organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Hex­yl­oxy-3-meth­oxy­benzaldehyde

aDepartment of Chemistry, Quaid-i-Azam University Islamabad, 45320-Pakistan, and bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Max-von-Laue-Str. 7, 60438 Frankfurt/Main, Germany
*Correspondence e-mail: flavonoids@hotmail.com

(Received 28 April 2009; accepted 8 May 2009; online 14 May 2009)

The title compound, C14H20O3, is a synthetic analogue with a long aliphatic side chain of the important food additive and flavoring agent, vanillin. There are two independent mol­ecules in the asymmetric unit, each having an essentially planar conformation (r.m.s. deviations of 0.023 and 0.051Å for all non–H atoms of the two mol­ecules in the asymmetric unit).

Related literature

Schiff-base derivatives (Guo et al., 2008[Guo, H. M., Zhao, G. L. & Yu, Y. Y. (2008). Chin. J. Inorg. Chem. 24, 1393-1399.]), metal complexes (Neelakantan et al., 2008[Neelakantan, M. A., Marriappan, S. S., Dharmaraja, J., Jeyakumar, T. & Muthukumaran, K. (2008). Spectrochim Acta Part A, 71, 628-635.]) and 2-amino-4-phenylthiazole derivatives (Ashalekshmi et al., 2008[Ashalekshmi, V. S. & Mohanan, K. (2008). Asian J. Chem. 20, 623-628.]) of vanillin have shown potential antibacterial activity. Bromovanin (6-bromine-5-hydroxy-4-methoxybenzaldehyde) (Yan et al., 2007[Yan, Y. Q., Zhang, B., Wang, L., Xie, Y. H., Peng, T., Bai, B. & Zhou, P. K. (2007). Cancer Lett. 252, 280-289.]) and caffeate analogues (Xia et al., 2008[Xia, C. N., Li, H. B., Liu, F. & Hu, W. X. (2008). Bioorg. Med. Chem. Lett. 18, 6553-6557.]) derived from vanillin exhibit a potent anti-proliferative effect on a broad spectrum of cancer cell lines. For the biological activity of vanillin, see: Liang et al. (2009[Liang, J. A., Wu, S. L., Lo, H. Y., Hsiang, C. Y. & Ho, T. Y. (2009). Mol. Pharmacol. 75, 151-157.]), and for glycosides of vanillin, see: Charles et al. (2009[Charles, R. E., Ponrasu, T., Sivakumar, R. & Divakar, S. (2009). Biotechnol. Appl. Biochem. pp. 177-184.]); Lim et al. (2008[Lim, E. J., Kang, H. J., Jung, H. J., Song, S., Lim, C. J. & Park, E. H. (2008). Biomol. Ther. 16, 132-136.]). For details of the synthesis, see: Williamson (1852[Williamson, A. W. (1852). Q. Rev. Chem. Soc. 4, 229-239.]). For related structures, see: Li (2008[Li, Y. (2008). Chin. J. Struct. Chem. 27, 1089-1092.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2. pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C14H20O3

  • Mr = 236.30

  • Triclinic, [P \overline 1]

  • a = 9.2788 (5) Å

  • b = 9.3894 (6) Å

  • c = 15.8501 (9) Å

  • α = 88.099 (5)°

  • β = 75.065 (5)°

  • γ = 80.262 (5)°

  • V = 1314.95 (13) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 173 K

  • 0.42 × 0.37 × 0.36 mm

Data collection
  • STOE IPDS II two-circle diffractometer

  • Absorption correction: none

  • 17943 measured reflections

  • 4919 independent reflections

  • 3862 reflections with I > 2σ(I)

  • Rint = 0.046

Refinement
  • R[F2 > 2σ(F2)] = 0.049

  • wR(F2) = 0.144

  • S = 1.06

  • 4919 reflections

  • 309 parameters

  • H-atom parameters constrained

  • Δρmax = 0.69 e Å−3

  • Δρmin = −0.28 e Å−3

Data collection: X-AREA (Stoe & Cie, 2001[Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Vanillin, a well known flavoring agent, is the principal flavor and aroma compound in vanilla. Vanillin and its derivatives have been used as flavoring food additives and precursors for the synthesis of organic compounds, and have been reported to show diverse biological applications. Schiff-base derivatives (Guo et al., 2008), metal complexes (Neelakantan et al., 2008) and 2-amino-4-phenylthiazole derivatives (Ashalekshmi et al., 2008) of vanillin have shown potential antibacterial activities against E. Coli, S. Aureus, B. Subtilis, P. Aeruginosa, K. Pneumoniae, B. Megaterium, V. Cholerae, and S. Typhi,. Bromovanin (6-bromine-5-hydroxy-4-methoxybenzaldehyde) (Yan et al., 2007) and caffeate analogues (Xia et al., 2008) derived from vanillin exhibits a potent anti-proliferative effect on a broad spectrum of cancer cell lines. Vanillin (Liang et al., 2009) and glycosides of vanillin (Charles et al., 2009), exhibit enzyme inhibition, antioxidant, anti-angiogenic, anti-inflammatory and anti-nociceptive activities (Lim et al., 2008). As part of interest in vanillin derivatives, we now report the crystal structure of the title compound (I). A view of compound (I), is shown in Fig 1. The geometrical parameters for (I) are normal (Allen et al.,1987) and consistent with those of recently reported ethyl vanillin structure (Li, 2008).The asymmetric unit consist two conformers, each having almost planar conformation. C8, O1 and O2 deviate from the mean plane (C11–C16) by 0.028 (3), 0.020 (2), and 0.020 (2) A°, respectively. The deviations of C8A, O1A and O2A from the mean plane (C11A–C16A) are 0.001 (3), 0.025 (2) and 0.011 (2) A°, respectively.

Related literature top

For background information, see: Guo et al. (2008); Neelakantan et al. (2008); Ashalekshmi et al. (2008); Yan et al. (2007); Xia et al. (2008); Liang et al. (2009); Charles et al. (2009); Lim et al. (2008); Williamson (1852). For related structures, see: Li (2008). For bond-length data, see: Allen et al. (1987).

Experimental top

Vanillin (4-hydroxy-3-methoxybenzaldehyde) (1.52 g) was dissolved in butan-2-one (20 ml), then added K2CO3 (1.38 g), heated at 60°C and stirred for half an hour. 1-Bromohexane (1.65 g) was added to the reaction mixture and refluxed for 3–4 h on an oil bath (Williamson, 1852). The progress of the reaction was monitored by TLC. Once the reaction was completed, the product was extracted in diethyl ether, solvent evaporated under reduced pressure and crystallized from dichloromethane to get the title compound (I).

Refinement top

Hydrogen atoms bonded to C were included in calculated positions and refined as riding on their parent C atom with Caromatic—H = 0.95 Å, Cmethylene—H = 0.99 Å, Uiso(H) = 1.2U(Ceq) or Cmethyl—H = 0.98 Å. The highest peak in the final difference density map (0.68 e Å-3) is located at 0.76Å from H8A.

Computing details top

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.
4-Hexyloxy-3-methoxybenzaldehyde top
Crystal data top
C14H20O3Z = 4
Mr = 236.30F(000) = 512
Triclinic, P1Dx = 1.194 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.2788 (5) ÅCell parameters from 16295 reflections
b = 9.3894 (6) Åθ = 3.5–25.9°
c = 15.8501 (9) ŵ = 0.08 mm1
α = 88.099 (5)°T = 173 K
β = 75.065 (5)°Block, colourless
γ = 80.262 (5)°0.42 × 0.37 × 0.36 mm
V = 1314.95 (13) Å3
Data collection top
STOE IPDS II two-circle-
diffractometer
3862 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 25.6°, θmin = 3.4°
ω scansh = 1111
17943 measured reflectionsk = 1111
4919 independent reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0794P)2 + 0.213P]
where P = (Fo2 + 2Fc2)/3
4919 reflections(Δ/σ)max = 0.001
309 parametersΔρmax = 0.69 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C14H20O3γ = 80.262 (5)°
Mr = 236.30V = 1314.95 (13) Å3
Triclinic, P1Z = 4
a = 9.2788 (5) ÅMo Kα radiation
b = 9.3894 (6) ŵ = 0.08 mm1
c = 15.8501 (9) ÅT = 173 K
α = 88.099 (5)°0.42 × 0.37 × 0.36 mm
β = 75.065 (5)°
Data collection top
STOE IPDS II two-circle-
diffractometer
3862 reflections with I > 2σ(I)
17943 measured reflectionsRint = 0.046
4919 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.144H-atom parameters constrained
S = 1.06Δρmax = 0.69 e Å3
4919 reflectionsΔρmin = 0.28 e Å3
309 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.65027 (12)0.60519 (12)0.99368 (6)0.0403 (3)
O20.69937 (12)0.56660 (11)1.14584 (6)0.0397 (3)
O31.13475 (16)0.12211 (15)1.10444 (9)0.0648 (4)
C10.62080 (18)0.63144 (18)0.90887 (9)0.0412 (4)
H1A0.58700.54630.88970.049*
H1B0.71460.64750.86560.049*
C20.50012 (17)0.76247 (17)0.91409 (9)0.0395 (4)
H2A0.53420.84790.93270.047*
H2B0.40640.74680.95760.047*
C30.46892 (16)0.78865 (17)0.82439 (9)0.0376 (3)
H3A0.56250.80870.78250.045*
H3B0.44420.69900.80460.045*
C40.34118 (16)0.91241 (17)0.82143 (9)0.0372 (3)
H4A0.24740.89350.86360.045*
H4B0.36641.00290.83980.045*
C50.31230 (17)0.93292 (17)0.73137 (10)0.0399 (4)
H5A0.28740.84230.71290.048*
H5B0.40590.95220.68920.048*
C60.1844 (2)1.05620 (19)0.72871 (12)0.0510 (4)
H6A0.17011.06430.66950.076*
H6B0.20971.14680.74520.076*
H6C0.09101.03710.76970.076*
C70.72298 (18)0.55017 (17)1.23152 (9)0.0405 (4)
H7A0.70670.45371.25320.061*
H7B0.65170.62351.27070.061*
H7C0.82680.56211.22940.061*
C81.0993 (2)0.1514 (2)1.03692 (11)0.0514 (4)
H81.15340.09350.98710.062*
C110.75896 (17)0.49258 (16)0.99937 (9)0.0354 (3)
C120.78770 (16)0.47099 (16)1.08300 (9)0.0338 (3)
C130.89766 (16)0.36073 (16)1.09506 (9)0.0359 (3)
H130.91770.34701.15090.043*
C140.98097 (17)0.26779 (17)1.02520 (10)0.0393 (3)
C150.95082 (18)0.28820 (18)0.94401 (10)0.0433 (4)
H151.00630.22500.89690.052*
C160.84110 (18)0.39934 (17)0.93083 (9)0.0403 (4)
H160.82160.41220.87490.048*
O1A0.54463 (11)0.20255 (12)0.59371 (6)0.0393 (3)
O2A0.57832 (11)0.17700 (11)0.75033 (6)0.0396 (3)
O3A1.10136 (16)0.29636 (16)0.61496 (10)0.0718 (4)
C1A0.52746 (17)0.22746 (18)0.50646 (9)0.0390 (3)
H1A10.51650.13650.48070.047*
H1A20.61770.26210.46930.047*
C2A0.38839 (16)0.33951 (18)0.51114 (9)0.0384 (3)
H2A10.39690.42740.54110.046*
H2A20.29800.30170.54560.046*
C3A0.36975 (16)0.37813 (18)0.41991 (9)0.0382 (3)
H3A10.45910.41870.38660.046*
H3A20.36660.28880.38940.046*
C4A0.22797 (17)0.48624 (18)0.42019 (9)0.0395 (3)
H4A10.22980.57450.45210.047*
H4A20.13850.44460.45220.047*
C5A0.21109 (17)0.52794 (18)0.32935 (10)0.0415 (4)
H5A10.30060.56930.29700.050*
H5A20.20790.44010.29750.050*
C6A0.06916 (19)0.6370 (2)0.33156 (11)0.0489 (4)
H6A10.06310.66030.27170.073*
H6A20.07280.72510.36180.073*
H6A30.02000.59590.36260.073*
C7A0.60438 (19)0.17584 (18)0.83582 (10)0.0449 (4)
H7A10.59740.08000.86140.067*
H7A20.52810.24840.87300.067*
H7A30.70540.19840.83140.067*
C8A1.00578 (19)0.2192 (2)0.66439 (14)0.0553 (5)
H8A1.00440.22730.72450.066*
C11A0.65958 (15)0.09930 (16)0.60415 (10)0.0349 (3)
C12A0.67768 (15)0.08413 (16)0.68992 (9)0.0337 (3)
C13A0.78979 (16)0.01963 (16)0.70729 (10)0.0380 (3)
H13A0.80140.03000.76510.046*
C14A0.88682 (16)0.11002 (17)0.64056 (11)0.0417 (4)
C15A0.87018 (17)0.09402 (18)0.55633 (11)0.0464 (4)
H15A0.93650.15460.51080.056*
C16A0.75726 (17)0.00993 (18)0.53781 (10)0.0427 (4)
H16A0.74660.02010.47980.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0492 (6)0.0449 (6)0.0270 (5)0.0025 (5)0.0137 (4)0.0013 (4)
O20.0483 (6)0.0419 (6)0.0271 (5)0.0031 (4)0.0126 (4)0.0041 (4)
O30.0685 (8)0.0662 (9)0.0524 (8)0.0149 (7)0.0189 (6)0.0002 (6)
C10.0522 (9)0.0488 (9)0.0261 (7)0.0103 (7)0.0153 (6)0.0041 (6)
C20.0456 (8)0.0448 (9)0.0309 (8)0.0121 (7)0.0124 (6)0.0037 (6)
C30.0382 (7)0.0468 (9)0.0300 (7)0.0104 (6)0.0105 (6)0.0027 (6)
C40.0374 (7)0.0426 (9)0.0329 (8)0.0102 (6)0.0090 (6)0.0014 (6)
C50.0394 (7)0.0451 (9)0.0368 (8)0.0049 (6)0.0136 (6)0.0009 (6)
C60.0560 (10)0.0499 (10)0.0481 (10)0.0034 (8)0.0225 (8)0.0031 (8)
C70.0520 (9)0.0439 (9)0.0267 (7)0.0031 (7)0.0143 (6)0.0043 (6)
C80.0549 (10)0.0503 (10)0.0432 (10)0.0020 (8)0.0084 (8)0.0048 (8)
C110.0412 (7)0.0365 (8)0.0304 (7)0.0113 (6)0.0098 (6)0.0025 (6)
C120.0391 (7)0.0359 (8)0.0267 (7)0.0101 (6)0.0066 (6)0.0015 (6)
C130.0419 (8)0.0390 (8)0.0286 (7)0.0097 (6)0.0106 (6)0.0014 (6)
C140.0420 (8)0.0380 (8)0.0359 (8)0.0077 (6)0.0059 (6)0.0017 (6)
C150.0510 (9)0.0437 (9)0.0324 (8)0.0092 (7)0.0039 (7)0.0066 (6)
C160.0505 (8)0.0446 (9)0.0269 (7)0.0106 (7)0.0098 (6)0.0014 (6)
O1A0.0377 (5)0.0495 (6)0.0293 (5)0.0023 (4)0.0124 (4)0.0026 (4)
O2A0.0441 (6)0.0423 (6)0.0325 (6)0.0022 (4)0.0157 (4)0.0003 (4)
O3A0.0581 (8)0.0668 (9)0.0841 (10)0.0078 (7)0.0173 (7)0.0103 (8)
C1A0.0412 (8)0.0509 (9)0.0262 (7)0.0060 (7)0.0122 (6)0.0022 (6)
C2A0.0375 (7)0.0477 (9)0.0302 (8)0.0037 (6)0.0116 (6)0.0028 (6)
C3A0.0359 (7)0.0501 (9)0.0287 (7)0.0047 (6)0.0098 (6)0.0024 (6)
C4A0.0412 (8)0.0467 (9)0.0291 (7)0.0010 (6)0.0102 (6)0.0003 (6)
C5A0.0403 (8)0.0504 (9)0.0325 (8)0.0037 (7)0.0100 (6)0.0048 (6)
C6A0.0484 (9)0.0589 (11)0.0367 (8)0.0034 (8)0.0142 (7)0.0039 (7)
C7A0.0551 (9)0.0480 (9)0.0362 (8)0.0050 (7)0.0220 (7)0.0008 (7)
C8A0.0390 (8)0.0485 (10)0.0733 (12)0.0050 (7)0.0055 (8)0.0072 (9)
C11A0.0311 (7)0.0372 (8)0.0374 (8)0.0056 (6)0.0112 (6)0.0030 (6)
C12A0.0317 (7)0.0350 (8)0.0367 (8)0.0081 (6)0.0113 (6)0.0025 (6)
C13A0.0347 (7)0.0387 (8)0.0450 (8)0.0091 (6)0.0167 (6)0.0069 (6)
C14A0.0330 (7)0.0382 (8)0.0558 (10)0.0081 (6)0.0135 (7)0.0032 (7)
C15A0.0355 (8)0.0445 (9)0.0542 (10)0.0032 (7)0.0038 (7)0.0076 (7)
C16A0.0385 (8)0.0496 (9)0.0386 (8)0.0042 (7)0.0089 (6)0.0030 (7)
Geometric parameters (Å, º) top
O1—C111.3502 (18)O1A—C11A1.3548 (17)
O1—C11.4447 (17)O1A—C1A1.4395 (16)
O2—C121.3636 (17)O2A—C12A1.3622 (17)
O2—C71.4298 (16)O2A—C7A1.4358 (17)
O3—C81.209 (2)O3A—C8A1.178 (2)
C1—C21.506 (2)C1A—C2A1.508 (2)
C1—H1A0.9900C1A—H1A10.9900
C1—H1B0.9900C1A—H1A20.9900
C2—C31.5266 (19)C2A—C3A1.5249 (19)
C2—H2A0.9900C2A—H2A10.9900
C2—H2B0.9900C2A—H2A20.9900
C3—C41.522 (2)C3A—C4A1.519 (2)
C3—H3A0.9900C3A—H3A10.9900
C3—H3B0.9900C3A—H3A20.9900
C4—C51.519 (2)C4A—C5A1.520 (2)
C4—H4A0.9900C4A—H4A10.9900
C4—H4B0.9900C4A—H4A20.9900
C5—C61.519 (2)C5A—C6A1.519 (2)
C5—H5A0.9900C5A—H5A10.9900
C5—H5B0.9900C5A—H5A20.9900
C6—H6A0.9800C6A—H6A10.9800
C6—H6B0.9800C6A—H6A20.9800
C6—H6C0.9800C6A—H6A30.9800
C7—H7A0.9800C7A—H7A10.9800
C7—H7B0.9800C7A—H7A20.9800
C7—H7C0.9800C7A—H7A30.9800
C8—C141.456 (2)C8A—C14A1.490 (2)
C8—H80.9500C8A—H8A0.9500
C11—C161.392 (2)C11A—C16A1.393 (2)
C11—C121.4196 (19)C11A—C12A1.412 (2)
C12—C131.371 (2)C12A—C13A1.376 (2)
C13—C141.407 (2)C13A—C14A1.400 (2)
C13—H130.9500C13A—H13A0.9500
C14—C151.386 (2)C14A—C15A1.383 (2)
C15—C161.380 (2)C15A—C16A1.389 (2)
C15—H150.9500C15A—H15A0.9500
C16—H160.9500C16A—H16A0.9500
C11—O1—C1116.64 (11)C11A—O1A—C1A117.43 (11)
C12—O2—C7117.29 (11)C12A—O2A—C7A116.70 (11)
O1—C1—C2109.40 (12)O1A—C1A—C2A108.22 (11)
O1—C1—H1A109.8O1A—C1A—H1A1110.1
C2—C1—H1A109.8C2A—C1A—H1A1110.1
O1—C1—H1B109.8O1A—C1A—H1A2110.1
C2—C1—H1B109.8C2A—C1A—H1A2110.1
H1A—C1—H1B108.2H1A1—C1A—H1A2108.4
C1—C2—C3109.01 (12)C1A—C2A—C3A110.77 (12)
C1—C2—H2A109.9C1A—C2A—H2A1109.5
C3—C2—H2A109.9C3A—C2A—H2A1109.5
C1—C2—H2B109.9C1A—C2A—H2A2109.5
C3—C2—H2B109.9C3A—C2A—H2A2109.5
H2A—C2—H2B108.3H2A1—C2A—H2A2108.1
C4—C3—C2114.72 (12)C4A—C3A—C2A113.41 (12)
C4—C3—H3A108.6C4A—C3A—H3A1108.9
C2—C3—H3A108.6C2A—C3A—H3A1108.9
C4—C3—H3B108.6C4A—C3A—H3A2108.9
C2—C3—H3B108.6C2A—C3A—H3A2108.9
H3A—C3—H3B107.6H3A1—C3A—H3A2107.7
C5—C4—C3112.93 (12)C3A—C4A—C5A113.56 (12)
C5—C4—H4A109.0C3A—C4A—H4A1108.9
C3—C4—H4A109.0C5A—C4A—H4A1108.9
C5—C4—H4B109.0C3A—C4A—H4A2108.9
C3—C4—H4B109.0C5A—C4A—H4A2108.9
H4A—C4—H4B107.8H4A1—C4A—H4A2107.7
C4—C5—C6112.80 (13)C6A—C5A—C4A112.45 (12)
C4—C5—H5A109.0C6A—C5A—H5A1109.1
C6—C5—H5A109.0C4A—C5A—H5A1109.1
C4—C5—H5B109.0C6A—C5A—H5A2109.1
C6—C5—H5B109.0C4A—C5A—H5A2109.1
H5A—C5—H5B107.8H5A1—C5A—H5A2107.8
C5—C6—H6A109.5C5A—C6A—H6A1109.5
C5—C6—H6B109.5C5A—C6A—H6A2109.5
H6A—C6—H6B109.5H6A1—C6A—H6A2109.5
C5—C6—H6C109.5C5A—C6A—H6A3109.5
H6A—C6—H6C109.5H6A1—C6A—H6A3109.5
H6B—C6—H6C109.5H6A2—C6A—H6A3109.5
O2—C7—H7A109.5O2A—C7A—H7A1109.5
O2—C7—H7B109.5O2A—C7A—H7A2109.5
H7A—C7—H7B109.5H7A1—C7A—H7A2109.5
O2—C7—H7C109.5O2A—C7A—H7A3109.5
H7A—C7—H7C109.5H7A1—C7A—H7A3109.5
H7B—C7—H7C109.5H7A2—C7A—H7A3109.5
O3—C8—C14125.69 (16)O3A—C8A—C14A125.5 (2)
O3—C8—H8117.2O3A—C8A—H8A117.3
C14—C8—H8117.2C14A—C8A—H8A117.3
O1—C11—C16125.13 (13)O1A—C11A—C16A125.09 (13)
O1—C11—C12115.47 (12)O1A—C11A—C12A115.56 (12)
C16—C11—C12119.41 (14)C16A—C11A—C12A119.35 (13)
O2—C12—C13125.44 (13)O2A—C12A—C13A124.85 (13)
O2—C12—C11114.72 (12)O2A—C12A—C11A115.33 (12)
C13—C12—C11119.84 (13)C13A—C12A—C11A119.82 (14)
C12—C13—C14120.33 (13)C12A—C13A—C14A120.62 (14)
C12—C13—H13119.8C12A—C13A—H13A119.7
C14—C13—H13119.8C14A—C13A—H13A119.7
C15—C14—C13119.53 (14)C15A—C14A—C13A119.56 (14)
C15—C14—C8119.63 (14)C15A—C14A—C8A122.97 (15)
C13—C14—C8120.84 (14)C13A—C14A—C8A117.47 (15)
C16—C15—C14120.74 (14)C14A—C15A—C16A120.51 (15)
C16—C15—H15119.6C14A—C15A—H15A119.7
C14—C15—H15119.6C16A—C15A—H15A119.7
C15—C16—C11120.14 (14)C15A—C16A—C11A120.14 (15)
C15—C16—H16119.9C15A—C16A—H16A119.9
C11—C16—H16119.9C11A—C16A—H16A119.9
C11—O1—C1—C2178.51 (12)C11A—O1A—C1A—C2A176.72 (12)
O1—C1—C2—C3179.57 (12)O1A—C1A—C2A—C3A176.23 (12)
C1—C2—C3—C4176.08 (12)C1A—C2A—C3A—C4A177.66 (13)
C2—C3—C4—C5179.02 (12)C2A—C3A—C4A—C5A178.51 (13)
C3—C4—C5—C6179.82 (13)C3A—C4A—C5A—C6A179.53 (14)
C1—O1—C11—C161.5 (2)C1A—O1A—C11A—C16A3.7 (2)
C1—O1—C11—C12178.79 (12)C1A—O1A—C11A—C12A176.50 (12)
C7—O2—C12—C130.3 (2)C7A—O2A—C12A—C13A7.2 (2)
C7—O2—C12—C11179.93 (12)C7A—O2A—C12A—C11A173.04 (12)
O1—C11—C12—O20.82 (18)O1A—C11A—C12A—O2A0.93 (18)
C16—C11—C12—O2178.89 (13)C16A—C11A—C12A—O2A179.30 (13)
O1—C11—C12—C13179.01 (12)O1A—C11A—C12A—C13A178.89 (12)
C16—C11—C12—C131.3 (2)C16A—C11A—C12A—C13A0.9 (2)
O2—C12—C13—C14179.44 (14)O2A—C12A—C13A—C14A179.87 (13)
C11—C12—C13—C140.8 (2)C11A—C12A—C13A—C14A0.3 (2)
C12—C13—C14—C150.2 (2)C12A—C13A—C14A—C15A0.4 (2)
C12—C13—C14—C8179.23 (14)C12A—C13A—C14A—C8A179.73 (13)
O3—C8—C14—C15179.18 (18)O3A—C8A—C14A—C15A4.4 (3)
O3—C8—C14—C131.4 (3)O3A—C8A—C14A—C13A174.92 (18)
C13—C14—C15—C160.6 (2)C13A—C14A—C15A—C16A0.6 (2)
C8—C14—C15—C16178.82 (15)C8A—C14A—C15A—C16A179.89 (15)
C14—C15—C16—C110.1 (2)C14A—C15A—C16A—C11A0.1 (2)
O1—C11—C16—C15179.45 (14)O1A—C11A—C16A—C15A179.05 (14)
C12—C11—C16—C150.9 (2)C12A—C11A—C16A—C15A0.7 (2)

Experimental details

Crystal data
Chemical formulaC14H20O3
Mr236.30
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)9.2788 (5), 9.3894 (6), 15.8501 (9)
α, β, γ (°)88.099 (5), 75.065 (5), 80.262 (5)
V3)1314.95 (13)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.42 × 0.37 × 0.36
Data collection
DiffractometerSTOE IPDS II two-circle-
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
17943, 4919, 3862
Rint0.046
(sin θ/λ)max1)0.608
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.049, 0.144, 1.06
No. of reflections4919
No. of parameters309
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.69, 0.28

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP in SHELXTL-Plus (Sheldrick, 2008).

 

Acknowledgements

AA is grateful to the Higher Education Commission of Pakistan for financial support for the PhD program under scholarship No.[II-0317109].

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2. pp. S1–19.  CrossRef Google Scholar
First citationAshalekshmi, V. S. & Mohanan, K. (2008). Asian J. Chem. 20, 623–628.  CAS Google Scholar
First citationCharles, R. E., Ponrasu, T., Sivakumar, R. & Divakar, S. (2009). Biotechnol. Appl. Biochem. pp. 177–184.  Web of Science CrossRef Google Scholar
First citationGuo, H. M., Zhao, G. L. & Yu, Y. Y. (2008). Chin. J. Inorg. Chem. 24, 1393–1399.  CAS Google Scholar
First citationLi, Y. (2008). Chin. J. Struct. Chem. 27, 1089–1092.  CAS Google Scholar
First citationLiang, J. A., Wu, S. L., Lo, H. Y., Hsiang, C. Y. & Ho, T. Y. (2009). Mol. Pharmacol. 75, 151–157.  Web of Science CrossRef PubMed CAS Google Scholar
First citationLim, E. J., Kang, H. J., Jung, H. J., Song, S., Lim, C. J. & Park, E. H. (2008). Biomol. Ther. 16, 132–136.  CrossRef CAS Google Scholar
First citationNeelakantan, M. A., Marriappan, S. S., Dharmaraja, J., Jeyakumar, T. & Muthukumaran, K. (2008). Spectrochim Acta Part A, 71, 628–635.  CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.  Google Scholar
First citationWilliamson, A. W. (1852). Q. Rev. Chem. Soc. 4, 229–239.  CrossRef Google Scholar
First citationXia, C. N., Li, H. B., Liu, F. & Hu, W. X. (2008). Bioorg. Med. Chem. Lett. 18, 6553–6557.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationYan, Y. Q., Zhang, B., Wang, L., Xie, Y. H., Peng, T., Bai, B. & Zhou, P. K. (2007). Cancer Lett. 252, 280–289.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds