C13H23NO5SZ = 2
Mr = 305.38F(000) = 328
Triclinic, P1Dx = 1.249 Mg m3
Hall symbol: P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.1483 (5) ÅCell parameters from 4279 reflections
b = 11.6600 (15) Åθ = 3.0–25.0°
c = 13.6510 (19) ŵ = 0.22 mm1
α = 88.884 (6)°T = 120 K
β = 82.681 (8)°Needle, colourless
γ = 87.306 (8)°0.38 × 0.12 × 0.12 mm
V = 811.81 (17) Å3
Data collection top
Nonius KappaCCD
diffractometer
4279 independent reflections
Radiation source: fine-focus sealed tube3526 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.12
Detector resolution: 9 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ scans and ω scans with κ offsetsh = 66
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1313
Tmin = 0.561, Tmax = 0.975l = 1516
4279 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.093H-atom parameters constrained
wR(F2) = 0.261 w = 1/[σ2(Fo2) + (0.1506P)2 + 0.8783P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.003
4279 reflectionsΔρmax = 0.76 e Å3
362 parametersΔρmin = 0.50 e Å3
3 restraintsAbsolute structure: Flack (1983), 1709 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.12 (18)
Crystal data top
C13H23NO5Sγ = 87.306 (8)°
Mr = 305.38V = 811.81 (17) Å3
Triclinic, P1Z = 2
a = 5.1483 (5) ÅMo Kα radiation
b = 11.6600 (15) ŵ = 0.22 mm1
c = 13.6510 (19) ÅT = 120 K
α = 88.884 (6)°0.38 × 0.12 × 0.12 mm
β = 82.681 (8)°
Data collection top
Nonius KappaCCD
diffractometer
4279 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
3526 reflections with I > 2σ(I)
Tmin = 0.561, Tmax = 0.975Rint = 0.12
4279 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.093H-atom parameters constrained
wR(F2) = 0.261Δρmax = 0.76 e Å3
S = 1.08Δρmin = 0.50 e Å3
4279 reflectionsAbsolute structure: Flack (1983), 1709 Friedel pairs
362 parametersAbsolute structure parameter: 0.12 (18)
3 restraints
Special details top

Experimental. Absorption correction: multi-scan from symmetry-related measurements (SORTAV; Blessing, 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S1A0.2491 (4)0.89719 (19)0.70483 (18)0.0441 (7)
O1A0.5083 (12)0.9001 (5)0.7397 (6)0.050 (2)
O2A0.046 (3)0.6226 (7)0.9264 (8)0.115 (4)
O3A0.1256 (13)0.4856 (5)0.8249 (6)0.0507 (17)
O4A0.7047 (11)0.5997 (5)0.6652 (5)0.0413 (15)
O5A0.4606 (12)0.5281 (6)0.5530 (5)0.0463 (16)
N1A0.2589 (14)0.6302 (6)0.6753 (6)0.0383 (18)
H1AC0.12450.63030.64150.046*
C1A0.0703 (18)0.7904 (8)0.7809 (8)0.042 (2)
H1AA0.04120.81580.85040.051*
H1AB0.10310.78210.75830.051*
C2A0.2212 (19)0.6762 (8)0.7748 (8)0.042 (2)
H2AA0.39900.68920.79340.051*
C3A0.088 (2)0.5935 (8)0.8518 (9)0.051 (3)
C4A0.010 (2)0.3966 (9)0.8887 (8)0.045 (2)
H4AA0.10430.32590.88860.054*
H4AB0.04650.42430.95740.054*
C5A0.256 (2)0.3713 (10)0.8523 (8)0.052 (3)
H5AA0.34350.31200.89430.078*
H5AB0.21860.34380.78430.078*
H5AC0.36940.44120.85370.078*
C6A0.058 (2)1.0212 (9)0.7578 (10)0.053 (3)
H6AA0.13031.01010.75600.063*
H6AB0.08701.02860.82770.063*
C7A0.135 (2)1.1285 (9)0.7021 (10)0.060 (3)
H7A0.04291.15080.64830.072*
C8A0.317 (3)1.1927 (11)0.7218 (13)0.081 (4)
H8A10.41371.17300.77500.097*
H8A20.35541.25980.68310.097*
C9A0.4911 (15)0.5880 (7)0.6343 (7)0.0332 (19)
C10A0.6878 (18)0.4846 (8)0.4849 (7)0.045 (2)
C11A0.558 (2)0.4260 (10)0.4071 (9)0.057 (3)
H11A0.45710.48320.37230.086*
H11B0.44120.36850.43870.086*
H11C0.69330.38820.35980.086*
C12A0.849 (2)0.5805 (8)0.4435 (8)0.051 (3)
H12A0.73950.63560.40980.077*
H12B0.99410.55040.39640.077*
H12C0.91830.61900.49710.077*
C13A0.846 (2)0.3923 (9)0.5393 (9)0.052 (3)
H13A0.92970.42910.59040.077*
H13B0.98120.35500.49180.077*
H13C0.72770.33480.57000.077*
S1B0.1520 (4)0.40207 (18)0.18589 (17)0.0407 (6)
O1B0.1088 (12)0.4057 (5)0.1524 (5)0.0425 (17)
O2B0.467 (2)0.1249 (6)0.0308 (7)0.084 (3)
O3B0.3134 (13)0.0110 (5)0.0748 (5)0.0487 (17)
O4B0.2688 (11)0.1054 (5)0.2279 (5)0.0411 (15)
O5B0.0182 (11)0.0315 (6)0.3428 (5)0.0444 (16)
N1B0.1704 (14)0.1343 (6)0.2209 (6)0.0372 (18)
H1BC0.30290.13400.25570.045*
C1B0.3469 (17)0.2925 (8)0.1143 (8)0.041 (2)
H1BA0.38310.31860.04470.050*
H1BB0.51670.27890.14040.050*
C2B0.2017 (18)0.1810 (8)0.1194 (8)0.041 (2)
H2BA0.02310.19860.10000.050*
C3B0.342 (2)0.0972 (8)0.0474 (8)0.047 (2)
C4B0.455 (2)0.1020 (9)0.0122 (10)0.054 (3)
H4BA0.47690.07650.05790.065*
H4BB0.35480.17270.01790.065*
C5B0.718 (2)0.1254 (10)0.0464 (9)0.059 (3)
H5BA0.81620.18500.00550.089*
H5BB0.69470.15150.11550.089*
H5BC0.81580.05490.04070.089*
C6B0.322 (2)0.5239 (8)0.1283 (9)0.045 (2)
H6BA0.50680.51930.14140.054*
H6BB0.31980.52240.05590.054*
C7B0.190 (2)0.6333 (9)0.1687 (10)0.056 (3)
H7B0.01910.65280.15290.067*
C8B0.293 (3)0.7024 (11)0.2231 (11)0.071 (4)
H8B10.46390.68560.24030.086*
H8B20.19800.77050.24620.086*
C9B0.0584 (16)0.0921 (7)0.2610 (7)0.035 (2)
C10B0.2460 (17)0.0139 (8)0.4090 (8)0.044 (2)
C11B0.107 (2)0.0749 (11)0.4897 (9)0.061 (3)
H11D0.02140.01820.52530.092*
H11E0.02570.13100.45930.092*
H11F0.23520.11450.53590.092*
C12B0.4219 (18)0.0843 (9)0.4501 (8)0.052 (3)
H12D0.50830.12140.39710.078*
H12E0.31770.14020.47870.078*
H12F0.55470.05570.50140.078*
C13B0.3820 (19)0.1009 (8)0.3539 (8)0.047 (3)
H13D0.47220.06110.30310.070*
H13E0.50980.14040.40040.070*
H13F0.25140.15710.32260.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S1A0.0443 (15)0.0370 (13)0.0497 (18)0.0002 (10)0.0016 (12)0.0016 (11)
O1A0.034 (4)0.035 (4)0.078 (6)0.003 (3)0.000 (4)0.011 (3)
O2A0.223 (12)0.033 (4)0.065 (7)0.014 (5)0.062 (8)0.006 (4)
O3A0.055 (4)0.038 (4)0.058 (5)0.005 (3)0.003 (3)0.007 (3)
O4A0.035 (3)0.040 (3)0.049 (4)0.001 (3)0.006 (3)0.003 (3)
O5A0.041 (4)0.055 (4)0.043 (4)0.004 (3)0.003 (3)0.015 (3)
N1A0.034 (4)0.046 (4)0.036 (5)0.002 (3)0.011 (3)0.001 (4)
C1A0.036 (5)0.045 (5)0.045 (6)0.000 (4)0.003 (4)0.002 (5)
C2A0.050 (6)0.034 (5)0.043 (6)0.001 (4)0.008 (4)0.003 (4)
C3A0.058 (6)0.043 (6)0.049 (7)0.003 (4)0.003 (5)0.008 (5)
C4A0.046 (6)0.050 (6)0.040 (6)0.002 (4)0.004 (5)0.005 (5)
C5A0.060 (7)0.059 (6)0.039 (6)0.019 (5)0.010 (5)0.019 (5)
C6A0.055 (6)0.038 (5)0.064 (8)0.004 (4)0.003 (5)0.001 (5)
C7A0.057 (7)0.051 (7)0.071 (9)0.007 (5)0.001 (6)0.012 (6)
C8A0.073 (8)0.061 (8)0.105 (12)0.016 (6)0.016 (8)0.019 (8)
C9A0.029 (5)0.028 (4)0.043 (6)0.001 (3)0.009 (4)0.006 (4)
C10A0.043 (5)0.045 (5)0.044 (6)0.002 (4)0.001 (4)0.001 (4)
C11A0.044 (6)0.083 (8)0.044 (7)0.004 (5)0.004 (5)0.021 (6)
C12A0.054 (6)0.043 (5)0.056 (7)0.001 (4)0.001 (5)0.003 (5)
C13A0.046 (6)0.045 (6)0.061 (8)0.001 (4)0.006 (5)0.004 (5)
S1B0.0410 (14)0.0346 (13)0.0462 (17)0.0050 (9)0.0031 (11)0.0014 (10)
O1B0.039 (4)0.035 (4)0.053 (5)0.005 (3)0.004 (3)0.002 (3)
O2B0.151 (9)0.035 (4)0.057 (6)0.020 (4)0.034 (6)0.001 (4)
O3B0.056 (4)0.035 (4)0.053 (5)0.002 (3)0.001 (3)0.002 (3)
O4B0.033 (3)0.043 (4)0.047 (4)0.003 (3)0.006 (3)0.008 (3)
O5B0.038 (4)0.051 (4)0.045 (4)0.008 (3)0.006 (3)0.009 (3)
N1B0.032 (4)0.045 (4)0.036 (5)0.009 (3)0.008 (3)0.002 (4)
C1B0.031 (5)0.042 (5)0.051 (7)0.002 (4)0.003 (4)0.004 (5)
C2B0.035 (5)0.035 (5)0.055 (7)0.005 (4)0.007 (4)0.003 (4)
C3B0.054 (6)0.035 (5)0.052 (7)0.006 (4)0.011 (5)0.004 (5)
C4B0.074 (7)0.027 (5)0.059 (8)0.003 (4)0.005 (6)0.000 (5)
C5B0.060 (7)0.054 (6)0.061 (8)0.010 (5)0.002 (5)0.015 (6)
C6B0.040 (5)0.040 (5)0.054 (7)0.006 (4)0.002 (4)0.002 (4)
C7B0.049 (6)0.045 (6)0.073 (9)0.006 (5)0.003 (6)0.001 (6)
C8B0.066 (7)0.050 (7)0.094 (11)0.009 (5)0.008 (7)0.009 (7)
C9B0.034 (5)0.031 (4)0.039 (6)0.005 (3)0.001 (4)0.003 (4)
C10B0.042 (5)0.044 (5)0.044 (6)0.005 (4)0.002 (4)0.005 (4)
C11B0.054 (6)0.077 (8)0.050 (7)0.013 (5)0.002 (5)0.017 (6)
C12B0.042 (5)0.063 (7)0.049 (7)0.011 (5)0.003 (5)0.013 (5)
C13B0.048 (6)0.043 (6)0.048 (7)0.006 (4)0.000 (5)0.005 (5)
Geometric parameters (Å, º) top
S1A—O1A1.475 (7)S1B—O1B1.471 (7)
S1A—C1A1.814 (10)S1B—C1B1.809 (10)
S1A—C6A1.818 (11)S1B—C6B1.816 (11)
O2A—C3A1.200 (14)O2B—C3B1.220 (13)
O3A—C3A1.316 (12)O3B—C3B1.319 (12)
O3A—C4A1.483 (13)O3B—C4B1.481 (13)
O4A—C9A1.241 (10)O4B—C9B1.228 (10)
O5A—C9A1.353 (11)O5B—C9B1.344 (11)
O5A—C10A1.475 (11)O5B—C10B1.497 (11)
N1A—C9A1.330 (11)N1B—C9B1.345 (11)
N1A—C2A1.456 (13)N1B—C2B1.471 (13)
N1A—H1AC0.8800N1B—H1BC0.8800
C1A—C2A1.508 (12)C1B—C2B1.526 (13)
C1A—H1AA0.9900C1B—H1BA0.9900
C1A—H1AB0.9900C1B—H1BB0.9900
C2A—C3A1.532 (15)C2B—C3B1.495 (14)
C2A—H2AA1.0000C2B—H2BA1.0000
C4A—C5A1.461 (14)C4B—C5B1.500 (16)
C4A—H4AA0.9900C4B—H4BA0.9900
C4A—H4AB0.9900C4B—H4BB0.9900
C5A—H5AA0.9800C5B—H5BA0.9800
C5A—H5AB0.9800C5B—H5BB0.9800
C5A—H5AC0.9800C5B—H5BC0.9800
C6A—C7A1.494 (17)C6B—C7B1.497 (14)
C6A—H6AA0.9900C6B—H6BA0.9900
C6A—H6AB0.9900C6B—H6BB0.9900
C7A—C8A1.283 (17)C7B—C8B1.282 (17)
C7A—H7A0.9500C7B—H7B0.9500
C8A—H8A10.9500C8B—H8B10.9500
C8A—H8A20.9500C8B—H8B20.9500
C10A—C12A1.483 (14)C10B—C12B1.498 (13)
C10A—C11A1.513 (14)C10B—C13B1.521 (14)
C10A—C13A1.554 (14)C10B—C11B1.535 (15)
C11A—H11A0.9800C11B—H11D0.9800
C11A—H11B0.9800C11B—H11E0.9800
C11A—H11C0.9800C11B—H11F0.9800
C12A—H12A0.9800C12B—H12D0.9800
C12A—H12B0.9800C12B—H12E0.9800
C12A—H12C0.9800C12B—H12F0.9800
C13A—H13A0.9800C13B—H13D0.9800
C13A—H13B0.9800C13B—H13E0.9800
C13A—H13C0.9800C13B—H13F0.9800
O1A—S1A—C1A106.2 (4)O1B—S1B—C1B106.4 (4)
O1A—S1A—C6A106.3 (5)O1B—S1B—C6B106.8 (4)
C1A—S1A—C6A96.2 (5)C1B—S1B—C6B96.5 (5)
C3A—O3A—C4A118.2 (8)C3B—O3B—C4B118.7 (8)
C9A—O5A—C10A121.6 (7)C9B—O5B—C10B120.0 (6)
C9A—N1A—C2A121.8 (8)C9B—N1B—C2B120.8 (8)
C9A—N1A—H1AC119.1C9B—N1B—H1BC119.6
C2A—N1A—H1AC119.1C2B—N1B—H1BC119.6
C2A—C1A—S1A110.4 (7)C2B—C1B—S1B110.2 (6)
C2A—C1A—H1AA109.6C2B—C1B—H1BA109.6
S1A—C1A—H1AA109.6S1B—C1B—H1BA109.6
C2A—C1A—H1AB109.6C2B—C1B—H1BB109.6
S1A—C1A—H1AB109.6S1B—C1B—H1BB109.6
H1AA—C1A—H1AB108.1H1BA—C1B—H1BB108.1
N1A—C2A—C1A112.7 (8)N1B—C2B—C3B112.1 (8)
N1A—C2A—C3A113.1 (8)N1B—C2B—C1B110.4 (8)
C1A—C2A—C3A109.1 (8)C3B—C2B—C1B109.9 (8)
N1A—C2A—H2AA107.2N1B—C2B—H2BA108.1
C1A—C2A—H2AA107.2C3B—C2B—H2BA108.1
C3A—C2A—H2AA107.2C1B—C2B—H2BA108.1
O2A—C3A—O3A123.0 (10)O2B—C3B—O3B122.5 (10)
O2A—C3A—C2A124.6 (9)O2B—C3B—C2B123.8 (9)
O3A—C3A—C2A112.3 (9)O3B—C3B—C2B113.6 (9)
C5A—C4A—O3A109.9 (8)O3B—C4B—C5B108.1 (9)
C5A—C4A—H4AA109.7O3B—C4B—H4BA110.1
O3A—C4A—H4AA109.7C5B—C4B—H4BA110.1
C5A—C4A—H4AB109.7O3B—C4B—H4BB110.1
O3A—C4A—H4AB109.7C5B—C4B—H4BB110.1
H4AA—C4A—H4AB108.2H4BA—C4B—H4BB108.4
C4A—C5A—H5AA109.5C4B—C5B—H5BA109.5
C4A—C5A—H5AB109.5C4B—C5B—H5BB109.5
H5AA—C5A—H5AB109.5H5BA—C5B—H5BB109.5
C4A—C5A—H5AC109.5C4B—C5B—H5BC109.5
H5AA—C5A—H5AC109.5H5BA—C5B—H5BC109.5
H5AB—C5A—H5AC109.5H5BB—C5B—H5BC109.5
C7A—C6A—S1A110.9 (8)C7B—C6B—S1B109.7 (8)
C7A—C6A—H6AA109.5C7B—C6B—H6BA109.7
S1A—C6A—H6AA109.5S1B—C6B—H6BA109.7
C7A—C6A—H6AB109.5C7B—C6B—H6BB109.7
S1A—C6A—H6AB109.5S1B—C6B—H6BB109.7
H6AA—C6A—H6AB108.1H6BA—C6B—H6BB108.2
C8A—C7A—C6A124.6 (14)C8B—C7B—C6B124.5 (11)
C8A—C7A—H7A117.7C8B—C7B—H7B117.8
C6A—C7A—H7A117.7C6B—C7B—H7B117.8
C7A—C8A—H8A1120.0C7B—C8B—H8B1120.0
C7A—C8A—H8A2120.0C7B—C8B—H8B2120.0
H8A1—C8A—H8A2120.0H8B1—C8B—H8B2120.0
O4A—C9A—N1A126.2 (8)O4B—C9B—O5B125.5 (7)
O4A—C9A—O5A124.3 (7)O4B—C9B—N1B125.9 (8)
N1A—C9A—O5A109.5 (7)O5B—C9B—N1B108.7 (7)
O5A—C10A—C12A110.6 (7)O5B—C10B—C12B109.5 (7)
O5A—C10A—C11A102.4 (7)O5B—C10B—C13B109.9 (8)
C12A—C10A—C11A112.5 (9)C12B—C10B—C13B114.2 (8)
O5A—C10A—C13A109.3 (8)O5B—C10B—C11B101.2 (7)
C12A—C10A—C13A113.0 (8)C12B—C10B—C11B111.3 (9)
C11A—C10A—C13A108.6 (9)C13B—C10B—C11B110.0 (9)
C10A—C11A—H11A109.5C10B—C11B—H11D109.5
C10A—C11A—H11B109.5C10B—C11B—H11E109.5
H11A—C11A—H11B109.5H11D—C11B—H11E109.5
C10A—C11A—H11C109.5C10B—C11B—H11F109.5
H11A—C11A—H11C109.5H11D—C11B—H11F109.5
H11B—C11A—H11C109.5H11E—C11B—H11F109.5
C10A—C12A—H12A109.5C10B—C12B—H12D109.5
C10A—C12A—H12B109.5C10B—C12B—H12E109.5
H12A—C12A—H12B109.5H12D—C12B—H12E109.5
C10A—C12A—H12C109.5C10B—C12B—H12F109.5
H12A—C12A—H12C109.5H12D—C12B—H12F109.5
H12B—C12A—H12C109.5H12E—C12B—H12F109.5
C10A—C13A—H13A109.5C10B—C13B—H13D109.5
C10A—C13A—H13B109.5C10B—C13B—H13E109.5
H13A—C13A—H13B109.5H13D—C13B—H13E109.5
C10A—C13A—H13C109.5C10B—C13B—H13F109.5
H13A—C13A—H13C109.5H13D—C13B—H13F109.5
H13B—C13A—H13C109.5H13E—C13B—H13F109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AC···O4Ai0.882.192.913 (9)139
N1B—H1BC···O4Bii0.882.202.904 (9)137
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.

Experimental details

Crystal data
Chemical formulaC13H23NO5S
Mr305.38
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)5.1483 (5), 11.6600 (15), 13.6510 (19)
α, β, γ (°)88.884 (6), 82.681 (8), 87.306 (8)
V3)811.81 (17)
Z2
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.38 × 0.12 × 0.12
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.561, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
4279, 4279, 3526
Rint0.12
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.093, 0.261, 1.08
No. of reflections4279
No. of parameters362
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.76, 0.50
Absolute structureFlack (1983), 1709 Friedel pairs
Absolute structure parameter0.12 (18)

Computer programs: COLLECT (Nonius, 2002), DENZO-SMN (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1A—H1AC···O4Ai0.882.192.913 (9)139
N1B—H1BC···O4Bii0.882.202.904 (9)137
Symmetry codes: (i) x1, y, z; (ii) x+1, y, z.
 

Acknowledgements

The authors wish to acknowledge NSERC Canada and the University of Toronto for funding and the donors of the American Chemical Society Petroleum Research Fund for support of this research.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–38.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationNonius (2002). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, S. P., Verdu, M. J., Lough, A. J. & Schwan, A. L. (2009). Acta Cryst. E65, o1385–o1386.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds