organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

6-(1-Adamant­yl)-3-(2-fluoro­phen­yl)-1,2,4-triazolo[3,4-b][1,3,4]thia­diazole

aDepartment of Chemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan, bDepartment of Physics, University of Sargodha, Sargodha, Pakistan, and cDepartment of Chemistry, Government College University, Lahore, Pakistan
*Correspondence e-mail: dmntahir_uos@yahoo.com

(Received 24 May 2009; accepted 24 May 2009; online 29 May 2009)

In the title compound, C19H19FN4S, the planes of the 2-fluoro­phenyl and 1,2,4-triazolo[3,4-b][1,3,4]thia­diazole ring systems are oriented at a dihedral angle of 48.98 (6)°. In the crystal, weak C—H⋯S and C—H⋯π inter­actions may help to establish the packing and ππ inter­actions between the centroids of the benzene rings at a distance of 3.8792 (13) Å occur.

Related literature

For a related structure, see: Holm et al. (2008[Holm, M., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o700.]). For our previous studies on related compounds, see: Akhtar et al. (2007[Akhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316-322.], 2008a[Akhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008a). Acta Pharm. 58, 135-149.],b[Akhtar, T., Hameed, S., Khan, K. M. & Choudhary, M. I. (2008b). Med. Chem. 4, 539-543.]). For background to the biological activity of related compounds, see: El-Emam et al. (2004[El-Emam, A. A., Al-Deeb, O. A., Al-Omara, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107-5113.]); Kadi et al. (2007[Kadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235-242.]); Zhang et al. (2002[Zhang, L. X., Zhang, A. J., Chen, X. X., Lei, X. X., Nan, X. Y., Chen, D. Y. & Zhang, Z. Y. (2002). Molecules, 7, 681-689.]).

[Scheme 1]

Experimental

Crystal data
  • C19H19FN4S

  • Mr = 354.44

  • Orthorhombic, P b c a

  • a = 13.2684 (9) Å

  • b = 12.4293 (9) Å

  • c = 20.2231 (15) Å

  • V = 3335.1 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.25 × 0.22 × 0.20 mm

Data collection
  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005[Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.945, Tmax = 0.956

  • 22695 measured reflections

  • 4486 independent reflections

  • 3116 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.136

  • S = 1.04

  • 4486 reflections

  • 235 parameters

  • H-atom parameters constrained

  • Δρmax = 0.35 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15A⋯S1i 0.97 2.84 3.640 (2) 140
C12—H12⋯Cg1ii 0.98 2.90 3.713 (2) 140
C18—H18BCg1iii 0.97 2.83 3.787 (3) 170
Symmetry codes: (i) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (ii) [-x+1, y+{\script{1\over 2}}, -z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, y, -z+{\script{1\over 2}}]. Cg1 is the centroid of the S1/C8/N3/N4/C9 ring.

Data collection: APEX2 (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]) and PLATON.

Supporting information


Comment top

Five membered heterocycles bearing adamantyl moiety are gaining importance due to their promising biological activities (El-Emam et al., 2004; Kadi et al., 2007). On the other hand the condensed heterocyclic systems e.g., triazolothiadiazoles exhibit numerous biological activities (Zhang et al., 2002). In continuation of our previous studeis (Akhtar et al., 2007, 2008a, 2008b), the title compound, (I), (Fig. 1), has been synthesized with the hope that it will possess antiviral and anticancer activity. The crystal structure of (II) 3-(2-Fluorophenyl)-6-(phenoxymethyl)-1,2,4- triazolo(3,4 - b)(1,3,4)thiadiazole (Holm, et al., 2008) has been published which has a common moiety as in (I).

In (I), the ring A (C1—C6) along with F1-atom and two [(C7/N1/N2/C8/N3) & (C8/S1/C9/N4/N3)] fused heterocyclic rings B (C7/N1/N2/C8/S1/C9/N4/N3) are planar and oriented at a dihedral angle of 48.98 (6)°. There exist ππ interaction between the centroids, CgA—CgAi [symmetry code: i = 1 - x, -y, 1 - z], of benzene rings at a distance of 3.8792 (13) Å. In the crystal, the packing is consolidated by H-bonding (Fig 2) and C—H···π interactions (Table 1).

Related literature top

For a related structure, see: Holm et al. (2008). For our previous studies on related compounds, see: Akhtar et al. (2007, 2008a,b). For background to the biological activity of related compounds, see: El-Emam et al. (2004); Kadi et al. (2007); Zhang et al. (2002). Cg1 is the centroid of the S1/C8/N3/N4/C9 ring.

Experimental top

A mixture of 4-amino-5-(2-fluorophenyl)-2H-1,2,4-triazole-3(4H)-thione (0.2 g, 0.56 mmol) and adamantane-1-carboxylic acid (0.10 g, 0.56 mmol) in the presence of POCl3 (5 ml) was refluxed for four hours. The reaction mixture was cooled to room temperature, poured into crushed ice and neutralized using solid potassium carbonate until pH was 8. The precipitated solid was filtered, washed with excess water and recrystallized from chloroform to yield colourless prisms of (I).

Refinement top

H-atoms were positioned in calculated positions with C-H = 0.93–0.98 Å and refined as riding with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. View of (I) with displacement ellipsoids drawn at the 30% probability level. H-atoms are shown by small spheres of arbitrary radius.
[Figure 2] Fig. 2. Partial packing diagram for (I) showing the C—H···S interaction as a dashed line.
6-(1-Adamantyl)-3-(2-fluorophenyl)-1,2,4- triazolo[3,4-b][1,3,4]thiadiazole top
Crystal data top
C19H19FN4SF(000) = 1488
Mr = 354.44Dx = 1.412 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3116 reflections
a = 13.2684 (9) Åθ = 2.5–29.1°
b = 12.4293 (9) ŵ = 0.21 mm1
c = 20.2231 (15) ÅT = 296 K
V = 3335.1 (4) Å3Prism, colourless
Z = 80.25 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4486 independent reflections
Radiation source: fine-focus sealed tube3116 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
Detector resolution: 7.40 pixels mm-1θmax = 29.1°, θmin = 2.5°
ω scansh = 1218
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
k = 1714
Tmin = 0.945, Tmax = 0.956l = 2627
22695 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0579P)2 + 1.3259P]
where P = (Fo2 + 2Fc2)/3
4486 reflections(Δ/σ)max < 0.001
235 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C19H19FN4SV = 3335.1 (4) Å3
Mr = 354.44Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 13.2684 (9) ŵ = 0.21 mm1
b = 12.4293 (9) ÅT = 296 K
c = 20.2231 (15) Å0.25 × 0.22 × 0.20 mm
Data collection top
Bruker Kappa APEXII CCD
diffractometer
4486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3116 reflections with I > 2σ(I)
Tmin = 0.945, Tmax = 0.956Rint = 0.031
22695 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.136H-atom parameters constrained
S = 1.04Δρmax = 0.35 e Å3
4486 reflectionsΔρmin = 0.28 e Å3
235 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.25232 (4)0.15058 (4)0.23126 (2)0.0517 (2)
F10.35571 (14)0.27396 (11)0.52074 (7)0.0839 (6)
N10.20243 (13)0.22822 (13)0.41446 (9)0.0543 (6)
N20.17459 (14)0.24778 (14)0.34844 (9)0.0591 (6)
N30.29443 (10)0.12526 (11)0.35182 (7)0.0360 (4)
N40.36117 (10)0.05549 (11)0.32199 (7)0.0343 (4)
C10.32252 (13)0.10525 (14)0.47314 (9)0.0392 (5)
C20.36251 (16)0.16551 (17)0.52410 (10)0.0517 (6)
C30.41073 (19)0.1200 (2)0.57717 (10)0.0639 (8)
C40.41784 (17)0.0094 (2)0.58048 (10)0.0611 (8)
C50.37749 (16)0.05301 (18)0.53119 (10)0.0549 (7)
C60.33120 (14)0.00584 (15)0.47758 (9)0.0463 (6)
C70.27374 (13)0.15494 (14)0.41576 (9)0.0403 (5)
C80.23167 (13)0.18403 (14)0.31343 (10)0.0437 (5)
C90.34740 (12)0.06062 (13)0.25887 (8)0.0348 (5)
C100.40431 (12)0.00535 (13)0.20943 (8)0.0337 (4)
C110.48759 (15)0.07039 (18)0.24376 (9)0.0504 (6)
C120.54359 (15)0.13979 (18)0.19241 (10)0.0543 (7)
C130.47109 (16)0.21626 (17)0.15982 (11)0.0581 (7)
C140.38813 (17)0.15387 (18)0.12638 (12)0.0626 (8)
C150.33138 (15)0.08502 (16)0.17677 (11)0.0527 (6)
C160.4512 (2)0.06639 (17)0.15637 (11)0.0657 (8)
C170.5082 (3)0.0039 (2)0.10590 (12)0.0802 (9)
C180.59042 (18)0.0674 (2)0.14102 (13)0.0730 (9)
C190.4329 (3)0.0822 (2)0.07399 (11)0.0855 (10)
H30.438120.162930.610280.0767*
H40.450040.022860.616190.0733*
H50.381430.127570.534000.0658*
H60.305450.048880.443970.0555*
H11A0.458180.116290.277420.0604*
H11B0.534680.021850.265120.0604*
H120.596730.180970.214600.0651*
H13A0.442450.264090.192730.0697*
H13B0.506520.259660.127440.0697*
H140.340990.204330.105640.0751*
H15A0.301450.130910.210220.0633*
H15B0.277640.045950.154830.0633*
H16A0.497350.117050.176700.0789*
H16B0.398770.106920.134050.0789*
H170.538360.041910.071760.0963*
H18A0.627420.110320.109150.0876*
H18B0.637340.018260.162030.0876*
H19A0.379720.042080.052160.1027*
H19B0.466940.125700.041030.1027*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0578 (3)0.0481 (3)0.0492 (3)0.0163 (2)0.0141 (2)0.0060 (2)
F10.1293 (14)0.0492 (8)0.0733 (9)0.0040 (8)0.0198 (9)0.0189 (7)
N10.0552 (10)0.0455 (9)0.0623 (11)0.0141 (8)0.0018 (8)0.0070 (8)
N20.0611 (10)0.0483 (9)0.0678 (12)0.0202 (8)0.0068 (9)0.0020 (9)
N30.0342 (7)0.0312 (7)0.0427 (8)0.0025 (5)0.0031 (6)0.0002 (6)
N40.0330 (7)0.0324 (7)0.0375 (7)0.0016 (5)0.0019 (6)0.0014 (6)
C10.0351 (8)0.0425 (9)0.0401 (9)0.0011 (7)0.0052 (7)0.0042 (7)
C20.0615 (12)0.0487 (11)0.0450 (10)0.0004 (9)0.0043 (9)0.0110 (9)
C30.0733 (15)0.0777 (16)0.0407 (10)0.0016 (12)0.0069 (10)0.0148 (10)
C40.0616 (13)0.0810 (16)0.0406 (10)0.0128 (12)0.0007 (9)0.0047 (10)
C50.0585 (12)0.0528 (12)0.0533 (12)0.0067 (10)0.0026 (10)0.0077 (9)
C60.0470 (10)0.0432 (10)0.0487 (10)0.0015 (8)0.0022 (8)0.0024 (8)
C70.0390 (9)0.0342 (8)0.0478 (10)0.0005 (7)0.0006 (7)0.0048 (7)
C80.0425 (9)0.0356 (9)0.0530 (10)0.0064 (7)0.0083 (8)0.0036 (8)
C90.0338 (8)0.0313 (7)0.0394 (9)0.0013 (6)0.0055 (7)0.0054 (7)
C100.0355 (8)0.0340 (8)0.0315 (7)0.0043 (6)0.0038 (6)0.0048 (6)
C110.0423 (10)0.0682 (13)0.0406 (9)0.0147 (9)0.0045 (8)0.0014 (9)
C120.0401 (10)0.0728 (14)0.0499 (11)0.0137 (9)0.0001 (8)0.0052 (10)
C130.0550 (12)0.0478 (11)0.0716 (14)0.0041 (9)0.0134 (11)0.0044 (10)
C140.0527 (12)0.0602 (13)0.0748 (15)0.0024 (10)0.0127 (11)0.0291 (12)
C150.0402 (10)0.0453 (10)0.0727 (13)0.0009 (8)0.0095 (9)0.0140 (10)
C160.0922 (18)0.0451 (11)0.0599 (13)0.0105 (11)0.0243 (12)0.0122 (10)
C170.123 (2)0.0619 (15)0.0558 (13)0.0071 (15)0.0433 (15)0.0135 (12)
C180.0537 (13)0.0819 (17)0.0834 (17)0.0217 (12)0.0285 (12)0.0241 (14)
C190.114 (2)0.105 (2)0.0374 (11)0.0375 (19)0.0114 (13)0.0115 (13)
Geometric parameters (Å, º) top
S1—C81.735 (2)C14—C151.529 (3)
S1—C91.7758 (17)C14—C191.506 (4)
F1—C21.353 (3)C16—C171.542 (4)
N1—N21.407 (3)C17—C181.522 (4)
N1—C71.314 (2)C17—C191.537 (5)
N2—C81.305 (3)C3—H30.9300
N3—N41.3784 (19)C4—H40.9300
N3—C71.372 (2)C5—H50.9300
N3—C81.353 (2)C6—H60.9300
N4—C91.291 (2)C11—H11A0.9700
C1—C21.380 (3)C11—H11B0.9700
C1—C61.389 (3)C12—H120.9800
C1—C71.465 (3)C13—H13A0.9700
C2—C31.372 (3)C13—H13B0.9700
C3—C41.380 (4)C14—H140.9800
C4—C51.372 (3)C15—H15A0.9700
C5—C61.377 (3)C15—H15B0.9700
C9—C101.497 (2)C16—H16A0.9700
C10—C111.535 (3)C16—H16B0.9700
C10—C151.534 (3)C17—H170.9800
C10—C161.528 (3)C18—H18A0.9700
C11—C121.541 (3)C18—H18B0.9700
C12—C131.504 (3)C19—H19A0.9700
C12—C181.509 (3)C19—H19B0.9700
C13—C141.507 (3)
C8—S1—C987.82 (8)C2—C3—H3121.00
N2—N1—C7109.15 (16)C4—C3—H3121.00
N1—N2—C8104.93 (16)C3—C4—H4120.00
N4—N3—C7135.23 (14)C5—C4—H4120.00
N4—N3—C8118.95 (14)C4—C5—H5120.00
C7—N3—C8105.81 (14)C6—C5—H5120.00
N3—N4—C9108.10 (13)C1—C6—H6120.00
C2—C1—C6117.36 (17)C5—C6—H6120.00
C2—C1—C7122.17 (17)C10—C11—H11A110.00
C6—C1—C7120.47 (16)C10—C11—H11B110.00
F1—C2—C1118.53 (18)C12—C11—H11A110.00
F1—C2—C3118.78 (19)C12—C11—H11B110.00
C1—C2—C3122.7 (2)H11A—C11—H11B108.00
C2—C3—C4118.7 (2)C11—C12—H12109.00
C3—C4—C5120.1 (2)C13—C12—H12109.00
C4—C5—C6120.4 (2)C18—C12—H12109.00
C1—C6—C5120.75 (18)C12—C13—H13A110.00
N1—C7—N3108.16 (16)C12—C13—H13B110.00
N1—C7—C1128.78 (17)C14—C13—H13A110.00
N3—C7—C1122.99 (15)C14—C13—H13B110.00
S1—C8—N2139.20 (16)H13A—C13—H13B108.00
S1—C8—N3108.85 (13)C13—C14—H14109.00
N2—C8—N3111.95 (18)C15—C14—H14109.00
S1—C9—N4116.26 (12)C19—C14—H14109.00
S1—C9—C10119.54 (12)C10—C15—H15A110.00
N4—C9—C10124.18 (15)C10—C15—H15B110.00
C9—C10—C11110.45 (14)C14—C15—H15A110.00
C9—C10—C15108.84 (14)C14—C15—H15B110.00
C9—C10—C16110.78 (14)H15A—C15—H15B108.00
C11—C10—C15107.99 (15)C10—C16—H16A110.00
C11—C10—C16109.38 (16)C10—C16—H16B110.00
C15—C10—C16109.35 (15)C17—C16—H16A110.00
C10—C11—C12109.70 (15)C17—C16—H16B110.00
C11—C12—C13109.91 (17)H16A—C16—H16B108.00
C11—C12—C18109.21 (18)C16—C17—H17110.00
C13—C12—C18109.78 (18)C18—C17—H17110.00
C12—C13—C14109.79 (18)C19—C17—H17110.00
C13—C14—C15110.41 (19)C12—C18—H18A110.00
C13—C14—C19109.4 (2)C12—C18—H18B110.00
C15—C14—C19109.39 (19)C17—C18—H18A110.00
C10—C15—C14109.73 (16)C17—C18—H18B110.00
C10—C16—C17109.51 (17)H18A—C18—H18B108.00
C16—C17—C18109.7 (2)C14—C19—H19A110.00
C16—C17—C19108.5 (3)C14—C19—H19B110.00
C18—C17—C19109.5 (2)C17—C19—H19A110.00
C12—C18—C17109.6 (2)C17—C19—H19B110.00
C14—C19—C17109.61 (19)H19A—C19—H19B108.00
C9—S1—C8—N2179.0 (2)C4—C5—C6—C11.5 (3)
C9—S1—C8—N31.05 (13)S1—C9—C10—C11175.71 (12)
C8—S1—C9—N40.64 (14)S1—C9—C10—C1565.90 (17)
C8—S1—C9—C10179.31 (14)S1—C9—C10—C1654.36 (19)
C7—N1—N2—C80.1 (2)N4—C9—C10—C115.7 (2)
N2—N1—C7—N30.2 (2)N4—C9—C10—C15112.66 (18)
N2—N1—C7—C1176.70 (17)N4—C9—C10—C16127.08 (18)
N1—N2—C8—S1179.67 (17)C9—C10—C11—C12178.63 (15)
N1—N2—C8—N30.3 (2)C15—C10—C11—C1259.7 (2)
C7—N3—N4—C9179.60 (18)C16—C10—C11—C1259.2 (2)
C8—N3—N4—C90.9 (2)C9—C10—C15—C14179.60 (16)
N4—N3—C7—N1178.48 (16)C11—C10—C15—C1459.7 (2)
N4—N3—C7—C14.4 (3)C16—C10—C15—C1459.3 (2)
C8—N3—C7—N10.33 (19)C9—C10—C16—C17179.4 (2)
C8—N3—C7—C1176.77 (16)C11—C10—C16—C1758.6 (2)
N4—N3—C8—S11.38 (18)C15—C10—C16—C1759.5 (2)
N4—N3—C8—N2178.67 (15)C10—C11—C12—C1360.2 (2)
C7—N3—C8—S1179.58 (12)C10—C11—C12—C1860.3 (2)
C7—N3—C8—N20.4 (2)C11—C12—C13—C1459.2 (2)
N3—N4—C9—S10.02 (17)C18—C12—C13—C1461.0 (2)
N3—N4—C9—C10178.62 (14)C11—C12—C18—C1761.0 (2)
C6—C1—C2—F1179.52 (18)C13—C12—C18—C1759.6 (2)
C6—C1—C2—C31.0 (3)C12—C13—C14—C1559.4 (2)
C7—C1—C2—F10.3 (3)C12—C13—C14—C1961.0 (2)
C7—C1—C2—C3178.2 (2)C13—C14—C15—C1060.1 (2)
C2—C1—C6—C50.4 (3)C19—C14—C15—C1060.3 (2)
C7—C1—C6—C5179.61 (18)C13—C14—C19—C1759.7 (3)
C2—C1—C7—N150.7 (3)C15—C14—C19—C1761.4 (3)
C2—C1—C7—N3132.83 (19)C10—C16—C17—C1859.5 (3)
C6—C1—C7—N1130.1 (2)C10—C16—C17—C1960.1 (2)
C6—C1—C7—N346.3 (3)C16—C17—C18—C1260.8 (3)
F1—C2—C3—C4179.9 (2)C19—C17—C18—C1258.2 (3)
C1—C2—C3—C41.3 (3)C16—C17—C19—C1461.2 (3)
C2—C3—C4—C50.3 (3)C18—C17—C19—C1458.5 (3)
C3—C4—C5—C61.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···S1i0.972.843.640 (2)140
C12—H12···Cg1ii0.982.903.713 (2)140
C18—H18B···Cg1iii0.972.833.787 (3)170
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formulaC19H19FN4S
Mr354.44
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)296
a, b, c (Å)13.2684 (9), 12.4293 (9), 20.2231 (15)
V3)3335.1 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.21
Crystal size (mm)0.25 × 0.22 × 0.20
Data collection
DiffractometerBruker Kappa APEXII CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2005)
Tmin, Tmax0.945, 0.956
No. of measured, independent and
observed [I > 2σ(I)] reflections
22695, 4486, 3116
Rint0.031
(sin θ/λ)max1)0.685
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.136, 1.04
No. of reflections4486
No. of parameters235
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.35, 0.28

Computer programs: APEX2 (Bruker, 2007), SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009), WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15A···S1i0.972.843.640 (2)140
C12—H12···Cg1ii0.982.903.713 (2)140
C18—H18B···Cg1iii0.972.833.787 (3)170
Symmetry codes: (i) x+1/2, y+1/2, z; (ii) x+1, y+1/2, z+1/2; (iii) x+1/2, y, z+1/2.
 

Footnotes

Additional correspondence author for matters regarding the chemistry, e-mail: shameed@qau.edu.pk.

Acknowledgements

The authors acknowledge the Higher Education Commission, Islamabad, Pakistan, and Bana International, Karachi, Pakistan, for funding the purchase of the diffractometer and for technical support, respectively.

References

First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A. & Khan, K. M. (2007). Heteroat. Chem. 18, 316–322.  Web of Science CrossRef CAS Google Scholar
First citationAkhtar, T., Hameed, S., Al-Masoudi, N. A., Loddo, R. & La Colla, P. (2008a). Acta Pharm. 58, 135–149.  Web of Science CrossRef PubMed CAS Google Scholar
First citationAkhtar, T., Hameed, S., Khan, K. M. & Choudhary, M. I. (2008b). Med. Chem. 4, 539–543.  Web of Science CrossRef PubMed CAS Google Scholar
First citationBruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationEl-Emam, A. A., Al-Deeb, O. A., Al-Omara, M. & Lehmann, J. (2004). Bioorg. Med. Chem. 12, 5107–5113.  Web of Science CrossRef PubMed CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationHolm, M., Schollmeyer, D. & Laufer, S. (2008). Acta Cryst. E64, o700.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationKadi, A. A., El-Brollosy, N. R., Al-Deeb, O. A., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2007). Eur. J. Med. Chem. 42, 235–242.  Web of Science CrossRef PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L. X., Zhang, A. J., Chen, X. X., Lei, X. X., Nan, X. Y., Chen, D. Y. & Zhang, Z. Y. (2002). Molecules, 7, 681–689.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds