organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(4-Chloro­phen­yl)-6-hydr­­oxy-5-(2-thienyl­carbonyl)-6-(tri­fluoro­meth­yl)-3,4,5,6-tetra­hydro­pyrimidin-2(1H)-one monohydrate

aDepartment of Chemistry, Islamic Azad University, Yazd Branch, Yazd, Iran
*Correspondence e-mail: mosleminemh@yahoo.com

(Received 3 May 2009; accepted 6 May 2009; online 20 May 2009)

The asymmetric unit of the title compound, C16H12ClF3N2O3S·H2O, contains two crystallographically independent organic mol­ecules and two water mol­ecules. The organic species are linked by an inter­molecular O—H⋯O hydrogen bond, while the water mol­ecules are connected to them through inter­molecular O—H⋯N hydrogen bonds. The thio­phene and phenyl rings are oriented at dihedral angles of 62.35 (4) in the first independent mol­ecule and 60.74 (5)° in the second, while the pyrimidine rings adopt twisted conformations in both molecules. Intra­molecular N—H⋯F inter­actions result in the formation of two five-membered rings having envelope conformations. In the crystal structure, further inter­molecular O—H⋯O and N—H⋯O hydrogen bonds link the mol­ecules into chains.

Related literature

For related structures, see: Paraskar et al. (2003[Paraskar, A. S., Dewkar, G. K. & Sudalai, A. (2003). Tetrahedron Lett. 44, 3305-3308.]); Peng & Deng (2001[Peng, J. & Deng, Y. (2001). Tetrahedron Lett. 42, 5917-5919.]). For bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C16H12ClF3N2O3S·H2O

  • Mr = 422.81

  • Orthorhombic, P b n 21

  • a = 9.1156 (6) Å

  • b = 14.1582 (7) Å

  • c = 27.6012 (17) Å

  • V = 3562.2 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.39 mm−1

  • T = 298 K

  • 0.5 × 0.3 × 0.2 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1998[Sheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA.]) Tmin = 0.860, Tmax = 0.923

  • 19595 measured reflections

  • 9251 independent reflections

  • 7478 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.146

  • S = 1.07

  • 9251 reflections

  • 511 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.47 e Å−3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.]), 4326 Friedel pairs

  • Flack parameter: 0.18 (8)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯F3 0.86 2.38 2.719 (4) 104
N1—H1A⋯O7i 0.86 2.37 3.022 (4) 132
N2—H2A⋯O7 0.86 2.15 2.914 (4) 147
O2—H2B⋯O6ii 0.89 (4) 1.85 (4) 2.694 (4) 156 (3)
N3—H3A⋯F4 0.86 2.41 2.733 (4) 103
N3—H3A⋯O8iii 0.86 2.34 3.007 (4) 134
N4—H4A⋯O8 0.86 2.14 2.921 (4) 151
O5—H5⋯O3 0.98 (6) 1.72 (6) 2.686 (4) 169 (6)
O7—H7A⋯O6iii 0.84 (7) 2.27 (7) 2.879 (4) 130 (5)
O7—H7B⋯O4iv 0.86 (6) 2.36 (6) 2.996 (5) 131 (5)
O7—H7B⋯O5iv 0.86 (6) 2.18 (6) 2.859 (4) 135 (5)
O8—H8A⋯O3v 0.75 (5) 2.21 (5) 2.897 (4) 153 (4)
O8—H8B⋯O1i 0.83 (5) 2.22 (6) 2.968 (5) 150 (5)
O8—H8B⋯O2i 0.83 (5) 2.27 (6) 2.861 (4) 128 (5)
Symmetry codes: (i) [-x+{\script{1\over 2}}, y-{\script{1\over 2}}, z]; (ii) x-1, y, z; (iii) [-x+{\script{3\over 2}}, y+{\script{1\over 2}}, z]; (iv) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z]; (v) [-x+{\script{3\over 2}}, y-{\script{1\over 2}}, z].

Data collection: SMART (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 1998[Bruker (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXTL; molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

In recent years, several modified and improved procedures for one-pot synthesis of dihydropyrimidine-2(1H)-ones have been reported (Paraskar et al., 2003; Peng & Deng, 2001). However, in spite of their potential utility, many of these methods suffer from drawback like longer reaction times, unsatisfactory yields and cumbersome product isolation procedures. We report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains two crystallographically independent molecules and two water molecules (Fig. 1 ), in which the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (S1/C1–C4), C (C11–C16) and D (S2/C17–C20), F (C27–C32) are, of course, planar and they are oriented at dihedral angles of A/C = 62.35 (4)° and D/F = 60.74 (5)°. Rings B (N1/N2/C6/C7/C9/C10) and E (N3/N4/C22/C23/C25/C26) adopt twisted conformations. Intramolecular N—H···F interactions (Table 1) result in the formations of two five-membered rings G (N1/F3/C7/C8/H1A) and H (N3/F4/C23/C24/H3A) having envelope conformations with atoms C8 and C24 displaced by 0.594 (4) and -0.603 (5) Å from the planes of the other rings atoms. Intramolecular O—H···O hydrogen bond (Table 1) link the two molecules, while the water molecules are connected to them through the intramolecular N—H···O hydrogen bonds (Table 1).

In the crystal structure, intermolecular O—H···O and N—H···O hydrogen bonds (Table 1) link the molecules into chains (Fig. 2), in which they may be effective in the stabilization of the structure.

Related literature top

For related structures, see: Paraskar et al. (2003); Peng & Deng (2001). For bond-length data, see: Allen et al. (1987).

Experimental top

For the preparation of the title compound, a mixture of 1-(2-thenoyl)-3,3,3-trifluoroacetone (0.222 g, 1 mmol), 4-chlorobenzaldehyde (0.141 g, 1 mmol), urea (0.18 g, 3 mmol) and ammonium chloride (0.005 g, 0.1 mmol) were heated at 373 K under stirring for 20 min. After cooling, the reaction mixture was poured onto crushed ice (20 g). The separated solid was filtered, washed with cold water (20 ml) and recrystallized from ethylacetate–hexane (1:3) to afford pure product (yield; 78%, 0.330 g).

Refinement top

H atoms of water molecules and OH groups were located in difference Fourier map and refined isotropically. The remaining H atoms were positioned geometrically with N—H = 0.86 Å (for NH) and C—H = 0.93 and 0.98 Å, for aromatic and methine H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C,N).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT (Bruker, 1998); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A partial packing diagram of the title compound viewed down the a axis. Hydrogen bonds are shown as dashed lines.
4-(4-Chlorophenyl)-6-hydroxy-5-(2-thienylcarbonyl)-6-(trifluoromethyl)- 3,4,5,6-tetrahydropyrimidin-2(1H)-one monohydrate top
Crystal data top
C16H12ClF3N2O3S·H2OF(000) = 1728
Mr = 422.81Dx = 1.577 Mg m3
Orthorhombic, Pbn21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2abCell parameters from 1879 reflections
a = 9.1156 (6) Åθ = 2.4–29.2°
b = 14.1582 (7) ŵ = 0.39 mm1
c = 27.6012 (17) ÅT = 298 K
V = 3562.2 (4) Å3Block, colourless
Z = 80.5 × 0.3 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
7478 reflections with I > 2σ(I)
ϕ and ω scansRint = 0.032
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
θmax = 29.2°, θmin = 2.4°
Tmin = 0.860, Tmax = 0.923h = 1112
19595 measured reflectionsk = 1919
9251 independent reflectionsl = 3736
Refinement top
Refinement on F2H atoms treated by a mixture of independent and constrained refinement
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0679P)2 + 1.8489P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.055(Δ/σ)max = 0.012
wR(F2) = 0.146Δρmax = 0.41 e Å3
S = 1.07Δρmin = 0.47 e Å3
9251 reflectionsAbsolute structure: Flack (1983), 4326 Friedel pairs
511 parametersAbsolute structure parameter: 0.18 (8)
Crystal data top
C16H12ClF3N2O3S·H2OV = 3562.2 (4) Å3
Mr = 422.81Z = 8
Orthorhombic, Pbn21Mo Kα radiation
a = 9.1156 (6) ŵ = 0.39 mm1
b = 14.1582 (7) ÅT = 298 K
c = 27.6012 (17) Å0.5 × 0.3 × 0.2 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
9251 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
7478 reflections with I > 2σ(I)
Tmin = 0.860, Tmax = 0.923Rint = 0.032
19595 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.055H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.146Δρmax = 0.41 e Å3
S = 1.07Δρmin = 0.47 e Å3
9251 reflectionsAbsolute structure: Flack (1983), 4326 Friedel pairs
511 parametersAbsolute structure parameter: 0.18 (8)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.20863 (18)1.18591 (11)0.10132 (6)0.0800 (4)
Cl20.71737 (17)0.07620 (11)0.51510 (6)0.0829 (5)
S10.37400 (15)0.85338 (12)0.12927 (6)0.0797 (4)
S20.13318 (16)0.40572 (12)0.48988 (7)0.0805 (4)
O10.2355 (3)0.8588 (2)0.22653 (14)0.0540 (8)
O20.0969 (3)0.71519 (19)0.27993 (10)0.0401 (6)
H2B0.086 (4)0.665 (3)0.2992 (15)0.028 (10)*
O30.3549 (3)0.69972 (17)0.28201 (10)0.0414 (6)
O40.2597 (3)0.4046 (3)0.39238 (14)0.0539 (8)
O50.4027 (3)0.54419 (17)0.33543 (9)0.0394 (5)
H50.396 (7)0.604 (4)0.318 (2)0.088 (18)*
O60.8546 (3)0.55885 (17)0.33323 (10)0.0413 (6)
O70.3736 (3)0.9773 (2)0.30044 (11)0.0433 (6)
H7A0.459 (8)0.964 (4)0.309 (2)0.09 (2)*
H7B0.321 (7)0.993 (4)0.325 (2)0.080 (18)*
O80.8726 (3)0.2819 (2)0.31572 (11)0.0423 (6)
H8A0.946 (6)0.278 (3)0.3038 (17)0.045 (13)*
H8B0.820 (6)0.283 (4)0.291 (2)0.066 (15)*
N10.1334 (3)0.66639 (19)0.24968 (11)0.0335 (6)
H1A0.15460.60740.2470.04*
N20.2184 (4)0.8206 (2)0.25512 (13)0.0408 (7)
H2A0.2910.85790.26050.049*
N30.6328 (3)0.59341 (18)0.36587 (10)0.0314 (5)
H3A0.65430.65240.36790.038*
N40.7153 (4)0.43923 (19)0.36029 (13)0.0385 (7)
H4A0.78640.40150.35350.046*
F10.0306 (3)0.61345 (17)0.16413 (9)0.0574 (6)
F20.2295 (3)0.6369 (2)0.20268 (16)0.0684 (9)
F30.0748 (3)0.53514 (14)0.22866 (10)0.0553 (6)
F40.4222 (3)0.72493 (15)0.38632 (10)0.0572 (6)
F50.2705 (3)0.6231 (2)0.41348 (15)0.0686 (9)
F60.4700 (3)0.64863 (18)0.45092 (9)0.0618 (7)
C10.3412 (9)0.8435 (4)0.0706 (3)0.094 (2)
H10.41330.85060.0470.112*
C20.2010 (10)0.8242 (5)0.0601 (2)0.084 (2)
H20.16820.81610.02850.1*
C30.1067 (5)0.8169 (3)0.10026 (15)0.0440 (8)
H30.00630.80510.09940.053*
C40.1978 (4)0.8318 (3)0.14442 (15)0.0426 (8)
C50.1541 (4)0.8292 (2)0.19488 (13)0.0343 (7)
C60.0040 (3)0.7890 (2)0.20871 (12)0.0286 (6)
H60.04970.77490.17880.034*
C70.0144 (3)0.6974 (2)0.23879 (11)0.0288 (6)
C80.0881 (4)0.6194 (2)0.20873 (13)0.0366 (7)
C90.2396 (3)0.7281 (3)0.26401 (15)0.0311 (7)
C100.0830 (4)0.8633 (2)0.23712 (12)0.0314 (6)
H100.02410.88550.26460.038*
C110.1184 (3)0.9461 (2)0.20424 (12)0.0319 (6)
C120.2245 (5)0.9376 (3)0.1683 (2)0.0462 (9)
H120.27770.88180.16550.055*
C130.2516 (4)1.0109 (3)0.13683 (18)0.0466 (11)
H130.32361.00520.11310.056*
C140.1722 (4)1.0921 (3)0.14066 (14)0.0453 (8)
C150.0667 (5)1.1025 (3)0.17562 (15)0.0461 (9)
H150.01391.15860.1780.055*
C160.0395 (4)1.0292 (2)0.20716 (14)0.0397 (7)
H160.03281.03580.23070.048*
C170.1708 (9)0.4116 (5)0.5484 (3)0.088 (2)
H170.09970.40450.57230.105*
C180.3112 (9)0.4273 (4)0.5583 (2)0.0804 (18)
H180.34630.43080.58990.096*
C190.4056 (5)0.4386 (3)0.51657 (13)0.0444 (8)
H190.5060.45010.51670.053*
C200.3103 (4)0.4283 (3)0.47414 (15)0.0421 (8)
C210.3463 (4)0.4322 (2)0.42239 (14)0.0365 (7)
C220.4972 (3)0.4722 (2)0.40755 (11)0.0287 (6)
H220.55230.48710.43710.034*
C230.4852 (3)0.5625 (2)0.37684 (11)0.0285 (6)
C240.4120 (4)0.6412 (2)0.40686 (14)0.0386 (7)
C250.7380 (4)0.5309 (2)0.35238 (16)0.0331 (8)
C260.5819 (3)0.3969 (2)0.37927 (12)0.0307 (6)
H260.52150.37420.35230.037*
C270.6181 (3)0.3148 (2)0.41269 (12)0.0307 (6)
C280.5391 (4)0.2319 (2)0.40975 (14)0.0401 (7)
H280.46650.22530.38630.048*
C290.5675 (4)0.1575 (3)0.44180 (17)0.0499 (9)
H290.51380.10170.44020.06*
C300.6760 (4)0.1689 (3)0.47547 (15)0.0492 (10)
C310.7576 (5)0.2514 (3)0.4788 (2)0.0515 (12)
H310.83060.25750.50210.062*
C320.7287 (4)0.3237 (3)0.44722 (16)0.0398 (8)
H320.78330.37910.44880.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0826 (8)0.0777 (8)0.0797 (9)0.0138 (7)0.0002 (8)0.0486 (7)
Cl20.0798 (8)0.0833 (8)0.0856 (10)0.0318 (7)0.0201 (8)0.0568 (8)
S10.0514 (6)0.0965 (10)0.0912 (11)0.0052 (7)0.0265 (7)0.0229 (8)
S20.0571 (7)0.0907 (10)0.0937 (11)0.0052 (7)0.0273 (8)0.0203 (8)
O10.0466 (16)0.0612 (18)0.054 (2)0.0213 (13)0.0096 (13)0.0121 (15)
O20.0436 (14)0.0339 (12)0.0427 (14)0.0050 (11)0.0152 (11)0.0097 (11)
O30.0324 (12)0.0356 (12)0.0561 (16)0.0016 (9)0.0148 (11)0.0126 (11)
O40.0398 (15)0.0719 (19)0.050 (2)0.0212 (13)0.0117 (12)0.0137 (15)
O50.0443 (13)0.0339 (12)0.0400 (13)0.0061 (10)0.0126 (11)0.0086 (10)
O60.0356 (12)0.0367 (12)0.0515 (15)0.0034 (10)0.0149 (11)0.0112 (11)
O70.0327 (13)0.0486 (15)0.0486 (16)0.0070 (11)0.0040 (11)0.0024 (12)
O80.0315 (13)0.0482 (15)0.0472 (15)0.0060 (11)0.0037 (12)0.0004 (12)
N10.0298 (12)0.0255 (12)0.0451 (17)0.0001 (10)0.0053 (11)0.0014 (11)
N20.0395 (14)0.0272 (13)0.056 (2)0.0045 (12)0.0210 (15)0.0089 (12)
N30.0281 (12)0.0246 (11)0.0414 (15)0.0004 (9)0.0072 (11)0.0021 (10)
N40.0399 (14)0.0280 (12)0.0475 (18)0.0089 (12)0.0166 (14)0.0047 (11)
F10.0750 (16)0.0529 (13)0.0443 (13)0.0109 (12)0.0044 (12)0.0085 (11)
F20.0333 (11)0.0598 (15)0.112 (3)0.0091 (11)0.0239 (15)0.0002 (16)
F30.0688 (15)0.0297 (9)0.0674 (16)0.0121 (10)0.0203 (13)0.0055 (10)
F40.0739 (16)0.0313 (10)0.0664 (16)0.0138 (10)0.0233 (13)0.0062 (10)
F50.0312 (10)0.0600 (15)0.115 (3)0.0080 (10)0.0226 (15)0.0060 (16)
F60.0785 (18)0.0637 (14)0.0433 (13)0.0138 (13)0.0042 (12)0.0161 (11)
C10.115 (5)0.076 (4)0.090 (5)0.007 (4)0.071 (4)0.007 (3)
C20.132 (6)0.077 (4)0.041 (3)0.015 (4)0.022 (3)0.003 (2)
C30.053 (2)0.0481 (19)0.0310 (17)0.0122 (16)0.0079 (16)0.0067 (15)
C40.0383 (18)0.0404 (17)0.049 (2)0.0002 (14)0.0079 (15)0.0121 (16)
C50.0302 (15)0.0331 (15)0.0397 (18)0.0016 (12)0.0018 (12)0.0065 (13)
C60.0256 (13)0.0301 (13)0.0302 (15)0.0005 (10)0.0013 (11)0.0037 (12)
C70.0250 (13)0.0266 (12)0.0348 (15)0.0014 (10)0.0003 (11)0.0006 (11)
C80.0340 (15)0.0332 (15)0.0427 (18)0.0031 (12)0.0074 (14)0.0016 (13)
C90.0307 (16)0.0329 (15)0.0297 (19)0.0014 (12)0.0019 (11)0.0048 (13)
C100.0381 (16)0.0238 (12)0.0322 (16)0.0010 (11)0.0003 (12)0.0029 (11)
C110.0342 (15)0.0302 (14)0.0312 (15)0.0020 (11)0.0042 (12)0.0048 (12)
C120.0484 (19)0.0333 (17)0.057 (3)0.0017 (15)0.012 (2)0.0047 (16)
C130.051 (3)0.051 (2)0.037 (3)0.0155 (17)0.0098 (15)0.0014 (18)
C140.0478 (19)0.0446 (19)0.0435 (19)0.0134 (16)0.0069 (16)0.0182 (16)
C150.047 (2)0.0348 (16)0.056 (2)0.0060 (15)0.0049 (17)0.0120 (16)
C160.0369 (16)0.0360 (16)0.0464 (19)0.0024 (13)0.0037 (15)0.0045 (15)
C170.106 (5)0.074 (4)0.083 (4)0.001 (3)0.059 (4)0.014 (3)
C180.122 (6)0.070 (3)0.050 (3)0.0003 (3)0.017 (3)0.015 (2)
C190.054 (2)0.052 (2)0.0271 (17)0.0350 (3)0.0152 (15)0.0050 (15)
C200.0339 (17)0.0429 (18)0.050 (2)0.0030 (14)0.0108 (15)0.0132 (15)
C210.0302 (15)0.0361 (15)0.0431 (18)0.0016 (12)0.0007 (13)0.0118 (14)
C220.0261 (13)0.0304 (13)0.0297 (15)0.0015 (10)0.0009 (11)0.0030 (11)
C230.0252 (13)0.0282 (13)0.0321 (15)0.0007 (10)0.0010 (11)0.0027 (11)
C240.0289 (14)0.0389 (16)0.048 (2)0.0046 (12)0.0079 (14)0.0032 (14)
C250.0289 (16)0.0306 (15)0.040 (2)0.0029 (11)0.0083 (12)0.0042 (14)
C260.0335 (14)0.0278 (13)0.0309 (15)0.0023 (11)0.0024 (12)0.0058 (11)
C270.0295 (13)0.0270 (13)0.0355 (16)0.0035 (11)0.0015 (12)0.0037 (12)
C280.0408 (16)0.0333 (15)0.046 (2)0.0028 (13)0.0000 (15)0.0101 (14)
C290.047 (2)0.0364 (17)0.067 (3)0.0020 (15)0.0094 (19)0.0194 (17)
C300.0469 (19)0.052 (2)0.049 (2)0.0184 (17)0.0188 (17)0.0210 (18)
C310.053 (3)0.055 (2)0.046 (3)0.0143 (18)0.0053 (17)0.004 (2)
C320.0390 (17)0.0401 (17)0.040 (2)0.0013 (14)0.0057 (15)0.0058 (15)
Geometric parameters (Å, º) top
O2—H2B0.89 (4)C14—C151.370 (6)
O5—H50.99 (6)C14—Cl11.747 (4)
O7—H7A0.84 (7)C15—C161.377 (5)
O7—H7B0.87 (7)C15—H150.93
O8—H8A0.75 (5)C16—H160.93
O8—H8B0.84 (6)C17—C181.328 (11)
N1—H1A0.86C17—S21.652 (8)
N2—H2A0.86C17—H170.93
N3—H3A0.86C18—C191.448 (7)
N4—H4A0.86C18—H180.93
C1—C21.338 (11)C19—C201.465 (6)
C1—S11.653 (8)C19—H190.93
C1—H10.93C20—C211.467 (5)
C2—C31.407 (7)C20—S21.703 (4)
C2—H20.93C21—O41.209 (5)
C3—C41.490 (6)C21—C221.542 (4)
C3—H30.93C22—C261.530 (4)
C4—C51.449 (5)C22—C231.538 (4)
C4—S11.688 (4)C22—H220.98
C5—O11.221 (5)C23—O51.393 (4)
C5—C61.530 (4)C23—N31.447 (4)
C6—C101.533 (4)C23—C241.541 (4)
C6—C71.543 (4)C24—F41.317 (4)
C6—H60.98C24—F51.328 (4)
C7—O21.385 (4)C24—F61.330 (5)
C7—N11.448 (4)C25—O61.252 (4)
C7—C81.536 (4)C25—N41.332 (4)
C8—F31.319 (4)C25—N31.357 (4)
C8—F21.323 (4)C26—N41.453 (4)
C8—F11.340 (4)C26—C271.520 (4)
C9—O31.230 (4)C26—H260.98
C9—N21.347 (4)C27—C281.380 (5)
C9—N11.363 (4)C27—C321.393 (5)
C10—N21.461 (4)C28—C291.399 (5)
C10—C111.517 (4)C28—H280.93
C10—H100.98C29—C301.367 (6)
C11—C161.382 (5)C29—H290.93
C11—C121.391 (5)C30—C311.388 (7)
C12—C131.376 (6)C30—Cl21.750 (4)
C12—H120.93C31—C321.370 (6)
C13—C141.363 (6)C31—H310.93
C13—H130.93C32—H320.93
C1—S1—C493.2 (3)C13—C14—C15121.2 (4)
C17—S2—C2092.5 (3)C13—C14—Cl1119.5 (3)
C7—O2—H2B107 (3)C15—C14—Cl1119.3 (3)
C23—O5—H5106 (4)C14—C15—C16119.4 (3)
H7A—O7—H7B110 (6)C14—C15—H15120.3
H8A—O8—H8B99 (5)C16—C15—H15120.3
C7—N1—H1A119.1C15—C16—C11120.8 (3)
C9—N1—C7121.8 (3)C15—C16—H16119.6
C9—N1—H1A119.1C11—C16—H16119.6
C9—N2—C10125.9 (3)C18—C17—S2114.3 (4)
C9—N2—H2A117.1C18—C17—H17122.9
C10—N2—H2A117.1S2—C17—H17122.9
C23—N3—H3A119.4C17—C18—C19115.2 (5)
C25—N3—C23121.1 (3)C17—C18—H18122.4
C25—N3—H3A119.4C19—C18—H18122.4
C25—N4—C26126.2 (3)C18—C19—C20105.9 (4)
C25—N4—H4A116.9C18—C19—H19127.1
C26—N4—H4A116.9C20—C19—H19127.1
C2—C1—S1113.7 (4)C19—C20—C21130.0 (3)
C2—C1—H1123.2C19—C20—S2112.1 (3)
S1—C1—H1123.2C21—C20—S2117.9 (3)
C1—C2—C3115.4 (6)O4—C21—C20120.6 (3)
C1—C2—H2122.3O4—C21—C22121.3 (3)
C3—C2—H2122.3C20—C21—C22118.2 (3)
C2—C3—C4107.1 (4)C26—C22—C23109.5 (2)
C2—C3—H3126.5C26—C22—C21109.3 (2)
C4—C3—H3126.5C23—C22—C21112.8 (2)
C5—C4—C3129.0 (3)C26—C22—H22108.4
C5—C4—S1120.3 (3)C23—C22—H22108.4
C3—C4—S1110.7 (3)C21—C22—H22108.4
O1—C5—C4120.8 (3)O5—C23—N3112.8 (3)
O1—C5—C6119.5 (3)O5—C23—C22109.6 (2)
C4—C5—C6119.7 (3)N3—C23—C22107.5 (2)
C5—C6—C10109.6 (2)O5—C23—C24110.0 (3)
C5—C6—C7113.1 (2)N3—C23—C24107.3 (2)
C10—C6—C7109.5 (2)C22—C23—C24109.6 (2)
C5—C6—H6108.2F4—C24—F5107.6 (3)
C10—C6—H6108.2F4—C24—F6107.1 (3)
C7—C6—H6108.2F5—C24—F6106.0 (3)
O2—C7—N1112.9 (3)F4—C24—C23112.9 (3)
O2—C7—C8109.6 (3)F5—C24—C23110.8 (3)
N1—C7—C8107.5 (2)F6—C24—C23112.1 (3)
O2—C7—C6108.8 (2)O6—C25—N4120.6 (3)
N1—C7—C6108.0 (2)O6—C25—N3120.6 (3)
C8—C7—C6109.9 (2)N4—C25—N3118.8 (3)
F3—C8—F2108.2 (3)N4—C26—C27110.6 (3)
F3—C8—F1106.9 (3)N4—C26—C22108.6 (2)
F2—C8—F1106.0 (3)C27—C26—C22109.4 (3)
F3—C8—C7112.7 (3)N4—C26—H26109.4
F2—C8—C7111.0 (3)C27—C26—H26109.4
F1—C8—C7111.7 (3)C22—C26—H26109.4
O3—C9—N2120.9 (3)C28—C27—C32119.6 (3)
O3—C9—N1121.0 (3)C28—C27—C26120.1 (3)
N2—C9—N1118.0 (3)C32—C27—C26120.2 (3)
N2—C10—C11110.1 (3)C27—C28—C29120.5 (4)
N2—C10—C6109.1 (2)C27—C28—H28119.8
C11—C10—C6109.5 (3)C29—C28—H28119.8
N2—C10—H10109.4C30—C29—C28118.3 (4)
C11—C10—H10109.4C30—C29—H29120.8
C6—C10—H10109.4C28—C29—H29120.8
C16—C11—C12118.5 (3)C29—C30—C31122.2 (4)
C16—C11—C10120.8 (3)C29—C30—Cl2119.5 (3)
C12—C11—C10120.5 (3)C31—C30—Cl2118.3 (4)
C13—C12—C11120.6 (4)C32—C31—C30118.9 (4)
C13—C12—H12119.7C32—C31—H31120.6
C11—C12—H12119.7C30—C31—H31120.6
C14—C13—C12119.5 (4)C31—C32—C27120.5 (4)
C14—C13—H13120.3C31—C32—H32119.7
C12—C13—H13120.3C27—C32—H32119.7
S1—C1—C2—C30.8 (8)C26—C22—C23—O564.1 (3)
C1—C2—C3—C41.3 (7)C21—C22—C23—O557.8 (3)
C2—C3—C4—C5178.4 (5)C26—C22—C23—N358.8 (3)
C2—C3—C4—S11.2 (5)C21—C22—C23—N3179.3 (3)
C3—C4—C5—O1167.1 (4)C26—C22—C23—C24175.1 (3)
S1—C4—C5—O113.2 (5)C21—C22—C23—C2463.0 (3)
C3—C4—C5—C612.8 (6)O5—C23—C24—F471.1 (3)
S1—C4—C5—C6166.8 (3)N3—C23—C24—F451.9 (4)
O1—C5—C6—C1056.5 (4)C22—C23—C24—F4168.3 (3)
C4—C5—C6—C10123.4 (3)O5—C23—C24—F549.6 (4)
O1—C5—C6—C765.9 (4)N3—C23—C24—F5172.6 (3)
C4—C5—C6—C7114.1 (3)C22—C23—C24—F571.0 (4)
C5—C6—C7—O257.0 (3)O5—C23—C24—F6167.8 (3)
C10—C6—C7—O265.5 (3)N3—C23—C24—F669.2 (3)
C5—C6—C7—N1179.9 (3)C22—C23—C24—F647.2 (4)
C10—C6—C7—N157.4 (3)C23—C22—C26—N448.8 (3)
C5—C6—C7—C863.1 (3)C21—C22—C26—N4172.8 (3)
C10—C6—C7—C8174.5 (3)C23—C22—C26—C27169.7 (2)
O2—C7—C8—F372.8 (4)C21—C22—C26—C2766.3 (3)
N1—C7—C8—F350.3 (4)N4—C26—C27—C28136.7 (3)
C6—C7—C8—F3167.7 (3)C22—C26—C27—C28103.7 (4)
O2—C7—C8—F248.7 (4)N4—C26—C27—C3244.8 (4)
N1—C7—C8—F2171.8 (3)C22—C26—C27—C3274.8 (4)
C6—C7—C8—F270.8 (4)C32—C27—C28—C291.3 (6)
O2—C7—C8—F1166.9 (3)C26—C27—C28—C29177.2 (3)
N1—C7—C8—F170.0 (3)C27—C28—C29—C300.7 (6)
C6—C7—C8—F147.3 (3)C28—C29—C30—C310.2 (6)
C5—C6—C10—N2173.3 (3)C28—C29—C30—Cl2178.4 (3)
C7—C6—C10—N248.7 (3)C29—C30—C31—C320.2 (7)
C5—C6—C10—C1166.2 (3)Cl2—C30—C31—C32178.4 (3)
C7—C6—C10—C11169.2 (3)C30—C31—C32—C270.8 (7)
N2—C10—C11—C16137.7 (3)C28—C27—C32—C311.3 (6)
C6—C10—C11—C16102.4 (4)C26—C27—C32—C31177.2 (4)
N2—C10—C11—C1246.7 (4)O3—C9—N1—C7165.8 (4)
C6—C10—C11—C1273.2 (4)N2—C9—N1—C718.2 (5)
C16—C11—C12—C131.0 (6)O2—C7—N1—C977.2 (4)
C10—C11—C12—C13176.7 (4)C8—C7—N1—C9161.8 (3)
C11—C12—C13—C140.9 (7)C6—C7—N1—C943.2 (4)
C12—C13—C14—C150.7 (7)O3—C9—N2—C10175.4 (4)
C12—C13—C14—Cl1179.0 (4)N1—C9—N2—C108.6 (6)
C13—C14—C15—C160.6 (6)C11—C10—N2—C9145.7 (4)
Cl1—C14—C15—C16179.0 (3)C6—C10—N2—C925.5 (5)
C14—C15—C16—C110.7 (6)O6—C25—N3—C23164.7 (4)
C12—C11—C16—C150.9 (6)N4—C25—N3—C2315.9 (6)
C10—C11—C16—C15176.6 (3)O5—C23—N3—C2577.9 (4)
S2—C17—C18—C191.3 (7)C22—C23—N3—C2543.0 (4)
C17—C18—C19—C200.1 (6)C24—C23—N3—C25160.8 (3)
C18—C19—C20—C21179.4 (4)O6—C25—N4—C26175.8 (4)
C18—C19—C20—S21.1 (4)N3—C25—N4—C264.8 (7)
C19—C20—C21—O4165.8 (4)C27—C26—N4—C25142.9 (4)
S2—C20—C21—O412.3 (5)C22—C26—N4—C2522.8 (5)
C19—C20—C21—C2214.0 (6)C2—C1—S1—C40.0 (6)
S2—C20—C21—C22167.8 (2)C5—C4—S1—C1179.0 (4)
O4—C21—C22—C2658.9 (4)C3—C4—S1—C10.8 (4)
C20—C21—C22—C26120.9 (3)C18—C17—S2—C201.7 (5)
O4—C21—C22—C2363.1 (4)C19—C20—S2—C171.6 (4)
C20—C21—C22—C23117.0 (3)C21—C20—S2—C17179.9 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F30.862.382.719 (4)104
N1—H1A···O7i0.862.373.022 (4)132
N2—H2A···O70.862.152.914 (4)147
O2—H2B···O6ii0.89 (4)1.85 (4)2.694 (4)156 (3)
N3—H3A···F40.862.412.733 (4)103
N3—H3A···O8iii0.862.343.007 (4)134
N4—H4A···O80.862.142.921 (4)151
O5—H5···O30.98 (6)1.72 (6)2.686 (4)169 (6)
O7—H7A···O6iii0.84 (7)2.27 (7)2.879 (4)130 (5)
O7—H7B···O4iv0.86 (6)2.36 (6)2.996 (5)131 (5)
O7—H7B···O5iv0.86 (6)2.18 (6)2.859 (4)135 (5)
O8—H8A···O3v0.75 (5)2.21 (5)2.897 (4)153 (4)
O8—H8B···O1i0.83 (5)2.22 (6)2.968 (5)150 (5)
O8—H8B···O2i0.83 (5)2.27 (6)2.861 (4)128 (5)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1, y, z; (iii) x+3/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x+3/2, y1/2, z.

Experimental details

Crystal data
Chemical formulaC16H12ClF3N2O3S·H2O
Mr422.81
Crystal system, space groupOrthorhombic, Pbn21
Temperature (K)298
a, b, c (Å)9.1156 (6), 14.1582 (7), 27.6012 (17)
V3)3562.2 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.39
Crystal size (mm)0.5 × 0.3 × 0.2
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1998)
Tmin, Tmax0.860, 0.923
No. of measured, independent and
observed [I > 2σ(I)] reflections
19595, 9251, 7478
Rint0.032
(sin θ/λ)max1)0.686
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.146, 1.07
No. of reflections9251
No. of parameters511
No. of restraints?
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.41, 0.47
Absolute structureFlack (1983), 4326 Friedel pairs
Absolute structure parameter0.18 (8)

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1998), SHELXTL (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···F30.862.382.719 (4)104
N1—H1A···O7i0.862.373.022 (4)132
N2—H2A···O70.862.152.914 (4)147
O2—H2B···O6ii0.89 (4)1.85 (4)2.694 (4)156 (3)
N3—H3A···F40.862.412.733 (4)103
N3—H3A···O8iii0.862.343.007 (4)134
N4—H4A···O80.862.142.921 (4)151
O5—H5···O30.98 (6)1.72 (6)2.686 (4)169 (6)
O7—H7A···O6iii0.84 (7)2.27 (7)2.879 (4)130 (5)
O7—H7B···O4iv0.86 (6)2.36 (6)2.996 (5)131 (5)
O7—H7B···O5iv0.86 (6)2.18 (6)2.859 (4)135 (5)
O8—H8A···O3v0.75 (5)2.21 (5)2.897 (4)153 (4)
O8—H8B···O1i0.83 (5)2.22 (6)2.968 (5)150 (5)
O8—H8B···O2i0.83 (5)2.27 (6)2.861 (4)128 (5)
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1, y, z; (iii) x+3/2, y+1/2, z; (iv) x+1/2, y+1/2, z; (v) x+3/2, y1/2, z.
 

Acknowledgements

The authors are grateful to Islamic Azad University, Yazd Branch, for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBruker (1998). SMART and SAINT. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFlack, H. D. (1983). Acta Cryst. A39, 876–881.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationParaskar, A. S., Dewkar, G. K. & Sudalai, A. (2003). Tetrahedron Lett. 44, 3305–3308.  Web of Science CrossRef CAS Google Scholar
First citationPeng, J. & Deng, Y. (2001). Tetrahedron Lett. 42, 5917–5919.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (1998). SADABS. Bruker AXS, Madison, Wisconsin, USA.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds