metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Tetra­chlorido­(1,10-phenanthroline-κ2N,N′)tin(IV) 1,2-di­chloro­ethane hemisolvate

aDepartment of Chemistry, K. N. Toosi University of Technology, PO Box 16315-1618, Tehran 15418, Iran, and bOrganisch-Chemisches Institut, Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
*Correspondence e-mail: momeni@kntu.ac.ir

(Received 30 April 2009; accepted 8 May 2009; online 29 May 2009)

The asymmetric unit of the title compound, [SnCl4(C12H8N2)]·0.5C2H4Cl2, contains a tin complex and one disordered half-mol­ecule of the solvent dichloro­ethane [occupancies 0.71 (2):0.29 (2)]. The six coordinate Sn(IV) atom adopts a distorted octa­hedral geometry. ππ inter­actions between adjacent aromatic rings [interplanar distance 3.483 (5) Å] seem to be effective in the stabilization of the crystal packing.

Related literature

For tin(IV) halide complexes with a variety of Lewis bases, see: Harrison et al. (1972[Harrison, P. G., Lane, B. C. & Zuckerman, J. J. (1972). Inorg. Chem. 11, 1537-1543.]). For 1:1 complexes of the type [SnX4(NN)] (X = halide; NN = 1,10-phenanthroline or 2,2′-bipyridyl ligand), see: Matsubayashi & Iyoda (1977[Matsubayashi, G. & Iyoda, J. (1977). Bull. Chem. Soc. Jpn, 50, 3055-3056.]). For the structure of the title complex without the co-crystallized solvent, see: Su et al. (2007[Su, Z.-H., Zhou, B.-B., Zhao, Z.-F. & Ng, S. W. (2007). Acta Cryst. E63, m394-m395.]) and with co-crystallized benzene, see: Hall & Tiekink (1996[Hall, V. J. & Tiekink, E. R. T. (1996). Z. Kristallogr. 211, 247-250.]). For the preparation of trans-[PtClMe2(CH2Cl)(phen)] used in the synthesis, see: Monaghan & Puddephatt (1985[Monaghan, P. K. & Puddephatt, R. J. (1985). Organometallics, 4, 1406-1412.]).

[Scheme 1]

Experimental

Crystal data
  • [SnCl4(C12H8N2)]·0.5C2H4Cl2

  • Mr = 490.17

  • Orthorhombic, P b c a

  • a = 14.4478 (2) Å

  • b = 12.3681 (1) Å

  • c = 18.3551 (2) Å

  • V = 3279.91 (6) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 2.37 mm−1

  • T = 200 K

  • 0.20 × 0.18 × 0.12 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.]) Tmin = 0.649, Tmax = 0.765

  • 31457 measured reflections

  • 3747 independent reflections

  • 2954 reflections with I > 2σ(I)

  • Rint = 0.058

Refinement
  • R[F2 > 2σ(F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.05

  • 3747 reflections

  • 195 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −1.16 e Å−3

Table 1
Selected geometric parameters (Å, °)

Sn1—N21 2.224 (3)
Sn1—N11 2.238 (3)
Sn1—Cl2 2.3333 (12)
Sn1—Cl1 2.3708 (10)
Sn1—Cl4 2.4095 (10)
Sn1—Cl3 2.4480 (10)

Data collection: SMART (Bruker, 1995[Bruker (1995). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1995[Bruker (1995). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

It has long been known that tin(IV) halides form complexes with a variety of Lewis bases (Harrison et al., 1972). Bidentate diimine ligandes are one of the strongest bases towards tin(IV) halides and more often form 1:1 complexes of the type [SnX4(NN)] (X = halide; NN = diimine ligand). Among them, the 1,10-phenanthroline and 2,2'-bipyridyl ligands are of particular interest (Matsubayashi & Iyoda, 1977). The title compound reported here, an adventitious result of our work on organoplatinum complexes, has a distorted octahedral geometry including different Sn—Cl and Sn—N bond lengths (see Fig. 1). The Cl3—Sn—Cl4 geometry shows remarkable deviation from linearity with a bond angle of 170.32 (4)°. The contraction of N11—Sn1—N21 to 74.7 (1) from the ideal 90° is typical for a chelating phenanthroline ligand. Figure 2 depicts the π-π interaction between adjacent aromatic rings, which seems, among Cl···Cl van der Waals contacts, to be significant in the stabilization of the crystal packing, as both preliminary structure determinations of the same complex, either without cocrystallized solvent (Su et al., 2007) or with co-crystallized benzene (Hall & Tiekink, 1996) show the same intermolecular contact features.

Related literature top

For tin(IV) halide complexes with a variety of Lewis bases, see: Harrison et al. (1972). For 1:1 complexes of the type [SnX4(NN)] (X = halide; NN = 1,10-phenanthroline or 2,2'-bipyridyl ligand, see: Matsubayashi & Iyoda (1977). For the structure of the title complex without cocrystallized solvent, Su et al. (2007) and with co-crystallized benzene, see: Hall & Tiekink (1996). For the preparation of trans-[PtClMe2{CH2Cl}(phen)] used in the synthesis, see: Monaghan & Puddephatt (1985).

Experimental top

A solution of SnCl2*2H2O (40 mg, 0.18 mmol) in THF (1 ml) and a solution of PPh3 (26 mg, 0.10 mmol) in dichloromethane (1 ml) were added to a dichloromethane solution (10 ml) of cis- and trans-[PtClMe2{CH2Cl}(phen)] (50 mg, 0.10 mmol) (Monaghan & Puddephatt, 1985) under Argon atmosphere. The reaction mixture was stirred for 3 h whereupon the yellow solution turned colourless. The solvent was removed under vacuum and the resulting white oily residue was solidified from CH2Cl2-diethylether solution to afford trans-[PtMe2(CH2Cl)(phen)(PPh3)][SnCl3]* C2Cl2H4. Yield: 85%; m.p. 429 K. Anal. Calc. for C35H35Cl6N2PPtSn: C, 40.4; H, 3.4; N, 2.7. Found: C, 39.7; H, 3.0; N, 2.5. NMR data in 1,2-dichloroethane/CDCl3: δ (31P) 1.50 [1J(195Pt-31P) = 1036 Hz]. The title complex crystallized during the slow decomposition of the organoplatinum(IV) species from a 1,2-dichloroethane solution yielding yellow polyhedral crystals.

Refinement top

For all hydrogen atoms the positions were calculated according to geometrical criteria. During the refinement the hydrogen atoms were allowed to shift with the parent C atoms with C-H - 0.95-0.98Å. The isotropic displacement parameters were set as 1.2 times the equivalent isotropic displacement parameters of the parent atoms.

The solvent molecule 1,2-dichloroethane was found to be situated on an centre of inversion. In the final structure model the ethylene unit of the solvent molecule shows disorder over two different conformations with occupancies of 71 (2)% and 29 (2)%, respectively.

Computing details top

Data collection: SMART (Bruker, 1995); cell refinement: SAINT (Bruker, 1995); data reduction: SAINT (Bruker, 1995); program(s) used to solve structure: SHELXTL (Sheldrick, 2008b); program(s) used to refine structure: SHELXTL (Sheldrick, 2008b); molecular graphics: SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXTL (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. The disordered solvent molecule is omitted for clarity. Displacement ellipsoids are drawn at 50% probability level.
[Figure 2] Fig. 2. A pair of two molecules in the crystal packing showing π-π interactions. The (symmetry imposed) parallel and overlapping phenanthroline planes have a distance of 3.483 (5) Å.
Tetrachlorido(1,10-phenanthroline-κ2N,N')tin(IV) 1,2-dichloroethane hemisolvate top
Crystal data top
[SnCl4(C12H8N2)]·0.5C2H4Cl2Dx = 1.985 Mg m3
Mr = 490.17Melting point: 429 K
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 7233 reflections
a = 14.4478 (2) Åθ = 3.3–24.3°
b = 12.3681 (1) ŵ = 2.37 mm1
c = 18.3551 (2) ÅT = 200 K
V = 3279.91 (6) Å3Polyhedron, yellow
Z = 80.20 × 0.18 × 0.12 mm
F(000) = 1896
Data collection top
Bruker SMART CCD
diffractometer
3747 independent reflections
Radiation source: fine-focus sealed tube2954 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.058
ω scansθmax = 27.5°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 1818
Tmin = 0.649, Tmax = 0.765k = 1616
31457 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.085H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0328P)2 + 8.0328P]
where P = (Fo2 + 2Fc2)/3
3747 reflections(Δ/σ)max = 0.001
195 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 1.16 e Å3
Crystal data top
[SnCl4(C12H8N2)]·0.5C2H4Cl2V = 3279.91 (6) Å3
Mr = 490.17Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 14.4478 (2) ŵ = 2.37 mm1
b = 12.3681 (1) ÅT = 200 K
c = 18.3551 (2) Å0.20 × 0.18 × 0.12 mm
Data collection top
Bruker SMART CCD
diffractometer
3747 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2954 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.765Rint = 0.058
31457 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.085H-atom parameters constrained
S = 1.05Δρmax = 0.43 e Å3
3747 reflectionsΔρmin = 1.16 e Å3
195 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sn10.373296 (17)0.288908 (19)0.309792 (13)0.02635 (9)
Cl10.36021 (8)0.11063 (8)0.26347 (6)0.0421 (3)
Cl20.22059 (8)0.34733 (10)0.29708 (7)0.0511 (3)
Cl30.34492 (8)0.22870 (8)0.43486 (5)0.0390 (2)
Cl40.42343 (8)0.36387 (9)0.19523 (6)0.0435 (3)
N110.4206 (2)0.4450 (2)0.35899 (17)0.0283 (7)
C120.5099 (3)0.4445 (3)0.38213 (19)0.0269 (8)
C130.5508 (3)0.5344 (3)0.4160 (2)0.0306 (8)
C140.4951 (3)0.6273 (3)0.4237 (2)0.0374 (9)
H140.51970.69000.44630.045*
C150.4064 (3)0.6278 (3)0.3989 (2)0.0408 (10)
H150.36950.69110.40290.049*
C160.3698 (3)0.5334 (3)0.3672 (2)0.0366 (9)
H160.30730.53300.35120.044*
C170.6451 (3)0.5263 (3)0.4401 (2)0.0387 (10)
H170.67260.58610.46430.046*
N210.5220 (2)0.2640 (2)0.33599 (17)0.0283 (7)
C220.5637 (3)0.3483 (3)0.37021 (19)0.0274 (8)
C230.6563 (3)0.3443 (3)0.3932 (2)0.0327 (9)
C240.7061 (3)0.2487 (4)0.3787 (2)0.0407 (10)
H240.76900.24260.39310.049*
C250.6635 (3)0.1650 (4)0.3438 (2)0.0404 (10)
H250.69670.10040.33370.049*
C260.5708 (3)0.1745 (3)0.3230 (2)0.0342 (9)
H260.54180.11560.29900.041*
C270.6951 (3)0.4365 (4)0.4294 (2)0.0404 (10)
H270.75740.43390.44600.048*
Cl110.61683 (10)0.09903 (12)0.52665 (8)0.0666 (4)
C310.5152 (6)0.0229 (6)0.5363 (4)0.049 (3)0.71 (2)
H31A0.52600.03700.57110.058*0.71 (2)
H31B0.46540.06930.55630.058*0.71 (2)
C31B0.5342 (18)0.024 (2)0.4789 (13)0.066 (8)*0.29 (2)
H31C0.50430.07140.44270.079*0.29 (2)
H31D0.56660.03430.45170.079*0.29 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sn10.03044 (14)0.02244 (13)0.02617 (14)0.00135 (10)0.00109 (10)0.00118 (10)
Cl10.0475 (6)0.0298 (5)0.0491 (6)0.0029 (4)0.0022 (5)0.0091 (4)
Cl20.0451 (6)0.0513 (7)0.0567 (7)0.0050 (5)0.0043 (5)0.0082 (6)
Cl30.0451 (5)0.0396 (6)0.0323 (5)0.0064 (4)0.0046 (4)0.0031 (4)
Cl40.0548 (7)0.0421 (6)0.0335 (5)0.0053 (5)0.0050 (5)0.0067 (5)
N110.0316 (17)0.0237 (15)0.0296 (16)0.0005 (13)0.0005 (13)0.0005 (13)
C120.0291 (19)0.0265 (18)0.0251 (18)0.0028 (15)0.0044 (15)0.0024 (15)
C130.040 (2)0.0279 (19)0.0237 (18)0.0065 (16)0.0035 (16)0.0045 (15)
C140.050 (3)0.026 (2)0.037 (2)0.0082 (18)0.0038 (19)0.0034 (17)
C150.053 (3)0.027 (2)0.043 (2)0.0033 (19)0.000 (2)0.0039 (18)
C160.038 (2)0.030 (2)0.042 (2)0.0034 (17)0.0026 (18)0.0033 (17)
C170.042 (2)0.038 (2)0.036 (2)0.0172 (18)0.0013 (18)0.0018 (18)
N210.0305 (17)0.0263 (16)0.0282 (16)0.0008 (13)0.0025 (13)0.0005 (13)
C220.0311 (19)0.0263 (19)0.0246 (18)0.0041 (15)0.0046 (15)0.0046 (15)
C230.0290 (19)0.038 (2)0.032 (2)0.0010 (17)0.0037 (16)0.0092 (17)
C240.031 (2)0.044 (2)0.048 (3)0.0015 (19)0.0030 (19)0.013 (2)
C250.039 (2)0.035 (2)0.047 (3)0.0108 (19)0.009 (2)0.0086 (19)
C260.038 (2)0.0292 (19)0.035 (2)0.0025 (17)0.0072 (17)0.0012 (16)
C270.032 (2)0.047 (3)0.041 (2)0.0098 (19)0.0041 (18)0.009 (2)
Cl110.0691 (9)0.0617 (8)0.0691 (9)0.0178 (7)0.0144 (7)0.0220 (7)
C310.061 (5)0.048 (4)0.037 (4)0.005 (3)0.021 (3)0.008 (3)
Geometric parameters (Å, º) top
Sn1—N212.224 (3)N21—C261.334 (5)
Sn1—N112.238 (3)N21—C221.357 (5)
Sn1—Cl22.3333 (12)C22—C231.404 (5)
Sn1—Cl12.3708 (10)C23—C241.410 (6)
Sn1—Cl42.4095 (10)C23—C271.434 (6)
Sn1—Cl32.4480 (10)C24—C251.363 (6)
Cl1—Cl2i3.5140 (16)C24—H240.9500
N11—C161.325 (5)C25—C261.397 (6)
N11—C121.358 (5)C25—H250.9500
C12—C131.404 (5)C26—H260.9500
C12—C221.438 (5)C27—H270.9500
C13—C141.409 (6)Cl11—C31B1.75 (3)
C13—C171.436 (6)Cl11—C311.754 (8)
C14—C151.360 (6)C31—C31ii1.513 (17)
C14—H140.9500C31—H31A0.9900
C15—C161.407 (6)C31—H31B0.9900
C15—H150.9500C31B—C31Bii1.38 (5)
C16—H160.9500C31B—H31C0.9900
C17—C271.339 (6)C31B—H31D0.9900
C17—H170.9500
N21—Sn1—N1174.74 (11)C15—C16—H16119.2
N21—Sn1—Cl2168.06 (9)C27—C17—C13121.7 (4)
N11—Sn1—Cl293.56 (9)C27—C17—H17119.2
N21—Sn1—Cl191.48 (8)C13—C17—H17119.2
N11—Sn1—Cl1166.22 (8)C26—N21—C22119.1 (3)
Cl2—Sn1—Cl1100.18 (4)C26—N21—Sn1126.0 (3)
N21—Sn1—Cl487.22 (9)C22—N21—Sn1115.0 (2)
N11—Sn1—Cl485.89 (8)N21—C22—C23122.3 (4)
Cl2—Sn1—Cl494.46 (4)N21—C22—C12117.8 (3)
Cl1—Sn1—Cl493.95 (4)C23—C22—C12119.8 (4)
N21—Sn1—Cl385.24 (8)C22—C23—C24117.3 (4)
N11—Sn1—Cl386.29 (8)C22—C23—C27119.0 (4)
Cl2—Sn1—Cl391.70 (4)C24—C23—C27123.8 (4)
Cl1—Sn1—Cl392.29 (4)C25—C24—C23119.7 (4)
Cl4—Sn1—Cl3170.32 (4)C25—C24—H24120.1
C16—N11—C12119.6 (3)C23—C24—H24120.1
C16—N11—Sn1126.0 (3)C24—C25—C26119.8 (4)
C12—N11—Sn1114.4 (2)C24—C25—H25120.1
N11—C12—C13122.3 (3)C26—C25—H25120.1
N11—C12—C22118.0 (3)N21—C26—C25121.9 (4)
C13—C12—C22119.7 (3)N21—C26—H26119.1
C12—C13—C14116.7 (4)C25—C26—H26119.1
C12—C13—C17118.7 (4)C17—C27—C23121.1 (4)
C14—C13—C17124.6 (4)C17—C27—H27119.5
C15—C14—C13120.6 (4)C23—C27—H27119.5
C15—C14—H14119.7C31B—Cl11—C3136.2 (7)
C13—C14—H14119.7Cl11—C31—H31A109.5
C14—C15—C16119.2 (4)Cl11—C31—H31B109.5
C14—C15—H15120.4H31A—C31—H31B108.1
C16—C15—H15120.4Cl11—C31B—H31C108.4
N11—C16—C15121.6 (4)Cl11—C31B—H31D108.4
N11—C16—H16119.2H31C—C31B—H31D107.4
N21—Sn1—N11—C16177.5 (3)Cl4—Sn1—N21—C2692.4 (3)
Cl2—Sn1—N11—C164.9 (3)Cl3—Sn1—N21—C2693.7 (3)
Cl1—Sn1—N11—C16179.1 (3)N11—Sn1—N21—C223.2 (2)
Cl4—Sn1—N11—C1689.3 (3)Cl2—Sn1—N21—C228.7 (6)
Cl3—Sn1—N11—C1696.4 (3)Cl1—Sn1—N21—C22176.4 (2)
N21—Sn1—N11—C122.9 (2)Cl4—Sn1—N21—C2289.7 (2)
Cl2—Sn1—N11—C12174.6 (2)Cl3—Sn1—N21—C2284.2 (2)
Cl1—Sn1—N11—C121.3 (5)C26—N21—C22—C230.7 (5)
Cl4—Sn1—N11—C1291.2 (2)Sn1—N21—C22—C23177.4 (3)
Cl3—Sn1—N11—C1283.1 (2)C26—N21—C22—C12178.7 (3)
C16—N11—C12—C131.2 (5)Sn1—N21—C22—C123.2 (4)
Sn1—N11—C12—C13178.4 (3)N11—C12—C22—N210.5 (5)
C16—N11—C12—C22178.1 (3)C13—C12—C22—N21178.7 (3)
Sn1—N11—C12—C222.4 (4)N11—C12—C22—C23180.0 (3)
N11—C12—C13—C141.4 (5)C13—C12—C22—C230.7 (5)
C22—C12—C13—C14177.9 (3)N21—C22—C23—C240.7 (5)
N11—C12—C13—C17178.8 (3)C12—C22—C23—C24178.7 (3)
C22—C12—C13—C172.0 (5)N21—C22—C23—C27179.7 (3)
C12—C13—C14—C150.1 (6)C12—C22—C23—C271.0 (5)
C17—C13—C14—C15179.7 (4)C22—C23—C24—C250.3 (6)
C13—C14—C15—C161.7 (6)C27—C23—C24—C25179.9 (4)
C12—N11—C16—C150.5 (6)C23—C24—C25—C260.2 (6)
Sn1—N11—C16—C15180.0 (3)C22—N21—C26—C250.1 (6)
C14—C15—C16—N112.0 (7)Sn1—N21—C26—C25177.7 (3)
C12—C13—C17—C271.7 (6)C24—C25—C26—N210.3 (6)
C14—C13—C17—C27178.1 (4)C13—C17—C27—C230.1 (6)
N11—Sn1—N21—C26178.8 (3)C22—C23—C27—C171.3 (6)
Cl2—Sn1—N21—C26169.2 (3)C24—C23—C27—C17178.3 (4)
Cl1—Sn1—N21—C261.5 (3)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[SnCl4(C12H8N2)]·0.5C2H4Cl2
Mr490.17
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)200
a, b, c (Å)14.4478 (2), 12.3681 (1), 18.3551 (2)
V3)3279.91 (6)
Z8
Radiation typeMo Kα
µ (mm1)2.37
Crystal size (mm)0.20 × 0.18 × 0.12
Data collection
DiffractometerBruker SMART CCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2008a)
Tmin, Tmax0.649, 0.765
No. of measured, independent and
observed [I > 2σ(I)] reflections
31457, 3747, 2954
Rint0.058
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.085, 1.05
No. of reflections3747
No. of parameters195
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.43, 1.16

Computer programs: SMART (Bruker, 1995), SAINT (Bruker, 1995), SHELXTL (Sheldrick, 2008b).

Selected geometric parameters (Å, º) top
Sn1—N212.224 (3)Sn1—Cl42.4095 (10)
Sn1—N112.238 (3)Sn1—Cl32.4480 (10)
Sn1—Cl22.3333 (12)Cl1—Cl2i3.5140 (16)
Sn1—Cl12.3708 (10)
N21—Sn1—N1174.74 (11)Cl4—Sn1—Cl3170.32 (4)
Cl2—Sn1—Cl1100.18 (4)
Symmetry code: (i) x+1/2, y1/2, z.
 

Acknowledgements

We thank the Science Research Council of K. N. Toosi University of Technology for financial support. We also thank Johnson Matthey for the generous loan of platinum salt.

References

First citationBruker (1995). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationHall, V. J. & Tiekink, E. R. T. (1996). Z. Kristallogr. 211, 247–250.  CSD CrossRef CAS Web of Science Google Scholar
First citationHarrison, P. G., Lane, B. C. & Zuckerman, J. J. (1972). Inorg. Chem. 11, 1537–1543.  CrossRef CAS Web of Science Google Scholar
First citationMatsubayashi, G. & Iyoda, J. (1977). Bull. Chem. Soc. Jpn, 50, 3055–3056.  CrossRef CAS Web of Science Google Scholar
First citationMonaghan, P. K. & Puddephatt, R. J. (1985). Organometallics, 4, 1406–1412.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2008b). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSu, Z.-H., Zhou, B.-B., Zhao, Z.-F. & Ng, S. W. (2007). Acta Cryst. E63, m394–m395.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds