organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Ethyl 2-amino-4-(3-chloro­phen­yl)-5,10-dioxo-5,10-di­hydro-4H-benzo[g]chromene-3-carboxyl­ate

aXuzhou Ruisai Technology Industry Co. Ltd, Xuzhou 221004, People's Republic of China, bDepartment of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China, and cKey Laboratory of Biotechnology for Medical Plants of Jiangsu Province, Xuzhou 221116, People's Republic of China
*Correspondence e-mail: chshengyaonk@mail.nankai.edu.cn

(Received 4 May 2009; accepted 11 May 2009; online 20 May 2009)

The title mol­ecule, C22H16ClNO5, was obtained by the reaction of (E)-ethyl 3-(3-chloro­phen­yl)-2-cyano­acrylate and 2-hydroxy­naphthalene-1,4-dione catalysed by triethylamine in ethanol. In the crystal structure, the chlorobenzene ring makes a dihedral angle of 88.63 (4)° with the fused ring system. The six-membered ring formed by an intra­molecular N—H⋯O hydrogen bond is almost planar. The crystal packing is stabilized by N—H⋯O hydrogen bonds.

Related literature

For the anti­tumor activity of 4H-naphtho[2,3-b]pyran-5,10-dione derivatives, see: Fujimoto (2007[Fujimoto, S. (2007). Biol. Pharm. Bull. 30, 1923-1929.]); Perchellet et al. (2001[Perchellet, E. M., Sperfslage, B. J., Qabaja, G., Jones, G. B. & Perchellet, J.-P. (2001). Anti-Cancer Drugs, 12, 401-417.]); Zhan et al. (2007[Zhan, J. X., Burns, A. M., Liu, M. P. X., Faeth, S. H. & Gunatilaka, A. A. L. (2007). J. Nat. Prod. 70, 227-232.]). For natural products containing H-naphtho[2,3-b]pyran-5,10-dione, see: Jassbi et al. (2004[Jassbi, A. R., Singh, P., Jain, S. & Tahara, S. (2004). Helv. Chim. Acta, 87, 820-824.]); Rodriguez et al. (2003[Rodriguez, J. C., Fernandez Puentes, J. L., Baz, J. P. & Canedo, L. M. (2003). J. Antibiot. 56, 318-321.]).

[Scheme 1]

Experimental

Crystal data
  • C22H16ClNO5

  • Mr = 409.81

  • Triclinic, [P \overline 1]

  • a = 6.1175 (17) Å

  • b = 10.021 (3) Å

  • c = 15.967 (5) Å

  • α = 84.840 (13)°

  • β = 87.714 (12)°

  • γ = 67.429 (8)°

  • V = 900.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 113 K

  • 0.32 × 0.30 × 0.20 mm

Data collection
  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (Jacobson, 1998[Jacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.924, Tmax = 0.952

  • 11338 measured reflections

  • 4261 independent reflections

  • 3031 reflections with I > 2σ(I)

  • Rint = 0.033

Refinement
  • R[F2 > 2σ(F2)] = 0.034

  • wR(F2) = 0.097

  • S = 1.01

  • 4261 reflections

  • 272 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.45 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O4 0.898 (18) 2.049 (18) 2.6827 (17) 126.5 (15)
N1—H2⋯O2i 0.880 (19) 2.12 (2) 2.9913 (17) 170.2 (18)
Symmetry code: (i) -x+2, -y, -z.

Data collection: CrystalClear (Rigaku/MSC, 2002[Rigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The derivatives of 4H-naphtho[2,3-b]pyran-5,10-dione have antitumor activities (Fujimoto, 2007; Zhan et al., 2007; Perchellet et al., 2001). Besides, some natural products also contain this moiety (Rodriguez et al., 2003; Jassbi et al., 2004). In order to develop new potential antitumor chemicals, a series of novel 4H-naphtho[2,3-b]pyran-5,10-dione derivatives based on the scaffolds of natural products have been synthesized. However, to the best of our knowledge, there are no reports on the crystal structure of these compounds. Determination of the molecular structure is crucial to the study of the structure and activity relationship. Here we report the crystal structure of the title compound, (I).

The molecular structure of (I) is shown in Fig. 1. It consists of five rings, considering the six-membered ring formed by the intramolecular N1—H1···O4 hydrogen bond (Table 1). The dihedral angles between the neighbouring rings show that the naphthalene ring and the pyran ring in an envelope conformation are almost coplanar. The phenyl ring bonded to the pyrans ring is almost perpendicular to the fused ring, for the dihedral angle is 88.63 (4)°. In the molecular structure, the crystal packing is stabilized N1—H2···O2 intermolecular hydrogen bonds. (Figs.2, Table 1)

Related literature top

For the antitumor activity of 4H-naphtho[2,3-b]pyran-5,10-dione derivatives, see: Fujimoto (2007); Perchellet et al. (2001); Zhan et al. (2007). For natural products conatianing H-naphtho[2,3-b]pyran-5,10-dione, see: Jassbi et al. (2004); Rodriguez et al. (2003).

Experimental top

The title compound was synthesized by the reaction of (E)-ethyl 3-(3-chlorophenyl)-2-cyanoacrylate (1 mmol) and 2-hydroxynaphthalene-1,4-dione (1 mmol) catalyzed by Et3N in 15 ml ethanol at reluxing temperature. After cooling, the solvent was removed at reduced pressure and the residue was washed with water and recrystallized from ethanol, which gave single crystals suitable for X-ray diffraction.

Refinement top

The hydrogen atoms bonded to nitrogen atom was positioned from a Fourier difference map and were refined freely. Other H atoms were placed in calculated positions, with C—H = 0.95-1.00 Å, and included in the final cycles of refinement using a riding model, with Uiso(H) = 1.2Ueq (parent atom).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2002); cell refinement: CrystalClear (Rigaku/MSC, 2002); data reduction: CrystalClear (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The structure of (I), showing 30% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. The packing diagram of (I). Intermolecular hydrogen bonds are shown as dashed lines.
Ethyl 2-amino-4-(3-chlorophenyl)-5,10-dioxo-5,10-dihydro- 4H-benzo[g]chromene-3-carboxylate top
Crystal data top
C22H16ClNO5Z = 2
Mr = 409.81F(000) = 424
Triclinic, P1Dx = 1.512 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 6.1175 (17) ÅCell parameters from 2873 reflections
b = 10.021 (3) Åθ = 2.2–27.9°
c = 15.967 (5) ŵ = 0.25 mm1
α = 84.840 (13)°T = 113 K
β = 87.714 (12)°Block, red
γ = 67.429 (8)°0.32 × 0.30 × 0.20 mm
V = 900.2 (4) Å3
Data collection top
Rigaku Saturn
diffractometer
4261 independent reflections
Radiation source: rotating anode3031 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.033
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.2°
ω scansh = 88
Absorption correction: multi-scan
(Jacobson, 1998)
k = 1313
Tmin = 0.924, Tmax = 0.952l = 2020
11338 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0583P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.01(Δ/σ)max < 0.001
4261 reflectionsΔρmax = 0.37 e Å3
272 parametersΔρmin = 0.45 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.020 (4)
Crystal data top
C22H16ClNO5γ = 67.429 (8)°
Mr = 409.81V = 900.2 (4) Å3
Triclinic, P1Z = 2
a = 6.1175 (17) ÅMo Kα radiation
b = 10.021 (3) ŵ = 0.25 mm1
c = 15.967 (5) ÅT = 113 K
α = 84.840 (13)°0.32 × 0.30 × 0.20 mm
β = 87.714 (12)°
Data collection top
Rigaku Saturn
diffractometer
4261 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3031 reflections with I > 2σ(I)
Tmin = 0.924, Tmax = 0.952Rint = 0.033
11338 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.37 e Å3
4261 reflectionsΔρmin = 0.45 e Å3
272 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.49377 (7)0.57379 (4)0.30597 (2)0.02735 (12)
O10.07224 (16)0.26225 (11)0.15817 (6)0.0199 (2)
O20.68318 (17)0.12419 (11)0.04552 (6)0.0231 (2)
O30.75549 (16)0.04439 (10)0.11440 (5)0.0172 (2)
O40.88099 (17)0.17355 (11)0.35482 (6)0.0225 (2)
O50.48890 (16)0.07946 (10)0.38009 (6)0.0184 (2)
N11.0294 (2)0.10163 (13)0.20348 (8)0.0191 (3)
C10.0990 (2)0.23745 (14)0.11164 (8)0.0156 (3)
C20.0730 (2)0.29181 (14)0.02047 (8)0.0162 (3)
C30.1499 (2)0.37702 (15)0.01112 (8)0.0194 (3)
H30.28540.39850.02440.023*
C40.1737 (3)0.43104 (16)0.09541 (9)0.0223 (3)
H40.32640.48850.11730.027*
C50.0222 (3)0.40187 (16)0.14729 (9)0.0228 (3)
H50.00440.44120.20420.027*
C60.2449 (3)0.31522 (15)0.11653 (8)0.0203 (3)
H60.37950.29390.15240.024*
C70.2707 (2)0.25930 (14)0.03244 (8)0.0167 (3)
C80.5078 (2)0.16626 (14)0.00028 (8)0.0164 (3)
C90.5273 (2)0.12298 (14)0.09172 (8)0.0155 (3)
C100.3409 (2)0.15414 (14)0.14472 (8)0.0147 (3)
C110.3707 (2)0.10501 (14)0.23718 (8)0.0148 (3)
H110.26010.05470.25280.018*
C120.6221 (2)0.00336 (14)0.25298 (8)0.0155 (3)
C130.7982 (2)0.02151 (14)0.19472 (8)0.0157 (3)
C140.3041 (2)0.23611 (14)0.28925 (8)0.0145 (3)
C150.4265 (2)0.32887 (14)0.27878 (8)0.0155 (3)
H150.55800.30860.24140.019*
C160.3534 (2)0.45117 (15)0.32365 (8)0.0191 (3)
C170.1670 (3)0.48205 (16)0.38070 (8)0.0233 (3)
H170.12030.56590.41110.028*
C180.0507 (3)0.38732 (16)0.39210 (9)0.0238 (3)
H180.07560.40550.43160.029*
C190.1165 (2)0.26597 (16)0.34642 (8)0.0203 (3)
H190.03290.20300.35420.024*
C200.6813 (2)0.09205 (14)0.33211 (8)0.0163 (3)
C210.5361 (2)0.17302 (15)0.45788 (8)0.0199 (3)
H21A0.63480.14610.49550.024*
H21B0.62220.27540.44580.024*
C220.3031 (3)0.15439 (17)0.49923 (9)0.0251 (3)
H22A0.33010.21670.55180.030*
H22B0.20690.18140.46160.030*
H22C0.21990.05290.51130.030*
H11.081 (3)0.160 (2)0.2506 (12)0.037 (5)*
H21.111 (3)0.118 (2)0.1561 (12)0.044 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0303 (2)0.01992 (19)0.0328 (2)0.00981 (15)0.00537 (15)0.00406 (15)
O10.0141 (5)0.0219 (5)0.0218 (5)0.0057 (4)0.0003 (4)0.0018 (4)
O20.0216 (5)0.0269 (6)0.0188 (5)0.0069 (4)0.0051 (4)0.0046 (4)
O30.0142 (5)0.0194 (5)0.0159 (5)0.0043 (4)0.0011 (4)0.0011 (4)
O40.0178 (5)0.0202 (5)0.0229 (5)0.0005 (4)0.0025 (4)0.0027 (4)
O50.0171 (5)0.0179 (5)0.0163 (5)0.0037 (4)0.0009 (4)0.0048 (4)
N10.0145 (6)0.0204 (6)0.0194 (6)0.0033 (5)0.0018 (5)0.0030 (5)
C10.0169 (7)0.0139 (6)0.0175 (6)0.0076 (5)0.0007 (5)0.0012 (5)
C20.0184 (7)0.0141 (6)0.0174 (7)0.0075 (5)0.0018 (5)0.0013 (5)
C30.0194 (7)0.0183 (7)0.0215 (7)0.0082 (6)0.0015 (5)0.0010 (6)
C40.0229 (7)0.0205 (7)0.0227 (7)0.0072 (6)0.0077 (6)0.0006 (6)
C50.0305 (8)0.0221 (7)0.0168 (7)0.0110 (6)0.0037 (6)0.0003 (6)
C60.0247 (8)0.0211 (7)0.0162 (7)0.0099 (6)0.0006 (5)0.0020 (6)
C70.0207 (7)0.0147 (6)0.0168 (6)0.0086 (5)0.0009 (5)0.0029 (5)
C80.0197 (7)0.0151 (6)0.0171 (6)0.0090 (5)0.0018 (5)0.0043 (5)
C90.0161 (7)0.0137 (6)0.0170 (6)0.0058 (5)0.0007 (5)0.0025 (5)
C100.0166 (7)0.0125 (6)0.0156 (6)0.0062 (5)0.0001 (5)0.0012 (5)
C110.0147 (6)0.0144 (6)0.0148 (6)0.0056 (5)0.0005 (5)0.0015 (5)
C120.0145 (6)0.0135 (6)0.0172 (6)0.0036 (5)0.0005 (5)0.0015 (5)
C130.0169 (7)0.0128 (6)0.0175 (6)0.0056 (5)0.0024 (5)0.0021 (5)
C140.0132 (6)0.0136 (6)0.0121 (6)0.0004 (5)0.0020 (5)0.0016 (5)
C150.0140 (6)0.0165 (7)0.0123 (6)0.0019 (5)0.0005 (5)0.0003 (5)
C160.0217 (7)0.0163 (7)0.0163 (6)0.0040 (6)0.0060 (5)0.0015 (5)
C170.0261 (8)0.0181 (7)0.0157 (7)0.0032 (6)0.0041 (5)0.0027 (5)
C180.0205 (7)0.0248 (8)0.0155 (7)0.0020 (6)0.0035 (5)0.0005 (6)
C190.0181 (7)0.0217 (7)0.0172 (7)0.0042 (6)0.0005 (5)0.0031 (5)
C200.0162 (7)0.0125 (6)0.0186 (7)0.0034 (5)0.0002 (5)0.0027 (5)
C210.0222 (7)0.0181 (7)0.0152 (6)0.0042 (6)0.0033 (5)0.0047 (5)
C220.0244 (8)0.0299 (8)0.0195 (7)0.0102 (6)0.0016 (6)0.0058 (6)
Geometric parameters (Å, º) top
Cl1—C161.7479 (15)C8—C91.4899 (18)
O1—C11.2177 (16)C9—C101.3457 (18)
O2—C81.2231 (16)C10—C111.5089 (17)
O3—C91.3584 (16)C11—C121.5194 (18)
O3—C131.3751 (15)C11—C141.5303 (19)
O4—C201.2274 (16)C11—H111.0000
O5—C201.3492 (16)C12—C131.3635 (18)
O5—C211.4549 (15)C12—C201.4508 (18)
N1—C131.3372 (17)C14—C191.3938 (18)
N1—H10.898 (18)C14—C151.3959 (19)
N1—H20.880 (19)C15—C161.3881 (19)
C1—C101.4834 (18)C15—H150.9500
C1—C21.5002 (18)C16—C171.387 (2)
C2—C31.3879 (19)C17—C181.384 (2)
C2—C71.3959 (19)C17—H170.9500
C3—C41.3963 (19)C18—C191.390 (2)
C3—H30.9500C18—H180.9500
C4—C51.379 (2)C19—H190.9500
C4—H40.9500C21—C221.498 (2)
C5—C61.386 (2)C21—H21A0.9900
C5—H50.9500C21—H21B0.9900
C6—C71.3984 (18)C22—H22A0.9800
C6—H60.9500C22—H22B0.9800
C7—C81.4739 (19)C22—H22C0.9800
C9—O3—C13118.10 (10)C14—C11—H11108.1
C20—O5—C21115.05 (10)C13—C12—C20117.77 (11)
C13—N1—H1119.2 (11)C13—C12—C11122.20 (11)
C13—N1—H2115.0 (12)C20—C12—C11120.02 (11)
H1—N1—H2121.7 (17)N1—C13—C12128.18 (12)
O1—C1—C10120.28 (11)N1—C13—O3109.49 (11)
O1—C1—C2121.46 (11)C12—C13—O3122.33 (11)
C10—C1—C2118.25 (11)C19—C14—C15119.25 (12)
C3—C2—C7119.80 (12)C19—C14—C11120.14 (12)
C3—C2—C1119.51 (12)C15—C14—C11120.59 (11)
C7—C2—C1120.68 (11)C16—C15—C14119.13 (12)
C2—C3—C4119.58 (13)C16—C15—H15120.4
C2—C3—H3120.2C14—C15—H15120.4
C4—C3—H3120.2C17—C16—C15122.12 (14)
C5—C4—C3120.69 (13)C17—C16—Cl1118.47 (11)
C5—C4—H4119.7C15—C16—Cl1119.39 (11)
C3—C4—H4119.7C18—C17—C16118.20 (13)
C4—C5—C6120.06 (13)C18—C17—H17120.9
C4—C5—H5120.0C16—C17—H17120.9
C6—C5—H5120.0C17—C18—C19120.85 (13)
C5—C6—C7119.77 (13)C17—C18—H18119.6
C5—C6—H6120.1C19—C18—H18119.6
C7—C6—H6120.1C18—C19—C14120.40 (14)
C2—C7—C6120.06 (12)C18—C19—H19119.8
C2—C7—C8120.43 (12)C14—C19—H19119.8
C6—C7—C8119.50 (12)O4—C20—O5121.56 (12)
O2—C8—C7122.97 (12)O4—C20—C12125.79 (12)
O2—C8—C9120.19 (12)O5—C20—C12112.64 (11)
C7—C8—C9116.84 (11)O5—C21—C22107.88 (11)
C10—C9—O3124.60 (12)O5—C21—H21A110.1
C10—C9—C8124.01 (12)C22—C21—H21A110.1
O3—C9—C8111.36 (11)O5—C21—H21B110.1
C9—C10—C1119.43 (11)C22—C21—H21B110.1
C9—C10—C11121.75 (12)H21A—C21—H21B108.4
C1—C10—C11118.82 (11)C21—C22—H22A109.5
C10—C11—C12109.30 (10)C21—C22—H22B109.5
C10—C11—C14110.13 (10)H22A—C22—H22B109.5
C12—C11—C14112.83 (11)C21—C22—H22C109.5
C10—C11—H11108.1H22A—C22—H22C109.5
C12—C11—H11108.1H22B—C22—H22C109.5
O1—C1—C2—C32.5 (2)C1—C10—C11—C12168.17 (11)
C10—C1—C2—C3176.36 (12)C9—C10—C11—C14113.41 (14)
O1—C1—C2—C7178.39 (13)C1—C10—C11—C1467.34 (15)
C10—C1—C2—C72.70 (19)C10—C11—C12—C1314.24 (18)
C7—C2—C3—C40.8 (2)C14—C11—C12—C13108.66 (14)
C1—C2—C3—C4178.23 (12)C10—C11—C12—C20165.61 (11)
C2—C3—C4—C50.7 (2)C14—C11—C12—C2071.50 (15)
C3—C4—C5—C61.6 (2)C20—C12—C13—N17.3 (2)
C4—C5—C6—C71.0 (2)C11—C12—C13—N1172.81 (13)
C3—C2—C7—C61.5 (2)C20—C12—C13—O3172.24 (11)
C1—C2—C7—C6177.59 (12)C11—C12—C13—O37.6 (2)
C3—C2—C7—C8178.63 (12)C9—O3—C13—N1175.65 (11)
C1—C2—C7—C82.31 (19)C9—O3—C13—C124.00 (18)
C5—C6—C7—C20.6 (2)C10—C11—C14—C19118.09 (13)
C5—C6—C7—C8179.53 (13)C12—C11—C14—C19119.49 (13)
C2—C7—C8—O2173.40 (13)C10—C11—C14—C1560.43 (15)
C6—C7—C8—O26.7 (2)C12—C11—C14—C1562.00 (15)
C2—C7—C8—C96.16 (18)C19—C14—C15—C162.01 (18)
C6—C7—C8—C9173.74 (12)C11—C14—C15—C16176.52 (11)
C13—O3—C9—C107.43 (19)C14—C15—C16—C172.07 (19)
C13—O3—C9—C8170.55 (10)C14—C15—C16—Cl1176.00 (9)
O2—C8—C9—C10174.20 (13)C15—C16—C17—C180.47 (19)
C7—C8—C9—C105.37 (19)Cl1—C16—C17—C18177.61 (10)
O2—C8—C9—O33.80 (18)C16—C17—C18—C191.2 (2)
C7—C8—C9—O3176.63 (11)C17—C18—C19—C141.2 (2)
O3—C9—C10—C1178.19 (12)C15—C14—C19—C180.43 (19)
C8—C9—C10—C10.5 (2)C11—C14—C19—C18178.10 (12)
O3—C9—C10—C111.1 (2)C21—O5—C20—O42.29 (19)
C8—C9—C10—C11178.79 (12)C21—O5—C20—C12176.26 (11)
O1—C1—C10—C9177.45 (12)C13—C12—C20—O46.9 (2)
C2—C1—C10—C93.64 (19)C11—C12—C20—O4173.26 (13)
O1—C1—C10—C111.82 (19)C13—C12—C20—O5171.59 (12)
C2—C1—C10—C11177.09 (11)C11—C12—C20—O58.26 (17)
C9—C10—C11—C1211.08 (17)C20—O5—C21—C22175.25 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.898 (18)2.049 (18)2.6827 (17)126.5 (15)
N1—H2···O2i0.880 (19)2.12 (2)2.9913 (17)170.2 (18)
Symmetry code: (i) x+2, y, z.

Experimental details

Crystal data
Chemical formulaC22H16ClNO5
Mr409.81
Crystal system, space groupTriclinic, P1
Temperature (K)113
a, b, c (Å)6.1175 (17), 10.021 (3), 15.967 (5)
α, β, γ (°)84.840 (13), 87.714 (12), 67.429 (8)
V3)900.2 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.25
Crystal size (mm)0.32 × 0.30 × 0.20
Data collection
DiffractometerRigaku Saturn
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.924, 0.952
No. of measured, independent and
observed [I > 2σ(I)] reflections
11338, 4261, 3031
Rint0.033
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.097, 1.01
No. of reflections4261
No. of parameters272
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.45

Computer programs: CrystalClear (Rigaku/MSC, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O40.898 (18)2.049 (18)2.6827 (17)126.5 (15)
N1—H2···O2i0.880 (19)2.12 (2)2.9913 (17)170.2 (18)
Symmetry code: (i) x+2, y, z.
 

References

First citationFujimoto, S. (2007). Biol. Pharm. Bull. 30, 1923–1929.  Web of Science CrossRef PubMed CAS Google Scholar
First citationJacobson, R. (1998). Private communication to the Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJassbi, A. R., Singh, P., Jain, S. & Tahara, S. (2004). Helv. Chim. Acta, 87, 820–824.  Web of Science CrossRef CAS Google Scholar
First citationPerchellet, E. M., Sperfslage, B. J., Qabaja, G., Jones, G. B. & Perchellet, J.-P. (2001). Anti-Cancer Drugs, 12, 401–417.  Web of Science CrossRef PubMed CAS Google Scholar
First citationRigaku/MSC (2002). CrystalClear. Rigaku/MSC Inc., The Woodlands, Texas, USA.  Google Scholar
First citationRodriguez, J. C., Fernandez Puentes, J. L., Baz, J. P. & Canedo, L. M. (2003). J. Antibiot. 56, 318–321.  Web of Science PubMed CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhan, J. X., Burns, A. M., Liu, M. P. X., Faeth, S. H. & Gunatilaka, A. A. L. (2007). J. Nat. Prod. 70, 227–232.  Web of Science CrossRef PubMed CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds