organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N-(2-Hy­droxy­ethyl)-1,8-naphthalimide

aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: sunjie5516@126.com

(Received 22 April 2009; accepted 27 April 2009; online 7 May 2009)

In the mol­ecule of the title compound, C14H11NO3, the naphthalimide ring system is nearly planar (r.m.s. deviation 0.0139 Å). In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link the mol­ecules into centrosymmetric dimers forming R22(14) ring motifs. ππ contacts between the naphthalimide rings [centroid–centroid distances = 3.648 (3), 3.783 (3), 3.635 (3), 3.722 (3) and 3.755 (3) Å] may further stabilize the structure.

Related literature

For a related structure, see: Prezhdo et al. (2007[Prezhdo, O. V., Uspenskii, B. V., Prezhdo, V. V., Boszczyk, W. & Distanov, V. B. (2007). Dyes Pigments, 72, 42-46.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). For ring-motifs, see: Bernstein et al. (1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]).

[Scheme 1]

Experimental

Crystal data
  • C14H11NO3

  • Mr = 241.24

  • Triclinic, [P \overline 1]

  • a = 7.5480 (15) Å

  • b = 8.8300 (18) Å

  • c = 10.101 (2) Å

  • α = 96.760 (19)°

  • β = 109.94 (3)°

  • γ = 114.60 (3)°

  • V = 548.2 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 294 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.970, Tmax = 0.990

  • 2159 measured reflections

  • 1995 independent reflections

  • 1330 reflections with I > 2σ(I)

  • Rint = 0.023

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.054

  • wR(F2) = 0.208

  • S = 1.00

  • 1995 reflections

  • 164 parameters

  • H-atom parameters constrained

  • Δρmax = 0.29 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.97 2.771 (4) 165
Symmetry code: (i) -x+1, -y+1, -z.

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97 and PLATON.

Supporting information


Comment top

As part of our ongoing studies on N-substituted 1,8-naphthalimides (Prezhdo et al., 2007), we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N/C3-C5/C10/C11), B (C5-C10) and C (C9-C14) are, of course, planar, and they are oriented at dihedral angles of A/B = 1.79 (3), A/C = 1.14 (3) and B/C = 1.00 (3) °. So, they are nearly coplanar. Intramolecular C-H···O interaction (Table 1) results in the formation of a five-membered ring D (O2/N/C2/C3/H2A), having envelope conformation, with atom H2A displaced by -0.302 (3) Å from the plane of the other ring atoms.

In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers forming R22(14) ring motifs (Fig. 2) (Bernstein et al., 1996), in which they may be effective in the stabilization of the structure. The ππ contacts between the naphthalimide rings, Cg1—Cg1i, Cg1—Cg2i, Cg1—Cg3ii, Cg2—Cg3ii and Cg3—Cg3ii [symmetry codes: (i) 1 - x, 1 - y, 1 - z, (ii) 2 - x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are centroids of the rings A (N/C3-C5/C10/C11), B (C5-C10) and C (C9-C14), respectively] may further stabilize the structure, with centroid-centroid distances of 3.648 (3), 3.783 (3), 3.635 (3), 3.722 (3) and 3.755 (3) Å, respectively.

Related literature top

For a related structure, see: Prezhdo et al. (2007). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).

Experimental top

For the preparation of the title compound, 1,8-naphthalic anhydride (1.98 g, 0.01 mol) and 2-aminoethanol (0.02 mol) were mixed with acetic acid (50 ml). The reaction mixture was refluxed for 8 h, and then poured into cold water. The resulting solids were filtered off. The solid products were boiled with an aqueous solution of sodium bicarbonate (10%, 50 ml) for 20 min, and the insoluble solid residues were dried in vacuo. Column chromatography on aluminium oxide with the C6H6 eluent gave light-brown solution. Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (yield; 96%, m.p. 413 K).

Refinement top

H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bond is shown as dashed line.
[Figure 2] Fig. 2. A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
N-(2-Hydroxyethyl)naphthalene-1,8-dicarboximide top
Crystal data top
C14H11NO3Z = 2
Mr = 241.24F(000) = 252
Triclinic, P1Dx = 1.461 Mg m3
Hall symbol: -P 1Melting point: 413 K
a = 7.5480 (15) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.8300 (18) ÅCell parameters from 25 reflections
c = 10.101 (2) Åθ = 10–13°
α = 96.760 (19)°µ = 0.10 mm1
β = 109.94 (3)°T = 294 K
γ = 114.60 (3)°Block, green
V = 548.2 (3) Å30.30 × 0.20 × 0.10 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
1330 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 25.3°, θmin = 2.3°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 109
Tmin = 0.970, Tmax = 0.990l = 1211
2159 measured reflections3 standard reflections every 120 min
1995 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.208 w = 1/[σ2(Fo2) + (0.1P)2 + 0.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1995 reflectionsΔρmax = 0.29 e Å3
164 parametersΔρmin = 0.31 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.035 (10)
Crystal data top
C14H11NO3γ = 114.60 (3)°
Mr = 241.24V = 548.2 (3) Å3
Triclinic, P1Z = 2
a = 7.5480 (15) ÅMo Kα radiation
b = 8.8300 (18) ŵ = 0.10 mm1
c = 10.101 (2) ÅT = 294 K
α = 96.760 (19)°0.30 × 0.20 × 0.10 mm
β = 109.94 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1330 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.023
Tmin = 0.970, Tmax = 0.9903 standard reflections every 120 min
2159 measured reflections intensity decay: 1%
1995 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.208H-atom parameters constrained
S = 1.00Δρmax = 0.29 e Å3
1995 reflectionsΔρmin = 0.31 e Å3
164 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.4860 (4)0.2063 (3)0.0242 (2)0.0624 (7)
H1A0.47630.27110.07490.094*
O20.6221 (4)0.5936 (3)0.1937 (3)0.0677 (8)
O30.2875 (4)0.1029 (3)0.3070 (3)0.0729 (8)
N0.4553 (4)0.3481 (3)0.2496 (3)0.0480 (7)
C10.3020 (6)0.1341 (5)0.0027 (4)0.0599 (9)
H1B0.30520.04550.05040.072*
H1C0.17460.07670.09130.072*
C20.2818 (5)0.2660 (5)0.0982 (4)0.0610 (10)
H2A0.28280.35660.05220.073*
H2B0.14390.20810.10260.073*
C30.6193 (5)0.5166 (4)0.2858 (3)0.0472 (8)
C40.4392 (5)0.2495 (4)0.3487 (4)0.0509 (8)
C50.6124 (5)0.3314 (4)0.5006 (3)0.0464 (8)
C60.6103 (6)0.2394 (5)0.6016 (4)0.0601 (10)
H6A0.49750.12630.57430.072*
C70.7759 (7)0.3145 (5)0.7442 (4)0.0677 (11)
H7A0.77260.25100.81140.081*
C80.9433 (6)0.4804 (5)0.7870 (4)0.0601 (9)
H8A1.05310.52860.88260.072*
C90.9504 (5)0.5784 (4)0.6872 (3)0.0450 (7)
C100.7830 (5)0.5027 (4)0.5413 (3)0.0407 (7)
C110.7899 (5)0.5973 (4)0.4390 (3)0.0423 (7)
C120.9566 (5)0.7653 (4)0.4817 (4)0.0494 (8)
H12A0.96110.82820.41420.059*
C131.1206 (5)0.8421 (4)0.6277 (4)0.0560 (9)
H13A1.23170.95620.65620.067*
C141.1181 (5)0.7516 (5)0.7266 (4)0.0536 (9)
H14A1.22830.80410.82220.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0681 (16)0.0792 (17)0.0581 (15)0.0486 (14)0.0293 (12)0.0251 (12)
O20.0783 (17)0.0742 (17)0.0564 (15)0.0431 (14)0.0243 (13)0.0308 (13)
O30.0595 (16)0.0526 (15)0.0854 (19)0.0114 (13)0.0330 (14)0.0078 (13)
N0.0442 (15)0.0521 (15)0.0468 (15)0.0266 (13)0.0177 (12)0.0061 (12)
C10.057 (2)0.059 (2)0.053 (2)0.0252 (17)0.0200 (16)0.0039 (16)
C20.0468 (19)0.068 (2)0.055 (2)0.0298 (17)0.0112 (16)0.0000 (17)
C30.0512 (19)0.0525 (18)0.0517 (19)0.0341 (16)0.0260 (15)0.0161 (15)
C40.0480 (19)0.0451 (18)0.063 (2)0.0226 (16)0.0310 (16)0.0069 (15)
C50.0514 (18)0.0469 (17)0.0566 (19)0.0302 (15)0.0327 (16)0.0148 (15)
C60.078 (2)0.056 (2)0.075 (3)0.0383 (19)0.054 (2)0.0285 (18)
C70.095 (3)0.081 (3)0.063 (2)0.057 (2)0.049 (2)0.039 (2)
C80.073 (2)0.081 (3)0.051 (2)0.052 (2)0.0338 (18)0.0238 (18)
C90.0469 (17)0.0588 (19)0.0434 (17)0.0359 (16)0.0232 (14)0.0123 (14)
C100.0421 (16)0.0460 (16)0.0483 (17)0.0291 (14)0.0260 (14)0.0120 (13)
C110.0455 (17)0.0447 (16)0.0463 (17)0.0296 (14)0.0214 (14)0.0119 (13)
C120.0551 (19)0.0443 (17)0.062 (2)0.0293 (15)0.0328 (16)0.0171 (15)
C130.0434 (18)0.0478 (18)0.068 (2)0.0186 (15)0.0238 (17)0.0021 (17)
C140.0481 (18)0.065 (2)0.0490 (19)0.0339 (17)0.0190 (15)0.0025 (16)
Geometric parameters (Å, º) top
O1—C11.403 (4)C6—C71.391 (5)
O1—H1A0.8200C6—H6A0.9300
O2—C31.216 (4)C7—C81.366 (5)
O3—C41.214 (4)C7—H7A0.9300
N—C21.470 (4)C8—C91.404 (5)
N—C31.383 (4)C8—H8A0.9300
N—C41.404 (4)C9—C101.418 (4)
C1—C21.515 (5)C9—C141.414 (5)
C1—H1B0.9700C10—C111.405 (4)
C1—H1C0.9700C11—C121.376 (4)
C2—H2A0.9700C12—C131.410 (5)
C2—H2B0.9700C12—H12A0.9300
C3—C111.476 (4)C13—C141.351 (5)
C4—C51.474 (5)C13—H13A0.9300
C5—C61.378 (5)C14—H14A0.9300
C5—C101.409 (4)
C1—O1—H1A109.5C5—C6—H6A119.8
C3—N—C4124.6 (3)C7—C6—H6A119.8
C3—N—C2118.3 (3)C8—C7—C6120.9 (3)
C4—N—C2117.1 (3)C8—C7—H7A119.6
O1—C1—C2114.2 (3)C6—C7—H7A119.6
O1—C1—H1B108.7C7—C8—C9120.4 (3)
C2—C1—H1B108.7C7—C8—H8A119.8
O1—C1—H1C108.7C9—C8—H8A119.8
C2—C1—H1C108.7C8—C9—C14122.6 (3)
H1B—C1—H1C107.6C8—C9—C10119.2 (3)
N—C2—C1113.5 (3)C14—C9—C10118.2 (3)
N—C2—H2A108.9C11—C10—C5120.9 (3)
C1—C2—H2A108.9C11—C10—C9120.0 (3)
N—C2—H2B108.9C5—C10—C9119.1 (3)
C1—C2—H2B108.9C12—C11—C10119.9 (3)
H2A—C2—H2B107.7C12—C11—C3120.0 (3)
O2—C3—N120.7 (3)C10—C11—C3120.1 (3)
O2—C3—C11121.9 (3)C11—C12—C13120.1 (3)
N—C3—C11117.4 (3)C11—C12—H12A119.9
O3—C4—N119.8 (3)C13—C12—H12A119.9
O3—C4—C5123.0 (3)C14—C13—C12120.7 (3)
N—C4—C5117.2 (3)C14—C13—H13A119.7
C6—C5—C10120.1 (3)C12—C13—H13A119.7
C6—C5—C4120.1 (3)C13—C14—C9121.1 (3)
C10—C5—C4119.8 (3)C13—C14—H14A119.4
C5—C6—C7120.4 (3)C9—C14—H14A119.4
C3—N—C2—C1103.2 (4)C4—C5—C10—C110.4 (4)
C4—N—C2—C178.1 (4)C6—C5—C10—C90.4 (4)
O1—C1—C2—N64.6 (4)C4—C5—C10—C9178.9 (2)
C4—N—C3—O2180.0 (3)C8—C9—C10—C11178.6 (3)
C2—N—C3—O21.4 (4)C14—C9—C10—C111.9 (4)
C4—N—C3—C110.5 (4)C8—C9—C10—C50.7 (4)
C2—N—C3—C11179.1 (2)C14—C9—C10—C5178.9 (2)
C3—N—C4—O3179.1 (3)C5—C10—C11—C12179.1 (2)
C2—N—C4—O30.5 (4)C9—C10—C11—C121.6 (4)
C3—N—C4—C51.2 (4)C5—C10—C11—C31.1 (4)
C2—N—C4—C5179.9 (2)C9—C10—C11—C3178.1 (2)
O3—C4—C5—C62.0 (5)O2—C3—C11—C121.0 (4)
N—C4—C5—C6177.7 (3)N—C3—C11—C12179.6 (3)
O3—C4—C5—C10179.6 (3)O2—C3—C11—C10178.8 (3)
N—C4—C5—C100.8 (4)N—C3—C11—C100.7 (4)
C10—C5—C6—C70.1 (5)C10—C11—C12—C130.2 (4)
C4—C5—C6—C7178.5 (3)C3—C11—C12—C13179.5 (3)
C5—C6—C7—C80.0 (5)C11—C12—C13—C140.9 (4)
C6—C7—C8—C90.2 (5)C12—C13—C14—C90.6 (5)
C7—C8—C9—C14178.9 (3)C8—C9—C14—C13179.7 (3)
C7—C8—C9—C100.6 (5)C10—C9—C14—C130.8 (4)
C6—C5—C10—C11178.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.972.771 (4)165
C2—H2A···O20.972.312.714 (5)104
Symmetry code: (i) x+1, y+1, z.

Experimental details

Crystal data
Chemical formulaC14H11NO3
Mr241.24
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)7.5480 (15), 8.8300 (18), 10.101 (2)
α, β, γ (°)96.760 (19), 109.94 (3), 114.60 (3)
V3)548.2 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.970, 0.990
No. of measured, independent and
observed [I > 2σ(I)] reflections
2159, 1995, 1330
Rint0.023
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.054, 0.208, 1.00
No. of reflections1995
No. of parameters164
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.29, 0.31

Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1A···O2i0.821.972.771 (4)165
C2—H2A···O20.972.312.714 (5)104
Symmetry code: (i) x+1, y+1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPrezhdo, O. V., Uspenskii, B. V., Prezhdo, V. V., Boszczyk, W. & Distanov, V. B. (2007). Dyes Pigments, 72, 42–46.  Web of Science CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds