organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Meth­­oxy-6-(6-methyl-1H-benzimidazol-2-yl)phenol

aDepartment of Chemistry, Shaoxing University, Shaoxing 312000, People's Republic of China, bCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, People's Republic of China, and cYancheng Institute of Technology, School of Chemical and Biological Engineering, Yancheng 224003, People's Republic of China
*Correspondence e-mail: chemreagent@yahoo.cn

(Received 17 April 2009; accepted 3 May 2009; online 14 May 2009)

The mol­ecule of the title compound, C15H14N2O2 is almost planar, the dihedral angle between the 6-methyl-1H-benz­imidazole plane and the 2-methoxy­phenol plane being 6.9 (2)°. An intra­molecular O—H⋯N hydrogen bond is present. Adjacent mol­ecules are linked by N—H⋯O hydrogen bonds into a three-dimensional network structure. The benzoimidazole methyl group and its attached C atom are positionally disordered in a 0.724 (4):0.276 (4) ratio.

Related literature

For background to imidazole and its derivatives, see: Huang et al. (2004[Huang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc. 126, 13218-13219.]) and to benzimidazoles, see: Perry & Wilson (1993[Perry, R. J. & Wilson, B. D. (1993). J. Org. Chem. 58, 7016-7021.]). For related structures, see: Savall & Fontimayor (2008[Savall, B. M. & Fontimayor, J. R. (2008). Tetrahedron Lett. 49, 6667-6669.]).

[Scheme 1]

Experimental

Crystal data
  • C15H14N2O2

  • Mr = 254.28

  • Monoclinic, C 2/c

  • a = 17.986 (3) Å

  • b = 11.4452 (16) Å

  • c = 13.4105 (19) Å

  • β = 104.216 (2)°

  • V = 2676.1 (7) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.21 × 0.17 × 0.13 mm

Data collection
  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.]) Tmin = 0.982, Tmax = 0.989

  • 6836 measured reflections

  • 2531 independent reflections

  • 1441 reflections with I > 2σ(I)

  • Rint = 0.031

Refinement
  • R[F2 > 2σ(F2)] = 0.056

  • wR(F2) = 0.169

  • S = 1.05

  • 2531 reflections

  • 176 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.82 1.83 2.567 (2) 148
N1—H1A⋯O2i 0.92 2.54 3.173 (3) 127
N1—H1A⋯O1i 0.92 2.06 2.920 (3) 155
Symmetry code: (i) [x, -y+2, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT-Plus (Bruker, 2001[Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Imidazole and its derivatives are an important class of heterocycle with N-donor atoms, therefore they can be excellent organic ligands to generate various complexes (Huang et al., 2004). Benzimidazoles are privileged structural units not only in the pharmaceutical industry but also in several other fields such as agricultural, electronic, and polymer chemistry (Perry et al., 1993). We report here the synthesis and crystal structure of the title compound.

The molecular structure is shown in Fig. 1. The values of the geometric parameters in the compound are normal (Savall et al., 2008) (Table 1). The benzimidazole and phenol groups are nearly coplanar, the dihedral angle between 6-methyl-1H-benzimidazole plane and 2-methoxyphenol plane is 6.9 (2)°. The compounds are linked by N—H···O hydrogen bonds [N1—H1A··· O1, N1—H1A···O2, O1—H1···N2] into a three-dimensional network structure.

Related literature top

For background to imidazole and its derivatives, see: Huang et al. (2004) and to benzimidazoles, see: Perry et al. (1993). For related structures, see: Savall & Fontimayor (2008).

Experimental top

A mixture of 4-methylbenzene-1,2-diamine (1 mmol) and 2-hydroxy-3-methoxybenzaldehyde (1 mmol) in ethanol (15 ml) was stirred for 8 h and then filtered. The resulting clear orange solution was vapor at room temperature for 7 d, after which orange block-shaped crystals of the title complex suitable for X-ray diffraction analysis were obtained, yield 45%.

Refinement top

The H atoms were fixed geometrically and were treated as riding on their parent C atoms, with C—H distances in the range of 0.93–0.96 Å and with Uiso(H) = 1.2Ueq(parent atom), or Uiso(H) = 1.5Ueq(Cmethyl). The coordinates of the H atoms of the N—H and O—H groups were found from difference Fourier maps and were allowed for as riding atoms with O—H 0.82 Å and N—H 0.92 Å and with Uiso(H) = 1.2Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus (Bruker, 2001); program(s) used to solve structure: SHELXL97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The independent molecules of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme.
2-Methoxy-6-(6-methyl-1H-benzimidazol-2-yl)phenol top
Crystal data top
C15H14N2O2F(000) = 1072
Mr = 254.28Dx = 1.262 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 2318 reflections
a = 17.986 (3) Åθ = 2.4–23.9°
b = 11.4452 (16) ŵ = 0.09 mm1
c = 13.4105 (19) ÅT = 293 K
β = 104.216 (2)°Block, yellow
V = 2676.1 (7) Å30.21 × 0.17 × 0.13 mm
Z = 8
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2531 independent reflections
Radiation source: fine-focus sealed tube1441 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ and ω scansθmax = 25.7°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
h = 2111
Tmin = 0.982, Tmax = 0.989k = 1313
6836 measured reflectionsl = 1516
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0769P)2 + 0.8329P]
where P = (Fo2 + 2Fc2)/3
2531 reflections(Δ/σ)max < 0.001
176 parametersΔρmax = 0.20 e Å3
3 restraintsΔρmin = 0.23 e Å3
Crystal data top
C15H14N2O2V = 2676.1 (7) Å3
Mr = 254.28Z = 8
Monoclinic, C2/cMo Kα radiation
a = 17.986 (3) ŵ = 0.09 mm1
b = 11.4452 (16) ÅT = 293 K
c = 13.4105 (19) Å0.21 × 0.17 × 0.13 mm
β = 104.216 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
2531 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1441 reflections with I > 2σ(I)
Tmin = 0.982, Tmax = 0.989Rint = 0.031
6836 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0563 restraints
wR(F2) = 0.169H-atom parameters constrained
S = 1.05Δρmax = 0.20 e Å3
2531 reflectionsΔρmin = 0.23 e Å3
176 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.34998 (10)0.96117 (16)0.14576 (12)0.0718 (6)
H10.38090.92220.18790.086*
O20.23740 (12)1.0753 (2)0.03072 (14)0.0942 (7)
N10.39603 (12)0.94335 (19)0.46813 (14)0.0644 (6)
H1A0.36890.98060.50870.077*
N20.42667 (11)0.89053 (17)0.32288 (14)0.0568 (5)
C10.31924 (14)1.0273 (2)0.30233 (18)0.0568 (6)
C20.30615 (14)1.0242 (2)0.19534 (18)0.0574 (6)
C30.24529 (16)1.0877 (2)0.1342 (2)0.0691 (8)
C40.20037 (17)1.1559 (3)0.1795 (2)0.0839 (9)
H40.16051.19920.13890.101*
C50.21404 (19)1.1607 (3)0.2856 (3)0.0928 (10)
H50.18341.20750.31580.111*
C60.27225 (17)1.0974 (3)0.3463 (2)0.0797 (9)
H60.28071.10090.41750.096*
C70.38041 (14)0.9559 (2)0.36368 (17)0.0554 (6)
C80.1738 (2)1.1332 (4)0.0374 (3)0.1217 (14)
H8A0.17481.11760.10740.183*
H8B0.17761.21580.02510.183*
H8C0.12661.10470.02520.183*
C90.45596 (15)0.8650 (2)0.49645 (19)0.0659 (7)
C100.47445 (14)0.8322 (2)0.40546 (19)0.0618 (7)
C110.53215 (16)0.7501 (3)0.4079 (2)0.0806 (9)
H110.54540.72700.34800.097*
C140.49349 (18)0.8175 (3)0.5915 (2)0.0865 (10)
H140.48070.83980.65190.104*
C12A0.56835 (19)0.7052 (3)0.5008 (3)0.1024 (16)0.724 (4)
H12A0.60720.65090.50330.123*0.724 (4)
C13A0.55061 (19)0.7359 (3)0.5920 (3)0.0988 (17)0.724 (4)
C15A0.5957 (3)0.6706 (5)0.6876 (3)0.1041 (15)0.724 (4)
H15A0.57970.69740.74690.156*0.724 (4)
H15B0.64950.68540.69690.156*0.724 (4)
H15C0.58610.58830.67880.156*0.724 (4)
C13B0.56835 (19)0.7052 (3)0.5008 (3)0.0988 (17)0.276 (4)
C12B0.55061 (19)0.7359 (3)0.5920 (3)0.1024 (16)0.276 (4)
H12B0.57690.70180.65360.123*0.276 (4)
C15B0.6306 (6)0.6287 (11)0.5397 (9)0.1041 (15)0.276 (4)
H15G0.64980.59920.48380.156*0.276 (4)
H15D0.61360.56480.57480.156*0.276 (4)
H15E0.67070.67030.58680.156*0.276 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0768 (12)0.0922 (13)0.0482 (10)0.0351 (10)0.0186 (9)0.0116 (9)
O20.0935 (15)0.1259 (18)0.0566 (12)0.0478 (13)0.0059 (10)0.0170 (11)
N10.0690 (14)0.0807 (15)0.0447 (12)0.0114 (12)0.0164 (10)0.0033 (11)
N20.0514 (12)0.0654 (13)0.0528 (12)0.0031 (10)0.0112 (10)0.0091 (10)
C10.0562 (15)0.0652 (15)0.0518 (14)0.0051 (13)0.0186 (12)0.0053 (12)
C20.0553 (14)0.0654 (15)0.0550 (15)0.0130 (13)0.0205 (12)0.0091 (12)
C30.0693 (17)0.0807 (19)0.0588 (16)0.0191 (15)0.0185 (14)0.0146 (14)
C40.0738 (19)0.094 (2)0.088 (2)0.0316 (17)0.0277 (17)0.0206 (17)
C50.097 (2)0.103 (2)0.091 (2)0.038 (2)0.046 (2)0.0105 (19)
C60.090 (2)0.094 (2)0.0645 (17)0.0202 (18)0.0352 (16)0.0058 (15)
C70.0560 (14)0.0641 (15)0.0473 (14)0.0055 (13)0.0147 (12)0.0061 (11)
C80.116 (3)0.151 (3)0.080 (2)0.059 (3)0.010 (2)0.031 (2)
C90.0529 (15)0.0782 (18)0.0590 (16)0.0160 (14)0.0009 (13)0.0180 (13)
C100.0528 (15)0.0712 (17)0.0565 (16)0.0081 (13)0.0042 (12)0.0166 (13)
C110.0611 (17)0.086 (2)0.087 (2)0.0102 (16)0.0036 (15)0.0235 (16)
C140.079 (2)0.112 (2)0.0576 (17)0.0321 (19)0.0033 (15)0.0269 (16)
C12A0.080 (4)0.103 (4)0.116 (3)0.015 (3)0.006 (3)0.042 (3)
C13A0.070 (3)0.129 (5)0.077 (2)0.016 (4)0.020 (2)0.055 (3)
C15A0.101 (3)0.131 (4)0.072 (3)0.028 (3)0.005 (2)0.034 (2)
C13B0.070 (3)0.129 (5)0.077 (2)0.016 (4)0.020 (2)0.055 (3)
C12B0.080 (4)0.103 (4)0.116 (3)0.015 (3)0.006 (3)0.042 (3)
C15B0.101 (3)0.131 (4)0.072 (3)0.028 (3)0.005 (2)0.034 (2)
Geometric parameters (Å, º) top
O1—C21.357 (3)C8—H8A0.9600
O1—H10.8200C8—H8B0.9600
O2—C31.367 (3)C8—H8C0.9600
O2—C81.438 (3)C9—C101.393 (4)
N1—C71.367 (3)C9—C141.397 (3)
N1—C91.382 (3)C10—C111.394 (4)
N1—H1A0.9194C11—C12A1.357 (4)
N2—C71.332 (3)C11—H110.9300
N2—C101.394 (3)C14—C13A1.388 (5)
C1—C21.396 (3)C14—H140.9300
C1—C61.397 (4)C12A—C13A1.383 (5)
C1—C71.453 (3)C12A—H12A0.9300
C2—C31.399 (3)C13A—C15A1.531 (4)
C3—C41.368 (4)C15A—H15A0.9600
C4—C51.384 (4)C15A—H15B0.9600
C4—H40.9300C15A—H15C0.9600
C5—C61.366 (4)C15B—H15G0.9600
C5—H50.9300C15B—H15D0.9600
C6—H60.9300C15B—H15E0.9600
C2—O1—H1109.2O2—C8—H8C109.5
C3—O2—C8117.7 (2)H8A—C8—H8C109.5
C7—N1—C9107.4 (2)H8B—C8—H8C109.5
C7—N1—H1A123.5N1—C9—C10105.8 (2)
C9—N1—H1A129.0N1—C9—C14132.3 (3)
C7—N2—C10105.6 (2)C10—C9—C14121.9 (3)
C2—C1—C6118.8 (2)C9—C10—C11119.8 (2)
C2—C1—C7118.8 (2)C9—C10—N2109.5 (2)
C6—C1—C7122.5 (2)C11—C10—N2130.7 (3)
O1—C2—C1123.0 (2)C12A—C11—C10117.6 (3)
O1—C2—C3117.0 (2)C12A—C11—H11121.2
C1—C2—C3120.0 (2)C10—C11—H11121.2
O2—C3—C4125.8 (2)C13A—C14—C9117.3 (3)
O2—C3—C2114.3 (2)C13A—C14—H14121.4
C4—C3—C2119.9 (2)C9—C14—H14121.4
C3—C4—C5120.3 (3)C11—C12A—C13A123.6 (3)
C3—C4—H4119.9C11—C12A—H12A118.2
C5—C4—H4119.9C13A—C12A—H12A118.2
C6—C5—C4120.5 (3)C12A—C13A—C14119.8 (3)
C6—C5—H5119.7C12A—C13A—C15A115.3 (4)
C4—C5—H5119.7C14—C13A—C15A124.9 (4)
C5—C6—C1120.6 (3)C13A—C15A—H15A109.5
C5—C6—H6119.7C13A—C15A—H15B109.5
C1—C6—H6119.7H15A—C15A—H15B109.5
N2—C7—N1111.7 (2)C13A—C15A—H15C109.5
N2—C7—C1123.1 (2)H15A—C15A—H15C109.5
N1—C7—C1125.2 (2)H15B—C15A—H15C109.5
O2—C8—H8A109.5H15G—C15B—H15D109.5
O2—C8—H8B109.5H15G—C15B—H15E109.5
H8A—C8—H8B109.5H15D—C15B—H15E109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.832.567 (2)148
N1—H1A···O2i0.922.543.173 (3)127
N1—H1A···O1i0.922.062.920 (3)155
Symmetry code: (i) x, y+2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H14N2O2
Mr254.28
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)17.986 (3), 11.4452 (16), 13.4105 (19)
β (°) 104.216 (2)
V3)2676.1 (7)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.21 × 0.17 × 0.13
Data collection
DiffractometerBruker APEXII CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.982, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
6836, 2531, 1441
Rint0.031
(sin θ/λ)max1)0.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.169, 1.05
No. of reflections2531
No. of parameters176
No. of restraints3
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.23

Computer programs: APEX2 (Bruker, 2004), SAINT-Plus (Bruker, 2001), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N20.821.832.567 (2)148.4
N1—H1A···O2i0.922.543.173 (3)126.7
N1—H1A···O1i0.922.062.920 (3)154.8
Symmetry code: (i) x, y+2, z+1/2.
 

Acknowledgements

This work was supported by the Zhejiang Provincial Natural Science Foundation (grant No. Y4080395).

References

First citationBruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHuang, X.-C., Zhang, J.-P. & Chen, X.-M. (2004). J. Am. Chem. Soc. 126, 13218–13219.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationPerry, R. J. & Wilson, B. D. (1993). J. Org. Chem. 58, 7016–7021.  CrossRef CAS Web of Science Google Scholar
First citationSavall, B. M. & Fontimayor, J. R. (2008). Tetrahedron Lett. 49, 6667–6669.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds