organic compounds
N-(2-Hydroxyethyl)-1,8-naphthalimide
aCollege of Food Science and Light Industry, Nanjing University of Technology, Xinmofan Road No. 5 Nanjing, Nanjing 210009, People's Republic of China
*Correspondence e-mail: sunjie5516@126.com
In the molecule of the title compound, C14H11NO3, the naphthalimide ring system is nearly planar (r.m.s. deviation 0.0139 Å). In the intermolecular O—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers forming R22(14) ring motifs. π–π contacts between the naphthalimide rings [centroid–centroid distances = 3.648 (3), 3.783 (3), 3.635 (3), 3.722 (3) and 3.755 (3) Å] may further stabilize the structure.
Related literature
For a related structure, see: Prezhdo et al. (2007). For bond-length data, see: Allen et al. (1987). For ring-motifs, see: Bernstein et al. (1995).
Experimental
Crystal data
|
Refinement
|
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 and PLATON.
Supporting information
10.1107/S1600536809015621/hk2674sup1.cif
contains datablocks global, I. DOI:Structure factors: contains datablock I. DOI: 10.1107/S1600536809015621/hk2674Isup2.hkl
For the preparation of the title compound, 1,8-naphthalic anhydride (1.98 g, 0.01 mol) and 2-aminoethanol (0.02 mol) were mixed with acetic acid (50 ml). The reaction mixture was refluxed for 8 h, and then poured into cold water. The resulting solids were filtered off. The solid products were boiled with an aqueous solution of sodium bicarbonate (10%, 50 ml) for 20 min, and the insoluble solid residues were dried in vacuo.
on aluminium oxide with the C6H6 gave light-brown solution. Crystals suitable for X-ray analysis were obtained by slow evaporation of an acetone solution (yield; 96%, m.p. 413 K).H atoms were positioned geometrically, with O-H = 0.82 Å (for OH) and C-H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,O), where x = 1.5 for OH H and x = 1.2 for all other H atoms.
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell
CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).C14H11NO3 | Z = 2 |
Mr = 241.24 | F(000) = 252 |
Triclinic, P1 | Dx = 1.461 Mg m−3 |
Hall symbol: -P 1 | Melting point: 413 K |
a = 7.5480 (15) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.8300 (18) Å | Cell parameters from 25 reflections |
c = 10.101 (2) Å | θ = 10–13° |
α = 96.760 (19)° | µ = 0.10 mm−1 |
β = 109.94 (3)° | T = 294 K |
γ = 114.60 (3)° | Block, green |
V = 548.2 (3) Å3 | 0.30 × 0.20 × 0.10 mm |
Enraf–Nonius CAD-4 diffractometer | 1330 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.023 |
Graphite monochromator | θmax = 25.3°, θmin = 2.3° |
ω/2θ scans | h = 0→9 |
Absorption correction: ψ scan (North et al., 1968) | k = −10→9 |
Tmin = 0.970, Tmax = 0.990 | l = −12→11 |
2159 measured reflections | 3 standard reflections every 120 min |
1995 independent reflections | intensity decay: 1% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.208 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.4P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
1995 reflections | Δρmax = 0.29 e Å−3 |
164 parameters | Δρmin = −0.31 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.035 (10) |
C14H11NO3 | γ = 114.60 (3)° |
Mr = 241.24 | V = 548.2 (3) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.5480 (15) Å | Mo Kα radiation |
b = 8.8300 (18) Å | µ = 0.10 mm−1 |
c = 10.101 (2) Å | T = 294 K |
α = 96.760 (19)° | 0.30 × 0.20 × 0.10 mm |
β = 109.94 (3)° |
Enraf–Nonius CAD-4 diffractometer | 1330 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.023 |
Tmin = 0.970, Tmax = 0.990 | 3 standard reflections every 120 min |
2159 measured reflections | intensity decay: 1% |
1995 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | 0 restraints |
wR(F2) = 0.208 | H-atom parameters constrained |
S = 1.00 | Δρmax = 0.29 e Å−3 |
1995 reflections | Δρmin = −0.31 e Å−3 |
164 parameters |
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
O1 | 0.4860 (4) | 0.2063 (3) | −0.0242 (2) | 0.0624 (7) | |
H1A | 0.4763 | 0.2711 | −0.0749 | 0.094* | |
O2 | 0.6221 (4) | 0.5936 (3) | 0.1937 (3) | 0.0677 (8) | |
O3 | 0.2875 (4) | 0.1029 (3) | 0.3070 (3) | 0.0729 (8) | |
N | 0.4553 (4) | 0.3481 (3) | 0.2496 (3) | 0.0480 (7) | |
C1 | 0.3020 (6) | 0.1341 (5) | 0.0027 (4) | 0.0599 (9) | |
H1B | 0.3052 | 0.0455 | 0.0504 | 0.072* | |
H1C | 0.1746 | 0.0767 | −0.0913 | 0.072* | |
C2 | 0.2818 (5) | 0.2660 (5) | 0.0982 (4) | 0.0610 (10) | |
H2A | 0.2828 | 0.3566 | 0.0522 | 0.073* | |
H2B | 0.1439 | 0.2081 | 0.1026 | 0.073* | |
C3 | 0.6193 (5) | 0.5166 (4) | 0.2858 (3) | 0.0472 (8) | |
C4 | 0.4392 (5) | 0.2495 (4) | 0.3487 (4) | 0.0509 (8) | |
C5 | 0.6124 (5) | 0.3314 (4) | 0.5006 (3) | 0.0464 (8) | |
C6 | 0.6103 (6) | 0.2394 (5) | 0.6016 (4) | 0.0601 (10) | |
H6A | 0.4975 | 0.1263 | 0.5743 | 0.072* | |
C7 | 0.7759 (7) | 0.3145 (5) | 0.7442 (4) | 0.0677 (11) | |
H7A | 0.7726 | 0.2510 | 0.8114 | 0.081* | |
C8 | 0.9433 (6) | 0.4804 (5) | 0.7870 (4) | 0.0601 (9) | |
H8A | 1.0531 | 0.5286 | 0.8826 | 0.072* | |
C9 | 0.9504 (5) | 0.5784 (4) | 0.6872 (3) | 0.0450 (7) | |
C10 | 0.7830 (5) | 0.5027 (4) | 0.5413 (3) | 0.0407 (7) | |
C11 | 0.7899 (5) | 0.5973 (4) | 0.4390 (3) | 0.0423 (7) | |
C12 | 0.9566 (5) | 0.7653 (4) | 0.4817 (4) | 0.0494 (8) | |
H12A | 0.9611 | 0.8282 | 0.4142 | 0.059* | |
C13 | 1.1206 (5) | 0.8421 (4) | 0.6277 (4) | 0.0560 (9) | |
H13A | 1.2317 | 0.9562 | 0.6562 | 0.067* | |
C14 | 1.1181 (5) | 0.7516 (5) | 0.7266 (4) | 0.0536 (9) | |
H14A | 1.2283 | 0.8041 | 0.8222 | 0.064* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.0681 (16) | 0.0792 (17) | 0.0581 (15) | 0.0486 (14) | 0.0293 (12) | 0.0251 (12) |
O2 | 0.0783 (17) | 0.0742 (17) | 0.0564 (15) | 0.0431 (14) | 0.0243 (13) | 0.0308 (13) |
O3 | 0.0595 (16) | 0.0526 (15) | 0.0854 (19) | 0.0114 (13) | 0.0330 (14) | 0.0078 (13) |
N | 0.0442 (15) | 0.0521 (15) | 0.0468 (15) | 0.0266 (13) | 0.0177 (12) | 0.0061 (12) |
C1 | 0.057 (2) | 0.059 (2) | 0.053 (2) | 0.0252 (17) | 0.0200 (16) | 0.0039 (16) |
C2 | 0.0468 (19) | 0.068 (2) | 0.055 (2) | 0.0298 (17) | 0.0112 (16) | 0.0000 (17) |
C3 | 0.0512 (19) | 0.0525 (18) | 0.0517 (19) | 0.0341 (16) | 0.0260 (15) | 0.0161 (15) |
C4 | 0.0480 (19) | 0.0451 (18) | 0.063 (2) | 0.0226 (16) | 0.0310 (16) | 0.0069 (15) |
C5 | 0.0514 (18) | 0.0469 (17) | 0.0566 (19) | 0.0302 (15) | 0.0327 (16) | 0.0148 (15) |
C6 | 0.078 (2) | 0.056 (2) | 0.075 (3) | 0.0383 (19) | 0.054 (2) | 0.0285 (18) |
C7 | 0.095 (3) | 0.081 (3) | 0.063 (2) | 0.057 (2) | 0.049 (2) | 0.039 (2) |
C8 | 0.073 (2) | 0.081 (3) | 0.051 (2) | 0.052 (2) | 0.0338 (18) | 0.0238 (18) |
C9 | 0.0469 (17) | 0.0588 (19) | 0.0434 (17) | 0.0359 (16) | 0.0232 (14) | 0.0123 (14) |
C10 | 0.0421 (16) | 0.0460 (16) | 0.0483 (17) | 0.0291 (14) | 0.0260 (14) | 0.0120 (13) |
C11 | 0.0455 (17) | 0.0447 (16) | 0.0463 (17) | 0.0296 (14) | 0.0214 (14) | 0.0119 (13) |
C12 | 0.0551 (19) | 0.0443 (17) | 0.062 (2) | 0.0293 (15) | 0.0328 (16) | 0.0171 (15) |
C13 | 0.0434 (18) | 0.0478 (18) | 0.068 (2) | 0.0186 (15) | 0.0238 (17) | 0.0021 (17) |
C14 | 0.0481 (18) | 0.065 (2) | 0.0490 (19) | 0.0339 (17) | 0.0190 (15) | 0.0025 (16) |
O1—C1 | 1.403 (4) | C6—C7 | 1.391 (5) |
O1—H1A | 0.8200 | C6—H6A | 0.9300 |
O2—C3 | 1.216 (4) | C7—C8 | 1.366 (5) |
O3—C4 | 1.214 (4) | C7—H7A | 0.9300 |
N—C2 | 1.470 (4) | C8—C9 | 1.404 (5) |
N—C3 | 1.383 (4) | C8—H8A | 0.9300 |
N—C4 | 1.404 (4) | C9—C10 | 1.418 (4) |
C1—C2 | 1.515 (5) | C9—C14 | 1.414 (5) |
C1—H1B | 0.9700 | C10—C11 | 1.405 (4) |
C1—H1C | 0.9700 | C11—C12 | 1.376 (4) |
C2—H2A | 0.9700 | C12—C13 | 1.410 (5) |
C2—H2B | 0.9700 | C12—H12A | 0.9300 |
C3—C11 | 1.476 (4) | C13—C14 | 1.351 (5) |
C4—C5 | 1.474 (5) | C13—H13A | 0.9300 |
C5—C6 | 1.378 (5) | C14—H14A | 0.9300 |
C5—C10 | 1.409 (4) | ||
C1—O1—H1A | 109.5 | C5—C6—H6A | 119.8 |
C3—N—C4 | 124.6 (3) | C7—C6—H6A | 119.8 |
C3—N—C2 | 118.3 (3) | C8—C7—C6 | 120.9 (3) |
C4—N—C2 | 117.1 (3) | C8—C7—H7A | 119.6 |
O1—C1—C2 | 114.2 (3) | C6—C7—H7A | 119.6 |
O1—C1—H1B | 108.7 | C7—C8—C9 | 120.4 (3) |
C2—C1—H1B | 108.7 | C7—C8—H8A | 119.8 |
O1—C1—H1C | 108.7 | C9—C8—H8A | 119.8 |
C2—C1—H1C | 108.7 | C8—C9—C14 | 122.6 (3) |
H1B—C1—H1C | 107.6 | C8—C9—C10 | 119.2 (3) |
N—C2—C1 | 113.5 (3) | C14—C9—C10 | 118.2 (3) |
N—C2—H2A | 108.9 | C11—C10—C5 | 120.9 (3) |
C1—C2—H2A | 108.9 | C11—C10—C9 | 120.0 (3) |
N—C2—H2B | 108.9 | C5—C10—C9 | 119.1 (3) |
C1—C2—H2B | 108.9 | C12—C11—C10 | 119.9 (3) |
H2A—C2—H2B | 107.7 | C12—C11—C3 | 120.0 (3) |
O2—C3—N | 120.7 (3) | C10—C11—C3 | 120.1 (3) |
O2—C3—C11 | 121.9 (3) | C11—C12—C13 | 120.1 (3) |
N—C3—C11 | 117.4 (3) | C11—C12—H12A | 119.9 |
O3—C4—N | 119.8 (3) | C13—C12—H12A | 119.9 |
O3—C4—C5 | 123.0 (3) | C14—C13—C12 | 120.7 (3) |
N—C4—C5 | 117.2 (3) | C14—C13—H13A | 119.7 |
C6—C5—C10 | 120.1 (3) | C12—C13—H13A | 119.7 |
C6—C5—C4 | 120.1 (3) | C13—C14—C9 | 121.1 (3) |
C10—C5—C4 | 119.8 (3) | C13—C14—H14A | 119.4 |
C5—C6—C7 | 120.4 (3) | C9—C14—H14A | 119.4 |
C3—N—C2—C1 | 103.2 (4) | C4—C5—C10—C11 | 0.4 (4) |
C4—N—C2—C1 | −78.1 (4) | C6—C5—C10—C9 | −0.4 (4) |
O1—C1—C2—N | −64.6 (4) | C4—C5—C10—C9 | −178.9 (2) |
C4—N—C3—O2 | 180.0 (3) | C8—C9—C10—C11 | −178.6 (3) |
C2—N—C3—O2 | −1.4 (4) | C14—C9—C10—C11 | 1.9 (4) |
C4—N—C3—C11 | 0.5 (4) | C8—C9—C10—C5 | 0.7 (4) |
C2—N—C3—C11 | 179.1 (2) | C14—C9—C10—C5 | −178.9 (2) |
C3—N—C4—O3 | 179.1 (3) | C5—C10—C11—C12 | 179.1 (2) |
C2—N—C4—O3 | 0.5 (4) | C9—C10—C11—C12 | −1.6 (4) |
C3—N—C4—C5 | −1.2 (4) | C5—C10—C11—C3 | −1.1 (4) |
C2—N—C4—C5 | −179.9 (2) | C9—C10—C11—C3 | 178.1 (2) |
O3—C4—C5—C6 | 2.0 (5) | O2—C3—C11—C12 | 1.0 (4) |
N—C4—C5—C6 | −177.7 (3) | N—C3—C11—C12 | −179.6 (3) |
O3—C4—C5—C10 | −179.6 (3) | O2—C3—C11—C10 | −178.8 (3) |
N—C4—C5—C10 | 0.8 (4) | N—C3—C11—C10 | 0.7 (4) |
C10—C5—C6—C7 | 0.1 (5) | C10—C11—C12—C13 | 0.2 (4) |
C4—C5—C6—C7 | 178.5 (3) | C3—C11—C12—C13 | −179.5 (3) |
C5—C6—C7—C8 | 0.0 (5) | C11—C12—C13—C14 | 0.9 (4) |
C6—C7—C8—C9 | 0.2 (5) | C12—C13—C14—C9 | −0.6 (5) |
C7—C8—C9—C14 | 178.9 (3) | C8—C9—C14—C13 | 179.7 (3) |
C7—C8—C9—C10 | −0.6 (5) | C10—C9—C14—C13 | −0.8 (4) |
C6—C5—C10—C11 | 178.8 (3) |
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2i | 0.82 | 1.97 | 2.771 (4) | 165 |
C2—H2A···O2 | 0.97 | 2.31 | 2.714 (5) | 104 |
Symmetry code: (i) −x+1, −y+1, −z. |
Experimental details
Crystal data | |
Chemical formula | C14H11NO3 |
Mr | 241.24 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 294 |
a, b, c (Å) | 7.5480 (15), 8.8300 (18), 10.101 (2) |
α, β, γ (°) | 96.760 (19), 109.94 (3), 114.60 (3) |
V (Å3) | 548.2 (3) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 0.10 |
Crystal size (mm) | 0.30 × 0.20 × 0.10 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.970, 0.990 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 2159, 1995, 1330 |
Rint | 0.023 |
(sin θ/λ)max (Å−1) | 0.601 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.208, 1.00 |
No. of reflections | 1995 |
No. of parameters | 164 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.29, −0.31 |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1A···O2i | 0.82 | 1.97 | 2.771 (4) | 165 |
C2—H2A···O2 | 0.97 | 2.31 | 2.714 (5) | 104 |
Symmetry code: (i) −x+1, −y+1, −z. |
Acknowledgements
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
References
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19. CrossRef Web of Science Google Scholar
Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573. CrossRef CAS Web of Science Google Scholar
Enraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands. Google Scholar
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565. CrossRef IUCr Journals Google Scholar
Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Google Scholar
North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359. CrossRef IUCr Journals Web of Science Google Scholar
Prezhdo, O. V., Uspenskii, B. V., Prezhdo, V. V., Boszczyk, W. & Distanov, V. B. (2007). Dyes Pigments, 72, 42–46. Web of Science CrossRef Google Scholar
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Web of Science CrossRef CAS IUCr Journals Google Scholar
Spek, A. L. (2009). Acta Cryst. D65, 148–155. Web of Science CrossRef CAS IUCr Journals Google Scholar
This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.
As part of our ongoing studies on N-substituted 1,8-naphthalimides (Prezhdo et al., 2007), we report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N/C3-C5/C10/C11), B (C5-C10) and C (C9-C14) are, of course, planar, and they are oriented at dihedral angles of A/B = 1.79 (3), A/C = 1.14 (3) and B/C = 1.00 (3) °. So, they are nearly coplanar. Intramolecular C-H···O interaction (Table 1) results in the formation of a five-membered ring D (O2/N/C2/C3/H2A), having envelope conformation, with atom H2A displaced by -0.302 (3) Å from the plane of the other ring atoms.
In the crystal structure, intermolecular O-H···O hydrogen bonds (Table 1) link the molecules into centrosymmetric dimers forming R22(14) ring motifs (Fig. 2) (Bernstein et al., 1996), in which they may be effective in the stabilization of the structure. The π–π contacts between the naphthalimide rings, Cg1—Cg1i, Cg1—Cg2i, Cg1—Cg3ii, Cg2—Cg3ii and Cg3—Cg3ii [symmetry codes: (i) 1 - x, 1 - y, 1 - z, (ii) 2 - x, 1 - y, 1 - z, where Cg1, Cg2 and Cg3 are centroids of the rings A (N/C3-C5/C10/C11), B (C5-C10) and C (C9-C14), respectively] may further stabilize the structure, with centroid-centroid distances of 3.648 (3), 3.783 (3), 3.635 (3), 3.722 (3) and 3.755 (3) Å, respectively.