organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-Acetamido-3-nitro­phenyl acetate

aDepartment of Chemical Engineering, Chien-shiung Institute of Technology, Suzhou 215411, People's Republic of China, and bDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China
*Correspondence e-mail: larry_18@163.com

(Received 27 April 2009; accepted 28 April 2009; online 7 May 2009)

In the mol­ecule of the title compound, C10H10N2O5, intra­molecular C—H⋯O inter­actions result in the formation of a five- and a six-membered ring. The five-membered ring is planar and is oriented at a dihedral angle of 0.34 (3)° with respect to the plane of the aromatic ring, while the six-membered ring has a twist conformation. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into chains.

Related literature

For a related structure, see: Gu (2007[Gu, Z. (2007). Faming Zhuanli Shenqing Gongkai Shuomingshu, 101085741.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C10H10N2O5

  • Mr = 238.20

  • Monoclinic, C 2/c

  • a = 24.859 (5) Å

  • b = 4.7060 (9) Å

  • c = 19.773 (4) Å

  • β = 108.67 (3)°

  • V = 2191.4 (8) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 298 K

  • 0.30 × 0.10 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.966, Tmax = 0.988

  • 2039 measured reflections

  • 1992 independent reflections

  • 1310 reflections with I > 2σ(I)

  • Rint = 0.021

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.064

  • wR(F2) = 0.187

  • S = 1.00

  • 1992 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.56 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O2 0.93 2.33 2.647 (4) 100
C7—H7A⋯O5 0.93 2.35 2.836 (4) 113
C10—H10C⋯O5i 0.96 2.59 3.300 (4) 130
Symmetry code: (i) x, y-1, z.

Data collection: CAD-4 Software (Enraf–Nonius, 1985[Enraf-Nonius (1985). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The title compound is an important medical intermediate used to synthesize 3,4-diaminophenol, which is the main raw material of luxabendazole (Gu, 2007). We report herein the crystal structure of the title compound, which is of interest to us in the field.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Ring A (C3-C8) is, of course, planar. Intramolecular C-H···O interactions (Table 1) result in the formations of five- and six-membered rings: B (O2/N2/C4/C5/H4A) and C (O4/O5/C5-C7/C9/H7A). Ring B is planar and it is oriented with respect to ring A at a dihedral angle of 0.34 (3)°, while ring C has a twisted conformation.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into chains, in which they may be effective in the stabilization of the structure.

Related literature top

For a related structure, see: Gu (2007). For bond-length data, see: Allen et al. (1987).

Experimental top

The title compound was prepared by the reaction of 4-aminophenol, fuming nitric acid and acetic anhydride (Gu, 2007). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.2 g) in ethanol (25 ml) and evaporating the solvent slowly at room temperature for about 2 d.

Refinement top

H atoms were positioned geometrically, with N-H = 0.86 Å (for NH) and C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C,N), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1985); cell refinement: CAD-4 Software (Enraf–Nonius, 1985); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Hydrogen bonds are shown as dashed lines.
4-Acetamido-3-nitrophenyl acetate top
Crystal data top
C10H10N2O5F(000) = 992
Mr = 238.20Dx = 1.444 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 24.859 (5) Åθ = 9–13°
b = 4.7060 (9) ŵ = 0.12 mm1
c = 19.773 (4) ÅT = 298 K
β = 108.67 (3)°Needle, colorless
V = 2191.4 (8) Å30.30 × 0.10 × 0.10 mm
Z = 8
Data collection top
Enraf–Nonius CAD-4
diffractometer
1310 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 25.3°, θmin = 1.7°
ω/2θ scansh = 029
Absorption correction: ψ scan
(North et al., 1968)
k = 05
Tmin = 0.966, Tmax = 0.988l = 2322
2039 measured reflections3 standard reflections every 120 min
1992 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H-atom parameters constrained
wR(F2) = 0.187 w = 1/[σ2(Fo2) + (0.1P)2 + 1.4P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
1992 reflectionsΔρmax = 0.51 e Å3
136 parametersΔρmin = 0.56 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.091 (8)
Crystal data top
C10H10N2O5V = 2191.4 (8) Å3
Mr = 238.20Z = 8
Monoclinic, C2/cMo Kα radiation
a = 24.859 (5) ŵ = 0.12 mm1
b = 4.7060 (9) ÅT = 298 K
c = 19.773 (4) Å0.30 × 0.10 × 0.10 mm
β = 108.67 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1310 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.021
Tmin = 0.966, Tmax = 0.9883 standard reflections every 120 min
2039 measured reflections intensity decay: 1%
1992 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0640 restraints
wR(F2) = 0.187H-atom parameters constrained
S = 1.00Δρmax = 0.51 e Å3
1992 reflectionsΔρmin = 0.56 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.07647 (10)0.5724 (5)0.10146 (12)0.0515 (4)
H1A0.05160.70610.08970.062*
N20.06554 (11)0.0326 (5)0.09742 (14)0.0514 (7)
O10.12640 (12)0.2734 (6)0.18301 (13)0.0844 (9)
O20.02074 (10)0.1112 (6)0.09213 (14)0.0857 (9)
O30.08434 (11)0.1300 (6)0.14164 (15)0.0872 (9)
O40.17417 (10)0.2065 (5)0.10210 (12)0.0688 (7)
O50.21944 (11)0.6153 (5)0.11162 (14)0.0770 (8)
C10.06037 (13)0.5863 (7)0.21107 (15)0.0515 (4)
H1B0.07230.50040.25760.077*
H1C0.02040.55600.18880.077*
H1D0.06800.78660.21560.077*
C20.09173 (14)0.4575 (7)0.16704 (16)0.0515 (4)
C30.10194 (13)0.4694 (7)0.05257 (16)0.0515 (4)
C40.07426 (12)0.2714 (6)0.00398 (15)0.0457 (7)
H4A0.03990.19610.00480.055*
C50.09830 (12)0.1834 (6)0.04697 (15)0.0441 (7)
C60.14971 (11)0.2930 (6)0.05065 (15)0.0427 (7)
C70.17661 (12)0.4918 (6)0.00190 (17)0.0512 (8)
H7A0.21160.56450.00290.061*
C80.15321 (13)0.5825 (6)0.05171 (16)0.0514 (8)
H8A0.17160.71960.08500.062*
C90.20627 (12)0.3744 (6)0.13076 (16)0.0484 (7)
C100.22342 (15)0.2336 (7)0.18863 (18)0.0607 (9)
H10A0.24580.36290.20610.091*
H10B0.19010.18080.22700.091*
H10C0.24540.06670.16990.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0594 (9)0.0497 (9)0.0486 (8)0.0021 (7)0.0217 (7)0.0021 (7)
N20.0494 (14)0.0471 (15)0.0587 (16)0.0106 (12)0.0185 (12)0.0027 (13)
O10.0895 (18)0.093 (2)0.0743 (17)0.0254 (16)0.0320 (14)0.0246 (15)
O20.0725 (16)0.093 (2)0.100 (2)0.0430 (15)0.0402 (15)0.0344 (16)
O30.0887 (18)0.095 (2)0.0935 (19)0.0414 (16)0.0506 (16)0.0460 (16)
O40.0795 (16)0.0577 (14)0.0814 (17)0.0073 (12)0.0426 (14)0.0024 (12)
O50.109 (2)0.0442 (14)0.0964 (19)0.0279 (13)0.0595 (16)0.0069 (13)
C10.0594 (9)0.0497 (9)0.0486 (8)0.0021 (7)0.0217 (7)0.0021 (7)
C20.0594 (9)0.0497 (9)0.0486 (8)0.0021 (7)0.0217 (7)0.0021 (7)
C30.0594 (9)0.0497 (9)0.0486 (8)0.0021 (7)0.0217 (7)0.0021 (7)
C40.0444 (15)0.0400 (16)0.0561 (17)0.0079 (13)0.0207 (13)0.0007 (14)
C50.0483 (15)0.0337 (14)0.0490 (16)0.0059 (13)0.0139 (13)0.0002 (13)
C60.0463 (15)0.0332 (14)0.0508 (16)0.0008 (13)0.0184 (13)0.0066 (13)
C70.0479 (16)0.0421 (16)0.0637 (19)0.0107 (13)0.0181 (15)0.0017 (15)
C80.0601 (18)0.0422 (17)0.0498 (17)0.0059 (15)0.0146 (14)0.0020 (14)
C90.0521 (17)0.0392 (17)0.0585 (18)0.0001 (14)0.0239 (14)0.0058 (14)
C100.076 (2)0.0516 (19)0.068 (2)0.0007 (17)0.0421 (18)0.0031 (17)
Geometric parameters (Å, º) top
O1—C21.191 (4)C3—C41.357 (4)
O4—C91.368 (3)C3—C81.386 (4)
O4—C61.402 (3)C4—C51.389 (4)
O5—C91.207 (3)C4—H4A0.9300
N1—C21.343 (4)C5—C61.402 (4)
N1—C31.401 (4)C6—C71.399 (4)
N1—H1A0.8600C7—C81.363 (4)
N2—O31.206 (3)C7—H7A0.9300
N2—O21.209 (3)C8—H8A0.9300
N2—C51.474 (4)C9—C101.497 (4)
C1—C21.473 (4)C10—H10A0.9600
C1—H1B0.9600C10—H10B0.9600
C1—H1C0.9600C10—H10C0.9600
C1—H1D0.9600
C9—O4—C6125.4 (2)C4—C5—C6122.6 (3)
C2—N1—C3118.5 (3)C4—C5—N2115.1 (2)
C2—N1—H1A120.8C6—C5—N2122.3 (3)
C3—N1—H1A120.8C7—C6—C5115.7 (3)
O2—N2—C5118.5 (3)C7—C6—O4121.2 (2)
O3—N2—O2121.8 (3)C5—C6—O4123.0 (3)
O3—N2—C5119.6 (2)C8—C7—C6122.2 (3)
C2—C1—H1B109.5C8—C7—H7A118.9
C2—C1—H1C109.5C6—C7—H7A118.9
H1B—C1—H1C109.5C7—C8—C3119.7 (3)
C2—C1—H1D109.5C7—C8—H8A120.2
H1B—C1—H1D109.5C3—C8—H8A120.2
H1C—C1—H1D109.5O5—C9—O4123.2 (3)
O1—C2—N1120.4 (3)O5—C9—C10122.7 (3)
O1—C2—C1128.2 (3)O4—C9—C10114.1 (3)
N1—C2—C1111.5 (3)C9—C10—H10A109.5
C4—C3—C8121.0 (3)C9—C10—H10B109.5
C4—C3—N1119.2 (3)H10A—C10—H10B109.5
C8—C3—N1119.7 (3)C9—C10—H10C109.5
C3—C4—C5118.7 (3)H10A—C10—H10C109.5
C3—C4—H4A120.7H10B—C10—H10C109.5
C5—C4—H4A120.7
C3—N1—C2—O10.4 (5)N2—C5—C6—C7178.6 (3)
C3—N1—C2—C1179.1 (3)C4—C5—C6—O4179.7 (3)
C2—N1—C3—C497.3 (4)N2—C5—C6—O40.2 (4)
C2—N1—C3—C886.5 (4)C9—O4—C6—C733.5 (4)
C8—C3—C4—C50.0 (5)C9—O4—C6—C5148.2 (3)
N1—C3—C4—C5176.2 (3)C5—C6—C7—C82.7 (4)
C3—C4—C5—C60.7 (5)O4—C6—C7—C8178.9 (3)
C3—C4—C5—N2179.8 (3)C6—C7—C8—C32.2 (5)
O3—N2—C5—C4177.0 (3)C4—C3—C8—C70.7 (5)
O2—N2—C5—C41.6 (4)N1—C3—C8—C7176.9 (3)
O3—N2—C5—C63.5 (4)C6—O4—C9—O53.9 (5)
O2—N2—C5—C6178.0 (3)C6—O4—C9—C10175.7 (3)
C4—C5—C6—C71.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.932.332.647 (4)100
C7—H7A···O50.932.352.836 (4)113
C10—H10C···O5i0.962.593.300 (4)130
Symmetry code: (i) x, y1, z.

Experimental details

Crystal data
Chemical formulaC10H10N2O5
Mr238.20
Crystal system, space groupMonoclinic, C2/c
Temperature (K)298
a, b, c (Å)24.859 (5), 4.7060 (9), 19.773 (4)
β (°) 108.67 (3)
V3)2191.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.12
Crystal size (mm)0.30 × 0.10 × 0.10
Data collection
DiffractometerEnraf–Nonius CAD-4
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.966, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
2039, 1992, 1310
Rint0.021
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.064, 0.187, 1.00
No. of reflections1992
No. of parameters136
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.51, 0.56

Computer programs: CAD-4 Software (Enraf–Nonius, 1985), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4A···O20.932.332.647 (4)100
C7—H7A···O50.932.352.836 (4)113
C10—H10C···O5i0.962.593.300 (4)130
Symmetry code: (i) x, y1, z.
 

Acknowledgements

The authors thank the Center of Testing and Analysis, Nanjing University, for support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1985). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationGu, Z. (2007). Faming Zhuanli Shenqing Gongkai Shuomingshu, 101085741.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds